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Abstract: The authors propose and explore new regression designs. Within a particular parametric class,
these designs are minimax robust against bias caused by model misspecification while attaining reasonable
levels of efficiency as well. The introduction of this restricted class of designs is motivated by a desire to
avoid the mathematical and numerical intractability found in the unrestricted minimax theory. Robustness
is provided against a family of model departures sufficiently broad that the minimax design measures are
necessarily absolutely continuous. Examples of implementation involve approximate polynomial and sec-
ond order multiple regression.

Quelques plans minimax restreints robustes pour des modeles de régression mal spécifiés
Résumé : Les auteurs proposent et explorent de nouveaux plans expérimentaux pour la régression. Ces
plans sont minimax par rapport a une classe paramétrique restreinte et s’averent a la fois robustes au biais
df a un mauvais choix de modele et raisonnablement efficaces. L’introduction de cette classe restreinte de
plans est motivée par le désir d’éviter les problemes mathématiques et numériques liés a la théorie minimax
générale. Les plans sont robustes 2 des familles de modeles suffisamment larges pour que les mesures
des plans minimax soient absolument continues. Les exemples d’implantation concernent 1’approximation
polynomiale et la régression multiple du second ordre.

1. INTRODUCTION

Suppose that an experimenter fits, by least squares, a regression model
E(Y|x)=12'(x)8 ¢))

to data {(Y;, x;) }?:1 , with the x; being chosen from a ¢-dimensional design space S. The mean
response is linear in p regressors z1(x), ..., zp(x), each a function of independent variables
zi,...,xq. The experimenter is concerned that the true model might be only approximated by
(1), a more precise description being

E(Y|x) =2'(x)8 + f(x) 2

for some unknown but “smgll” function f. In this situation, she would like to choose design
points that yield estimates 6 of @ and estimates Y (x) = z’(x)a of E (Y |x) which remain
relatively efficient while suffering as little as possible from the bias engendered by the model
misspecification.

Under (2), the parameter 8 is not well-defined if f is unconstrained. This concern may be
obviated by transferring to z’ (x)8 the projection of f on the regressors; we may then assume that
f and z are orthogonal in L? = L?(S, dx). This still leaves open the possibility that E (Y | x) =
f(x) is completely unknown and orthogonal to the regressors; in order to rule out this case, we
place a bound on the magnitude of f. Our model then becomes

Y(xi)=E(Y |x;)) 4+, i=1....n
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with the mean response given by (2) and with f an arbitrary, unknown member of

F= {f:/sz(x)f(x)dx:O, /Sf:’(x)dxgng}. 3

We assume additive, uncorrelated random errors with common variance o?. The radius 7 of F is
fixed. It will be seen that the designs exhibited in this article depend on n> and o only through
v = o?/(nn?), which may be chosen by the experimenter according to her judgement of the
relative importance of variance versus bias. An alternate interpretation of this parameter is that it
is inversely related to the premium in terms of lost efficiency relative to the variance-minimising
design that the experimenter is willing to pay for robustness against model misspecification.

Various authors—Box & Draper (1959), Stigler (1971), Andrews & Herzberg (1979), Li &
Notz (1982), Pesotchinsky (1982), Sacks & Ylvisaker (1984), Dette & Wong (1996), Liu &
Wiens (1997), to mention but a few—have studied such problems in this framework and others.
Our approach is to seek minimax designs which minimise (over a class of designs) the maximum
(over F) value of a measure of the mean squared error of }". Such designs have been constructed
only for particularly well-structured problems See Huber (1975, 1981) for the case of straight
line regression (z(x) = (1, x)") over S = [—1/2, 1/2], with extensions by Wiens (1990, 1992)
to the case of multiple linear regression, z(x) = (1.x1,....4)" with S a sphere in RY, as
well as to the partial second order model with interactions, z(x) = (l,zy, 20, 2122), S =
[-1/2,1/2] x [-1/2,1/2]. In Section 2 of this article, we review a number of these results,
and outline some of the difficulties encountered in extending this approach to more involved
problems. It will be seen there that even the quadratic polynomial model resists a straightforward
treatment.

