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ABSTRACT

We consider the problem of robust M-estimation of a vector of regression parameters, when
the errors are dependent. We assume a weakly stationary, but otherwise quite general dependence
structure. Our model allows for the representation of the correlations of any time series of finite
length.

We first construct initial estimates of the regression, scale, and autocorrelation parameters.
The initial autocorrelation estimates are used to transform the model to one of approximate
independence. In this transformed model, final one-step M-estimates are calculated.

Under appropriate assumptions, the regression estimates so obtained are asymptotically normal,
with a variance-covariance structure identical to that in the case in which the autocorrelations are
known a priori. The results of a simulation study are given. Two versions of our estimator are
compared with the L;-estimator and several Huber-type M-estimators. In terms of bias and mean
squared error, the estimators are generally very close. In terms of the coverage probabilities of
confidence intervals, our estimators appear to be quite superior to both the L;-estimator and the
other estimators. The simulations also indicate that the approach to normality is quite fast.

RESUME

Nous considérons le probleme de M-estimation robuste pour un vecteur de paramétres de
régression, lorsque les erreurs sont dépendantes. Nous supposons une stationnarité faible, mais
autrement une structure de dépendance plutdt générale. Notre modeéle permet la représentation des
corrélations de n’importe quelle série chronologique de longueur finie.

Tout d’abord, nous construisons des estimateurs initiaux des parameétres de régression, d’échelle
et d’autocorrélation. Les estimateurs initiaux d’autocorrélation sont utilisés afin de transformer le
modele en un modele avec indépendance approximative. Les M-estimateurs finaux sont calculés
avec ce modele transformé.

Sous des hypothéses appropriées, les estimateurs de régression ainsi obtenus sont asympto-
tiquement normaux, avec une structure de variance/covariance identique i celle lorsque les
autocorrélations sont connues a priori. Nous donnons les résultats d’une étude de simulation.
Nous comparons deux versions de notre estimateur avec I’estimateur L; et plusieurs M-estimateurs
de type Huber. Les estimateurs sont généralement trés proches sur le plan du biais et de 1’erreur
quadratique moyenne. Nos estimateurs sont supérieurs a I’estimateur L, et aux autres estimateurs
sur le plan des probabilités de couverture des intervalles de confiance. Nos simulations indiquent
aussi que la convergence vers la normale est trés rapide.

1. INTRODUCTION

We consider the following problem. One observes data y = (y1,...,y,)" following the
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regression model
y = X0 + Ue. (1.1

Here, X is a matrix of nonrandom regressors, of full column rank p. The p-vector 8 of
unknown parameters is to be estimated. The vector € has components ¢;,...,€e, which
are i.i.d., with common, symmetric distribution function F. The matrix U is a square root
of an autocorrelation matrix:

UU'=P, cor(Y, Y1=P;=p;y, Po=1L (1.2)

The model (1.1), (1.2) thus describes, in a very general way, a situation commonly
encountered in practice. One is often unwilling or unable to make the usual regression
assumption of independent errors, but cannot justify any particular model of dependence,
apart from weak stationarity.

In this paper we define a class of one-step M-estimators of @ in the above model. Under
certain assumptions, the estimates are asymptotically unbiased, and are asymptotically
normally distributed with a variance-covariance matrix proportional to that of the BLUE.
The constant of proportionality is a functional of the y-function defining the estimate.

The asymptotic properties of the estimate are in fact the same as if the matrix U in (1.2)
were known, and one then transformed the model to one with independent observations,
before calculating the estimates. That this should be the case is perhaps intuitively clear
from the following brief description of the estimator. We first determine preliminary
estimates of @y, P, and U. These are used to transform (1.1) to a model of approximate
independence. In this model, the final one-step M-estimates are calculated.

The problem of robust estimation, when the observations are dependent, has received
attention from a number of authors. The literature can, for our purposes, be roughly
classified into three groups. In the first group are papers in which the main purpose seems
to be to determine the behaviour of estimators, calculated as if the observations were
independent, under various models of dependence. See in particular Gastwirth and Rubin
(1975), Koul (1977), Deniau, Oppenheim, and Viano (1977), Rao (1981), Sadowsky
(1986), Roussas (1989, 1990), Englund, Holst, and Ruppert (1988), and Kulperger (1990).

In the second group one finds robust estimation procedures for time series. If one is
able to assume a dependence structure following one of the standard ARMA processes,
then one may consult Bustos (1982), Martin (1981, 1982), Franke (1985), Martin and
Yohai (1985, 1986), Bustos and Yohai (1986), or Masarotto (1987).

The third, and smallest, group of papers in the literature is that to which this work
belongs. Here, one finds estimation methods which address the dependence problem in
a manner which is at least partially adaptive. Portnoy (1977) considers estimation of
location, with errors following a moving-average scheme. He shows that, to terms of first
order in a serial correlation parameter p, an M-estimate with redescending y-function is
optimal in a minimax-variance sense. The parameter p is assumed known, and controls
the rate at which y redescends. See Portnoy (1979) for extensions.

Grossman (1979) considers (approximate) maximum-likelihood estimation in a non-
linear regression model, with an error structure similar to that in (1.1), (1.2).

Poetscher and Prucha (1986) study one-step M-estimators defined by w-functions
which correspond to MLEs for Student’s ¢-distributions. The relevant degrees-of-freedom
parameter is determined by the data. Such estimators are only optimal for i.i.d. errors
from the correct Student’s-¢ family. They are, however, seen to be robust when the errors
instead obey one of a variety of mixing conditions, and have marginal distributions
outside of the family of z-distributions.
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Samarov (1987) investigates generalized least squares in the linear model, with serial
correlations between the observations. He obtains the estimate in this class which min-
imizes the maximum asymptotic variance as the spectral density varies over a specified
neighbourhood.

Zamar (1989) again considers the location problem, with errors satisfying a mixing-
like condition. He shows that a y-function of the Huber type yields a minimax-variance
M-estimator. The truncation point of this y-function approaches zero, so that the estimate
approaches the median, quite quickly as the strength of the dependence increases.

The organization of the remainder of the paper is as follows. In Section 2 below, the
calculation of the estimator will be described, and its asymptotic properties stated. Proofs
are in the technical report Field and Wiens (1990), available from the authors. Section 3
contains details of some numerical studies carried out to assess the manner in which our
estimator, and some competitors, perform in small samples.

2. CONSTRUCTION AND ASYMPTOTIC PROPERTIES OF THE ESTIMATOR

The construction of the estimator of @ in the model defined by (1.1), (1.2) requires a
preliminary, 1/n-consistent estimator 8, of 8. In the simulations detailed in Section 3 we
have used the minimum-L;-norm estimator, whose asymptotic properties are discussed
in Basset and Koenker (1978) and Mehra and Rao (1988). See also Dodge (1987).

Given 0,, we construct an estimate P, = P(8,) of P, and then an estimate U, = U(0,)

of U. As U(0) one may take any n X n matrix satisfying /(] )ﬁT(ﬂ) = P(0). Now define
A=UTX, A®)=0"'@)X, A.,=A®)=U'X
Define also transformed observations
z=Uly, z,=Uly
and associated residual vectors
€, =z—A0,, € = Z, — A,0,.
Let the elements of €., €, have empirical distribution functions (e.d.f.’s) F},F}, respec-
tively. Recall that F is the distribution function of the i.i.d. errors €, . .., €,. Let 6(F) be
a positive, scale-equivariant, shift-invariant functional of F, and define
o, =o(F}), o. = o(F}).
For an odd, bounded, piecewise continuously differentiable function v, define

Yo(X) = Y(x/0)  (6>0),
Po(X) = (Wo(x1), -, Yolu)T  if X =(x1, ..., %), (2.1)
D(ys, F) = Ep[wy(e)].