Motivated by these considerations, we propose in Section 3 a certain parametric class of de-
signs from which we seek a minimax member. We argue that these restricted minimax designs
are mathematically and numerically simpler than the unrestricted designs, while performing al-
most as well. This is illustrated by reconsidering the examples of Section 2 with the new designs.
As well, examples are given of the restricted approach in problems not attempted with the unre-
stricted approach.

The family of model departures against which robustness is provided is sufficiently broad
that the minimax design measures are necessarily absolutely continuous. We give two methods
of approximating and implementing such designs and illustrate one in a case study undertaken in
Section 4.

2. UNRESTRICTED MINIMAX DESIGNS

An exactly implementable design will correspond to a design measure £ placing mass 1/n at
each of x;,...,x,. Below, we exhibit the moments of the least squares estimator under such
a design. As is common in design theory, we then broaden the class of allowable measures to
the class = of all probability measures on S. We will find optimal designs in this class and
approximate them, as necessary, prior to implementation.

When the model (1) is ﬁtted and the true model is (2) the least squares estimator 6 is biased.
With b(f, { = [oz (dx) and A = [,z (x) &(dx) assumed non-singular, the
b1asxsE(6) 6= AE 1b(f,f) and the mean squarederrormatrixis

MSE(f.€) =E{(8-6)(6—8)'} = (c*/n) A7  + A7 'b(£.Eb/(f. A

We consider the loss functions £y = integrated MSE of the fitted responses )A"(x), Lp =
determinant of the MSE matrix, and £4 = trace of the MSE matrix. These correspond to the
classical notions of (J-, D- and A-optimality, and so we adopt the same nomenclature. The term
(Q-optimality seems to be due to Fedorov (1972); Studden (1977) and others have used instead
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the term I-optimality. Explicit descriptions of these loss functions, with A = [ z(x)z’(x) dx,

are given by
Lo(f.€) = ﬂE [{3 (x) —E(Y |x) } ] dx
= (Z)u (a7 ) +b0.0AT AT BUO + [ Pk @
eotr) = dertuseire) = () {1 Soasbira). ©
£alf9) = w(MSELE) = (T At +B(LOATB(E) ©

We aim to construct designs to minimise the maximum (over F) value of the loss. The proofs
of the following results are discussed in the Appendix.

LEMMA 1. Suppose that ||z(x)|| is bounded in x on S and that for each a # 0,
the set {x :a’'z(x) =0} has Lebesgue measure zero. If supyz L(f,€) is finite, then ¢
is absolutely continuous with respect to Lebesgue measure, with a density m satisfying
fs llz(x )2 m?(x) dx < .

THEOREM 1. Let S and £ be as in Lemma 1. Define matrices H = A¢Aj'A¢, K¢ =
fs z(x)z' (x)m?(x) dx, and G¢ = K¢ — He, and denote by A\nax(A) the largest eigenvalue of
a matrix A. Then

n]}@,x[,Q(f,ﬁ) = 7]2 I/tr(Agle)+/\max(Kngl)}, @
2\ P~1

maxLp(f.§) = n?(‘;_) {V+Amax (GeA! }/|A§| 8)

maxCa(£,€) = o {vir(A7) + Amax(GeA; )}, ©

and so the density m. (x) of a Q-, D- or A-optimal (minimax) design £. must minimise the right
hand side of (7), (8) or (9) respectively.

Example 1. Wiens (1992) considered the approximate multiple linear regression model, with
x = (&1,...,%4) varying over a g-dimensional sphere S centred at the origin and z(x) =
(1,x)’. The search for minimax designs was restricted to those with symmetric, exchangeable
densities m(x). The (- and D-optimal densities were found to be of the form m. (x) = (a +
b||x||*)* for appropriate constants a and b.