Were P known, we would have the exact model

z=A0) +¢, (2.2)
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with independent errors. In this situation Bickel (1975) studied the one-step M-estimator

_g,+ ATA AT )

05 =
Dn(Ys+, F)

where ﬁ,,(\u(,, F) estimates D(Y,, F). Under a set of assumptions contained in ours, Bickel
showed that

V(85 — 80) = N0, V(ys, A, (2.3)
where ATA
Ag = lim ——,
n—oo n
2
vor b= T,
o =o(F).

We are proposing the esitmator

0+ (ATA) ' AT Y. (€s)

0= :
Dn(WG*v F)

where ﬁn(wo*,F) is any consistent estirpator of D(y,,F) for 6 = o(F). Under the
assumptions of Field and Wiens (1990), 8 and 0 are |/n-equivalent:

Vn® —05) 5 o,

and hence by (2.3) . .
Vn® — 85) = N,(0, V(ys, H)AFY. (2.4)

Revised estimates of P and 6(F) are then given by f’(@) and o( f‘,,), where l?‘,. is the

e.d.f. of the elements of € = fJ_l(é )y — Xﬁ). We have generally found it desirable to
repeat this process at least once, using 0 as initial value for a further iteration.

The most difficult issue is that of the estimation of P. In the aforementioned paper of
Grossman (1979), this was dealt with, in the case that the errors follow an autoregressive
process, by using a stepwise procedure which involved estimating the parameters and
spectral density iteratively. Hannan (1971) and Goebel (1974) use a circular symmetric
matrix to approximate P, and estimate the approximating matrix by first estimating the
spectral density of the generating series. The method requires only mild assumptions on
this series.

Here, we use a computationally efficient method described by Gallant (1987, pp. 127-
139). The method is derived for AR(g) errors; hence it is not exact for the model (1.1).
However, simulations reported in Gallant (1987) (see also Gallant and Goebel 1976), as
well as our own simulations, indicate that the method is quite robust against process
misspecifications if the true process is one, such as a moving-average process, that
can be approximated by an autoregression. To apply the method, the residuals from
the preliminary fit are used to estimate the autocovariances, up to lag ¢. Using these
estimates, the coefficients of the Yule-Walker equations are estimated, and the leading
g X q submatrix of P;! is factored, using a Choleski decomposition. The factor is then
augmented by the estimated Yule-Walker coefficients to yield U,!. See Gallant (1987)
for details.
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Note that the asymptotic covariance matrix of \/ﬁ(f) —0p) is V(ys, F) times
A;' =lim n(X"PIX)7L.

Thus, we do as well, asymptotically, by estimating the autocorrelations as we would if
the autocorrelations were known and we estimated @y by 05 in the model (2.2).

There is a further interesting consequence to the asymptotic covariance structure of 0.
This concerns the optimal choice of . since the asymptotic covariance of 4/n (0 0o)
depends on y only through V(y,F), a y-function which is optimal for independent
observations retains this optimality when applied to dependent observations. For choices
of y yielding minimax estimators, see Huber (1981), Collins and Wiens (1985), Wiens
(1986).

3. SIMULATION STUDY

We report here the details of a simulation study, in which two versions of the estimator
described in Section 2 are compared with the L,-estimator and with three ordinary
M-estimators.

The fitted model was y, = 0g + x,0; + &, with g = 6, = 1, and with x, assuming n
equally spaced values in [0, 5]. For each of n = 20 and n = 40, and each combination of
those marginal error distributions and dependence structures given below, we simulated
1000 series of errors {8} ,. The error distributions used, with their mnemonics in
brackets, were:

(1) standard normal (“Gaussian”™),
(2) standard normal with probability 0.8, and normal, with i = 0 and ¢? = 25, with
probability 0.2 (“mixture”).