For sufficiently large values of v, the A-optimal density was found to be of the form
(a — b/||x]|*)*. See Table 1 for some numerical values when ¢ = 1. For smaller values of
v, difficulties such as detailed in Example 2 below were encountered. The A-optimality case is
reconsidered in Example 4.

Example 2. We illustrate some of the difficulties that can be encountered in the minimax ap-
proach without further restrictions on the design density, by considering approximate quadratic
regression z(z) = (1, z, 2%’ over S = [—1/2, 1/2]. We treat Q-optimality only, the other cases
being very similar. We define

aj:/qa:jm(a:)dar, kj:/;a:jmz(a:)d.r.
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For a symmetric design &, the non-zero elements of H, are
H11 = ho = 9/4 — 30&2 + 1800%,
His=H31=h = 902/4 — 1504 — 150% + 1809y,

Hgg - hg =12«

[C1)

His = hy = 9&%/4 — 30asaq4 + 18003,

and the characteristic polynomial of K¢ H; Lis He !| times
|K¢ — AHe| = p(A) = (k2 — Aha) { (ko — Aho) (ks — Ah3) — (ko — AR1)*}.

There are then two candidates for the maximum eigenvalue: Ao(£) = k2/h2, and the larger zero
A1(€) of the quadratic factor of p(\). Define

fi(f)thr(Ag_le)'i'/\i(ﬁ)v i=0,1; (&) =max{lo(£),61(£)}

TABLE 1. Numerical values for the approximate straight-line model;
unrestricted and restricted A-optimal minimax densities.

Unrestricted design Restricted design®

v a b loss a b loss

1 0 0
0.1 0.932 0.820 1.269
0.445 1.77 0.028 4.450 0.625 4.500 5.169
1 2.345 0.071 9.154 —0.012 12.134 9.951
10 8.815 0.969 69.263 —3.419 36.224 69.470
100 60.225  11.426 570.339 —45.250  241.806 570.394

1000 530.587 121.381 523569 —485.606 2125.479 523576

' mu(z) = (a = b/z%)*t, 2 ma(z) = (a + ba?)T

There is a general prescription by which the minimax design &, = arg min ¢(£) may now be
obtained.

Step 1: Find designs §; minimising ¢; () subject to the constraint \; (£) > A;_;(£),i =0, 1.
Step 2: Put &, = & if {p(&o) < €1(€1) and &, = &; otherwise.

It follows that (&, ) < min{(y(&o), ¢1(£1)} and that £, is minimax.

The inequality constraints in Step 1 can lead to solutions so cumbersome as to be uninter-
esting from a practical point of view. The omitted case of Example 1 is a case in point—see
Section 3.6 of Wiens (1992). Thus a more usual approach, but one not guaranteed to succeed, is:

Step 1’: Find designs £; minimising {; (£) among all designs £, i = 0, 1.

Step 2': Put & = o if Ao(€o) > A1(&o) and & = &1 if A1 (€1) > Ao(&1).
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FIGURE 1: Unrestricted (solid lines) and restricted (broken lines) A-optimal minimax densities
for the approximate straight line model. (a) v = 0.445; (b) ¥ = 10.
Explicit descriptions of the densities are in Table 1.

In this example, Step 1’ may be carried out in stages, by first fixing ao(= 1), @, and a4. This
fixes A¢ as well, so that only A, (£) need be minimised, subject to the three side conditions. These
are standard variational problems. For i = 0, the solution is mo (z) = (a — b/22 + cz2)". The
Lagrange multipliers a, b, ¢ are functions of a» and a4 defined through the side conditions, and
«va, a4 are then varied to minimise the loss for a given value of v. Similarly for i = 1, the
solution is of the form my (z) = ((a + bz® + ca*) / (d + ez? + fz*))"; see Heo (1998) for
details.

We find, unfortunately, that both inequalities in Step 2’ fail. One can then either carry out
Steps 1 and 2 above—a quite unappealing proposition—or seek more tractable solutions within
arestricted class of designs. The latter tack in taken in the next section.

We remark that if this quadratic model has no intercept so that z(z) = (z,z?)’, then both
Steps 1’ and 2’ can be carried out successfully—see Heo, Schmuland & Wiens (1999).

Example 3. Wiens (1990) found that for the partial second order regression model with in-
teractions z(x) = (1,z1, 2, £122)" and a square design space .S centred at 0, the (Q-optimal
symmetric, exchangeable design density was of the form m. (x) = (a + b(z? + 23) + cx?22)*.
For this model, the eigenvalues in Theorem 1 have a quite simple structure, since the relevant
matrices are diagonal. For the full second order model, this is no longer the case; due to the
ensuing computational difficulties, this model was not considered. We obtain designs for the full
model in Example 6 below.

3. RESTRICTED MINIMAX DESIGNS

Assume that S is symmetric about 0 and invariant under permutations of the coordinate axes. The
symmetry can often be arranged through an affine transformation of the independent variables,
in which case there is no loss of generality. Invariance under permutations of the axes is a natural
requirement when there is no a priori reason to prefer one coordinate over another. For the
approximate regression model defined by (2) and (3), we propose to search for minimax designs
within the class =’ of measures with densities of the form

+
mix) = (Z 8125 (2, ..,xg)) , (10)
J
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with the j; restricted in such a way that m is exchangeable. The squaring of the independent
variables ensures the symmetry of m(x). The optimal design in =’ is obtained by choosing the
#; to minimise the appropriate maximum loss function in Theorem 1, subject to the constraint
that m be a density on .S.

As is seen in the examples below, these restricted minimax designs perform almost as well as
the unrestricted designs in those cases in which the latter have been constructed. By Theorem 2,
they generally have the limiting behaviour that one would expect, tending to the continuous
uniform design as ¥ — 0 and to the classical, variance-minimising designs as ¥ — oc. Also
the designs are numerically straightforward, having the same parametric form regardless of the
structure of the eigenvalues which appear in Theorem 1. This fact has enabled us to construct the
restricted designs in cases that are not readily amenable to an unrestricted treatment.

THEOREM 2. Assume that S is a compact subset of R? satisfying the condition of Lemma 1 and
that z.(x) is continuous in x on S. Then for each v > 0, there is a minimax design measure &, in
Z'. Express each maximum loss (71)-(9) as v times “variance” plus “bias:” sup;c r L(f.§) =
vV (&) + B(§). Then (i) any weak limit point £, of £, as v — 0 satisfies B(&y) = infee= B(£),
and (ii) any weak limit point {. of €, as v — oc satisfies V (£ ) = infee= V(€).

To apply Theorem 2 in the case v — (), suppose that “1” is an element of z(x), i.e., that
the model contains an intercept. Then the continuous uniform design ¢, is a member of ='. By
Theorem 2b of Wiens (1998), this is the unique minimiser of B(£) in = and by Theorem 2,
infee= B(€) = infeez B(E) = limy, 0 B(£,). In the case v — oc, suppose that the minimiser
€~ of V(€) in Z is unique and is such that we can construct a sequence of designs £/, € =’ tending
weakly to £... Then V/(£],) = V(£ ) by Theorem 2 and so infee=r V(§) = infee=V/(§) =
limy, o V(€,). The details of such constructions are straightforward in particular examples and
will not be given here.

Example 4. For the model of Example 1, (10) gives m(x) = (;30 +Y0 B x§)+. With
a = fBo,and b = 8, = --- = 3, for exchangeability, this density agrees exactly with the form
of the (J- and D-optimal densities m. (x). See Table 1 and Figure 1 for a comparison of the
unrestricted and restricted A-optimal design densities when ¢ = 1. In the unrestricted case, the
design is available only for » > 0.445. For moderately large v, the loss of the restricted minimax
design is only marginally greater than that of the unrestricted design. As v — oc, both designs
approach the variance-minimising design with mass of 0.5 at each of +1/2.