The dependence structures were:

(1) independence (“Ind”),

(2) an MA(1) moving average process, with a first-order autocorrelation of %
(“ma.mild™),

(3) an MA(7) process, with parameters (1, 0.8, —0.6, 0.4, 0.2, 0.1, —0.1) and auto-
correlations p(1) = —0.26, p(2) = —0.37, p(3) = 0.33, p(4) = —0.02, p(5) = —0.06,
p(6) = —0.06, p(7) = —0.03, (“ma.strong”),

(4) an AR(1) autoregressive process with parameter 0.5 and autocorrelations p(j) =
27, j = 0,1,2,... [“ar(1)’]. Note that this process is not representable as at (1.1).
It thus acts as a test of the robustness of the proposed new estimators to process
misspecifications.

In total, 16,000 series were simulated. From each, we computed regression estimates,
variance-covariance estimates, and a 90% confidence interval on 0y + 0;, using each of
six estimation methods. These methods were:

(1) L1: This, the minimum L;-norm estimator, was used to obtain starting values for
all five of the other methods. The asymptotic covariance matrix was estimated assuming
the errors to be independent, in which case it is given by o2(X"X)~ 1/{4 £20)}. We
estimated 62 by the scaled MAD of the residuals e, =y, — x0:

& — MAD(e,)

®-1(0.75) G-
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and, for simplicity, “estimated” f(0) merely by substituting ¢(0) = (21:)‘%. (We took this
step because the properties of this estimator were not of primary concern to us. We were
then pleasantly surprised by its reasonable performance.)

(2) FW1: This is the estimator described in Section 2. For it, and all four of the
other M-estimators, we employed Huber’s score function y(x) = min(k, max(x, —k)),
with k = 1.345. The scaled residuals r, = e, /6 from the L, fit are used to fit an AR
model, as described in Section 2. The model is then transformed to one of approximate
independence, and an ordinary M-estimate is computed in the transformed model. This
last step consists of performing one least-squares regression on pseudovalues, as described
in Street, Carroll, and Ruppert (1998). This two-stage process of fitting an AR model and
then reestimating the regression coefficients is repeated until the order of the AR process,
as determined by Akaike’s information criterion, first becomes zero. Only rarely were
more than two steps required. At each stage ¢ is estimated as at (3.1). The asymptotic
covariance matrix is then estimated by

1 Z Wz(rt)

62K21'—_”————2(AIA*)-‘, (32)
1
(; Z \I’J(l't))

where K is the correction factor derived by Huber (1981, Section 7.6).

(3) FW2: This is identical to FW1, except that the scaled residuals r, are replaced
by y(r;) before using them to fit the AR model. See Huber (1981, Section 8.3) for a
discussion.

(4) Hb.ind: This is an ordinary M-estimator, with the variance-covariance estimates
calculated under the assumption of independent errors. Thus, the assumed asymptotic
covariance matrix is V(yg, F)(X"X)"!, estimated as at (3.2) but with A, replaced by X.

(5) Hb.dep: This estimator is identical to Hb.ind, but in calculating the variance-
covariance estimates we incorporate an assumption that the errors are dependent, with
the sequence {y(e;)} being weakly stationary. Under this assumption the influence
function IF is easily calculated, and the asymptotic covariance matrix (= Eg[ IF-IF"]) of
v/n(® — 89) obtained as V (yo, F)(lim, X"X/n))~!(lim, X"PX)(lim, X"X/n)~!, where P
is the autocorrelation matrix of {y(e,)}. The well-known relationship between the BLUE
and the GLsE then implies that the limiting covariance matrix of Hb.dep is larger, in
the sense of positive semidefiniteness, than that of FW2. We estimate V (yg, F) as for
the other estimators [employing the correction factor K, as at (3.2)], and estimate P by
substituting the sample autocorrelations of {y(r,)}.