Example 5. For the polynomial model with z(z) = (1,2, ..., 2%)’, Z' consists of those designs
with densities
q N
m(z;a,b) = (a + Z b]-:c2]> .
j=1

From the plots in Figure 2, one sees that a rough guide to implementation is to locate the ¢+ 1
sites at which these classical designs place all of their mass, and then to replace the replicates at
these sites by groups of observations at distinct but nearby sites. This observation is reinforced
in the examples of Section 4.

See Figure 2 for plots in the quadratic and cubic cases with values of the constants in Table 2.
As noted previously for variance-minimising designs (Studden 1977) and for mse-minimising
designs (Wiens 2000), the (- and D-optimal designs are very similar. As v — oo, all three tend
to their variance-minimising counterparts. '

Example 6. For the partial second order model as considered in Example 3, =’ again contains
the unrestricted minimax design. For the full second order model with ¢ = 2, z(x;,25) =
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(1,21, 2, z172, 2%, z3)’, the designs in =’ have densities
+
m(xh T2;a, b: c, d) = ((1 + b(l’% + x%) + Cil?%l’g + d(x? + 13‘21)) ‘

See Figure 3 for plots of the -, D- and A-optimal design densities when v = 5.
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FIGURE 2: Q-optimal (solid lines), D-optimal (dotted lines) and A-optimal (dashed lines) minimax
densities for approximate degree-g polynomial regression. (a) g = 2, v = 1; (b) g = 2, v = 100;
(©) ¢ =3,v =1;(d) ¢ = 3, v = 100. Explicit descriptions of the densities are in Table 2.
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FIGURE 3: Restricted minimax design densities for approximate, full second order model with v = 5.
(a) Q-optimal density; (b) D-optimal density; (c) A-optimal density.
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TABLE 2: Numerical values for the approximate quadratic and cubic models; restricted minimax densities.

Quadratic model’ Cubic model®

a 81 32 a 31 32 Ba
vr=1
Q 34.845 —0.117 0.026 375.733 —-0.265 0.021 0.002
D 35.095 -0.044 0.020 202.398 —0.102 0.008 0.003
A 178.081 -0.188 0.009 2753.817 —0.323 0.026 0.000
v =100

Q 1606.184 -0.224 0.002 25589.67 —0.332 0.025 0.000
D 2984.049 —-0.225 0.001 39087.81 —-0.334 0.026 0.000
A 3904.564 —0.232 0.001 59911.30 —-0.355 0.031 -0.001
Yma(z) = a2t + B2 + 32)F, 2 ma(x) = al2® + Brat + Box® 4 3a)F

Explicit expressions, obtained by expressing the appropriate loss functions in terms of a, b, ¢
and d and then minimising the loss numerically over these constants, are

Q-optimality:
M (21, 22) = 216.419 (¢ + 2 4 0.3062723 — 0.210(27 + 22) +0.011) ",
D-optimality:

ma (21, 22) = 369.556 (27 + x4 + 0.430222 — 0.213(22 + 22) +0.007) ™,
A-optimality:

M (21, 72) = 1.856 (2] + 3 + 0.4422723 + 2.168(x; + x3) + 0.149) .
1 2 1+2 2

All three designs have concentrations of mass at the boundary of the square, in particular at
(£1/2,+1/2) and to a lesser extent at (+1/2,0) and (0, 1/2). Substantial mass is however
placed all along the boundary and, in the ()- and D-cases, near the origin. The designs can
roughly be described as smoothed versions of central composite designs.

4. IMPLEMENTATIONS AND CASE STUDY

The implementation of a continuous measure as a discrete design involves some arbitrariness.
In this section, we discuss two possible methods and illustrate one with a case study. First
consider the case of a single independent variable . Here one may choose the sites z; to be
n uniformly spaced quantiles of the minimax design measure, i.e., z; = £71{(i — 1)/(n —
1)}, where for notational convenience &, is identified with its distribution function. One can
also force replications through an obvious modification of this technique; see Heo, Schmuland
& Wiens (1999) for an example in an oncology setting. In the experiment described there, x
represents the level of a carcinogen, and one is to estimate the probability P (z) of a particular
response at level x. Replication is desirable in order to estimate the probabilities P (z;) by
sample proportions. The logits are then approximated by a cubic polynomial in x. The results
obtained in Heo, Schmuland & Wiens (1999) reinforce the observation made in Example 3, in
that the design may be obtained from the variance-minimising design by breaking up its four
large groups of replicates into clusters of replicates at nearby sites.

The following case study arose from a consulting project undertaken by the first author. In it,
a second order response is anticipated. A design as in Example 6 is implemented by choosing the



2001 MINIMAX ROBUST DESIGNS 125

sites in such a manner that the empirical moments, up to a certain order which is O(n), match
those obtained from the minimax density. Thus, as in the method of the previous paragraph,
we construct a discrete measure £, which has the property that it converges in measure to the
minimax design £, as n — oc.

In each of these cases, the finite sample implementation is intuitively sensible as well as
robust. A balance is struck between full efficiency and robustness as we place observations at
varied locations near the sites at which the variance-minimising designs place all of their mass.
This ‘within-site’ variation permits the fitting and exploration of alternate models.

4.1. Case study.

Prairie farmers in Alberta have traditionally stocked dugouts with trout for recreational purposes.
Some are now attempting commercial fish culturing indoors, year-round. Because of limited
water supplies, attempts are being made to recycle waste water for this purpose. Most solids
in wastewater from trout-rearing facilities settle readily, but a suspension of fine “particulate”
material remains. Several studies have shown that fine particulate adversely affects fish health
and productivity. The wastewater engineering research team at the Alberta Environmental Centre
conducted a bench-scale experiment to determine the amount of total suspended solid (TSS)
remaining after applying ozone (Os) at application rates ranging from 0 to 2 mg/L (see Heo &
James 1995). Because ozonation is to be used for disinfection and the associated capital cost
is high, the team wanted to determine an optimal O3 rate, minimising the worst cost. Another
factor which is important in the removal of suspended solids is the gas to liquid ratio, denoted
GL. Uncertainties about the exact nature of the relationship between TSS, O3 and GL led to the
assumption of an approximate second order model as in Example 6.

Both factors were linearly transformed to the range [—-1/2, 1/2]. The Q-optimal design &,
with v = 5 as in Figure 3(a), was then implemented as follows to yield n = 48 design points.
We chose ng = n/8 points (21, x2) in {0 < 1 < 22 < 1/2} and then obtained the remaining
Tng sites by symmetry and exchangeability. The no points {x,;, z2;}!'2; were chosen such that

the moments
no

_ 2j ok |, ok 2j .
€252k = E :(xlfzzi +11M2f) / (2n0)

i=1

matched up as closely as possible with the theoretical moments E ¢, (ij X 2¥) obtained from &,.
We did this for the J(J + 3)/2 choices (k, j) withk =0,...,jand j = 1,..., J, with J being
the smallest integer for which J(J + 3)/2 exceeds the number, 2n, of coordinates to be chosen.
Thus n = 48, ngp = 6 yielded J = 4 and 14 even order moments to be matched up. Of course,
all moments with at least one odd order are zero, and the 14 moments obtained by exchanging j
and k will be matched as well. The matching was done by numerical minimisation of

5 feum v (3732}
jk

yielding the implementation shown in Figure 4 with

{z1i,z2i}72 = {(0.011,0.500), (0.023,0.038), (0.085,0.332).
(0.235,0.456), (0.373, 0.466), (0.432, 0.500) }.