(6) Hb.ma: This is identical to Hb.dep, except that P is estimated by first fitting a
moving-average model, of order 2, to the sequence {y(r,)}, and then substituting the
autocorrelations of the fitted process. Thus f’|s_,| = 0 if |s —¢| > 2. The MA fit is carried
out by applying Gaussian maximum likelihood to {w(r;)}. The order (two) of the MA
process was found to be the most satisfactory choice in a related, small-scale simulation
study.

In reporting the results of the simulations, we will be concentrating on the root mean
square error (rmse) of the estimates and the coverage obtained by the confidence intervals.
Table 1 gives the rmse for the estimates over the eight sampling situations for n = 20. In
terms of rmse, the three variations of the Huber estimates are identical. They differ only
in the estimates used for the asymptotic covariance. The results are for 6;. The pattern
is very similar for 6.
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TABLE 1

Rmse

Estimate
density Dependence L1 Huber FW1 FW2

Normal Independent 0.191 0.157 0.159 0.160
ma.mild 0.229 0.201 0.204 0.202

ar(1) 0.295 0.280 0.283 0.283

ma.strong 0.282 0.182 0.172 0.173

Mixture Independent 0.253 0.248 0.248 0.268
ma.mild 0.348 0.360 0.354  0.369

ar(1) 0.535 0.55 0.520  0.536

ma.strong 0.521 0.369 0.372 0.364

For the normal data, the L1 estimate has higher rmse, while the other three are quite
close together except for the case of strong dependence. In this case both versions of
the FW estimates outperform the Huber by a small margin. The pattern for the mixture
data is less clear. Each of the four estimates performs best in one of the situations. L1
does well for all cases except the strong dependence, where it is substantially worse than
the other estimates. Over the four dependence situations, FW1 shows the best average
performance and is always close to the minimum achieved for any of the estimates. A
similar pattern exists for 8p when n = 20 and for both estimates when n = 40. In all the
cases the bias is negligible.

The next step is to examine the normality of the distribution of the estimates. The
approach to normality is assessed by looking at the quantile-quantile plot of the 1000
values of the estimate versus the quantiles of the standard normal. We expected the
approach to normality to be slower for the mixture data than for the normal data. The
results for the mixture data with ar(1) dependence and n = 20 is shown in Figure 1 for
61. As can be seen, all the estimates are very similar in the normality of their distribution.
They all have distributions which are slightly longer tailed than the normal. Some previous
work (cf. Field 1982, p. 686) has suggested a degrees-of-freedom correction of 0.6n in
the case of the Huber estimate under independence. Figure 2 shows the results of a
comparison of the distributions with a z-distribution with 12 df. As can be seen, the
empirical distribution agrees reasonably well with the t12 distribution. Since all four
estimates behave in a similar fashion, we can summarize their behaviour over the four
dependence situations by looking at the empirical distribution of FW1 as compared with a
normal. The results in Figure 3 show that the empirical distribution is similar for the three
dependent situations and is shorter tailed than in the independent case. A comparison
with the ¢-distribution with 12 df shows good agreement in the dependent cases but an
indication of a longer-tailed distribution in the independent case.

It is important to evaluate the coverage of the confidence intervals computed using
an estimate of the asymptotic variance. We now have three different results for the
Huber estimate, corresponding to three different calculations of the asymptotic variance.
In evaluating these results it is important to look at both the actual coverage and the
variation in the coverage over the four dependence situations. The confidence interval
used a normal quantile to compute the 90% confidence interval. We have evaluated the
coverage by looking at both the lower and the upper coverage obtained by the intervals in
the 1000 trials. The results for the lower coverage with n = 20 in the confidence interval
for 6y + 0, are given in Table 2.