5. SUMMARY

We have presented new, parametric classes of regression designs. Within several such classes,
we have isolated members that are minimax robust against a broad class of departures from the
assumed linear (in the regressors) model. In those cases in which minimax members of a broader,
infinite-dimensional, class of designs have already been obtained, it has been seen that they often
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FIGURE 4: Implementation of the ()-optimal design of Figure 3(a)
for approximate second order regression; n = 48.

coincide with the minimax members of the restricted classes of designs studied here. When they
do not, it is typically the case that the new designs are mathematically and numerically simpler
than those previously obtained, or sought but not obtained due to their extreme complexity. Ex-
amples have been given of polynomial and second order designs that are optimal with respect
to generalisations of the common (-, D- and A-optimality criteria. Two implementation meth-
ods have been discussed. The resulting designs are intuitively sensible as well as robust, and
roughly correspond to breaking up the replicates in the classical, variance-minimising designs
into clusters of observations at nearby sites.

APPENDIX: DERIVATIONS
Proof of Lemma 1. See Heo, Schmuland & Wiens (1999).

Proof of Theorem 1. Note that

G¢ = fq [{m(x)I— AcAF } 2(x)] [{m(x)I - AcA7 ) 2(x)] dx,
so that G¢ is positive semi-definite. We will prove that

nG%(S:) C {b(f.€) : f € F} CnG/*(By), (A1)

where S, = {b : ||b|| = 1} and B, = {b : ||b|| < 1} are the unit sphere and the unit ball in R”,
respectively. Using (4)—(6), this gives

sup Lo(£,€) = (o*/n) tr (A Ao) + 0" sup (I+ G"H;'G"")5,
re Isl=1

1 1 1/2 5 ~1~1/2
sup Lp(f,&) = a2n"—{1+—su 3(G/°AS'G ,
feF S |Ag] v e (Ge™ A G)s
sup £4(f.6) = (o%/n) tr(A7Y) +7° sup (G/*A;*G)5.

fer 131l=1
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The maxima of the three quadratic forms over 3 are

Amax(1+ G "H'Ge®) = Amax(K¢H ),
Amax(GePATIG) = Anax(GeADY)
and

Amax(GPATPGY?) = Amax(GeA7?)

respectively, yielding (7)—(9).

If G¢ is non-singular, the inclusion (A.1) is proven as Theorem 1 of Wiens (1992). If G¢ is
singular (as at the continuous uniform design), we proceed as follows. Take any design &; for
which the corresponding matrix G, is invertible. Put§, = (1 —1t){+t£; and let p(t) = |G(&)].
Then p(t) is a polynomial in ¢ € [0, 1] with p(0) = 0 and p(1) > 0, so that p(¢) is non-constant
and non-negative on [0, 1]. Thus p(¢) > 0 for all sufficiently small ¢ > 0.

To prove the right-hand inclusion in (A.1), let f € F and pick b; € B, so that

nG¢/ by = b(f.&) (A2)

for sufficiently small ¢ > (. We have

o

1/2 . 1/2
i -iral <ef [ Foaxh { [l im - mieax) L @

s0 b(f,&) — b(f.€)ast — 0. Similarly G¢, — Gg and hence G;/° — G;/*, as the
mapping G — G'/? is continuous on the space of symmetric positive semi-definite matrices.
Then G;:/ 75 G;l ? uniformly on the compact set B,. Choose a subsequence ¢, — 0 and

b € B, so thatb,, — b and lett, — 0 in (A.2) above to obtain 7G;'’b = b(f.¢).
For the left-hand inclusion in (A.1), fix s € S, and pick f; € F so that

UGE,/QS =b(f:, &) (A4)

for sufficiently small ¢ > 0. As before, the left-hand side converges to nGll “sast — 0. Since

F is weakly compact in L?, we can choose a subsequence ¢, — 0 and f € F so that f,, — f
weakly in L. Then

Ib(f.€) = b(fr, . &) < Ib(£.€) = b(fe,. I+ [Ib(fe,. &) = b(fe, &)l

The first term goes to zero by weak convergence, and the second term goes to zero by (A.3).
Letting t, — 0 in (A.4), we obtain nG;'”s = b(f.£).

Proof of Theorem 2. See Heo, Schmuland & Wiens (1999).
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