As can be seen, the coverage differs somewhat from the nominal level of 5%. To
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TABLE 2
Lower coverage
Estimate
density Dependence L1 Hb.ind Hb.dep Hb.ma FwW1 Fw2
Normal Independent 0.077 0.064 0.194 0.163 0.097 0.098
ma.mild 0.104 0.117 0.211 0.164 0.136  0.142
ar(1) 0.177 0.182 0.236 0.156 0.167  0.167
ma.strong 0.044 0.010 0.121 0.109 0.073  0.081
Mixture Independent 0.067 0.049 0.195 0.159 0.062  0.087
ma.mild 0.115 0.128 0.207 0.162 0.131 0.156
ar(1) 0.162 0.187 0.241 0.152 0.163 0.175
ma.strong 0.028 0.007 0.080 0.075 0.089  0.087

assess the various estimates, it is instructive to look at the coverage obtained over all
eight combinations of density and dependence with n = 20. Figure 4 gives a summary of
the overall coverage (sum of upper and lower coverage) via a boxplot for each estimate.
Note that the target value is 0.10. The three estimates showing the least variation are the
two FW estimates and huber.ma. Of these three the FW1 estimate is closest to giving
coverage at the 5% level. The amount of variation across the cases is important in that
it gives a measure of the stability of the intervals. If the levels are wrong, as they tend
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to be for these estimates, but are stable, this opens the possibility of making a finite-
sample correction to obtain more accurate coverage. To understand the reason for this it
is worthwhile to compare the asymptotic variance with the empirical variance. Given the
fact that the distribution of the estimates is reasonably well modelled by a z-distribution
with 0.6n degrees of freedom, the coverage should be accurate if the asymptotic variance
is close to the empirical variance. Specifically, Figure 5 compares the ratio of the mean
asymptotic variance and the empirical variance over the 1000 replicates. For each estimate
this ratio is computed for the eight combinations of density and dependence and the results
summarized with a boxplot. As can be seen, the ratio varies the least for the huber.ma
estimate, with the FW and the huber.dep showing more variation than the huber.ma but
less than the other three estimates. A check of the plot of the ratio versus the coverage
shows a reasonably good linear relationship with a correlation coefficient of 0.92. If the
ratio of the asymptotic to the empirical variance stayed almost the same over all situations,
it would be possible to make a “finite-sample correction” to the asymptotic variance to
bring it in line with the empirical variance and hence give confidence values much closer
to the nominal level, simply by using a -interval. In our case, such a correction would
work to some extent on FW1, huber.dep, and huber.ma, although we cannot bring the
coverage in line with the nominal level for all dependence-density situations. It should
be noted that for both huber.ma and huber.dep, we attempted to correct the asymptotic
variance, but the corrections have not had the desired effect. This suggests that finite-
sample corrections to the asymptotic variance to bring it in line with the empirical variance
would give coverage closer to the nominal level for the estimates where the ratio does
not change too much from one situation to the next.

One specific adjustment would be to replace the normal z-value used in the cover-
age calculations by a r-value. As suggested above, for n = 20 using a z-density with
12 df seems reasonable. For the situation with mixture data and mild.ma dependence,
the changes in the coverage of the lower bounds are by a factor between 0.8 and 0.9 in
going from the normal to t12. This matches the ratio of the 95th quantile of the t12 to
the normal. This suggests that the P-values for the noncovering intervals may well be
approximately uniformly distributed and that a ¢-correction is not enough to bring the
coverage in line with the nominal values. Similar behaviour is observed for the mixture
density and strong dependence.

There still remains work to be done in order to achieve more accuracy in the
confidence-interval coverage. One reasonable approach for the FW estimates is to
bootstrap the €,’s and construct bootstrap intervals based on the results. This should
give accurate approximations to the actual standard deviation of the estimates, and these
estimates can be used to get reasonable coverage levels using a t-distribution result as
noted above. It is not clear how to do this with the Huber or L1 estimate.

In an overall comparison of the estimates, FW1 is consistently a good performer over
the situations considered. No one estimate consistently dominates, and FW always is
reasonably close to the best in each situation. By estimating the dependence structure
and using it in the construction of the estimate, FW has the ability to adapt to the
dependence in the data.
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