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Abstract We study robust sampling designs for model-based strati�cation,
when the assumed distribution F0 (�) of an auxiliary variable x, and the vari-
ance function g0 (�) in the associated regression model, are only approximately
speci�ed. We �rst maximize the scaled prediction mean squared error (SPMSE)
for the empirical best predictor over the neighbourhoods of F0 and g0. Then
we obtain robust sampling designs which minimize this maximum SPMSE
through a modi�ed genetic algorithm with �arti�cial implantation�. The tech-
niques are illustrated in a case study of Australian sugar farms, where the goal
is the prediction of total crop size, given the farm sizes.
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1 Introduction

Due to their nonhomogeneity, populations such as are targeted in social or
economic surveys are often divided into strata �distinct and non-overlapping
subgroups. Generally desirable properties of strata are that they be large in
size, di¤er considerably from one another, be internally homogeneous and be
such that the means of the target variable Y vary signi�cantly across strata.
In some cases, strata are �naturally de�ned�, for example, in household surveys
strata may be states or provinces, income groups, occupations, age groups, etc.
In business surveys, strata may be industries. In other cases, there may be
information on the population frame that allows us to stratify the population.
Typically, this information consists of the known values of a q-dimensional
auxiliary variable x with population values x1; : : : ;xN . From each of L strata
a sample sh, of pre-speci�ed size nh � Nh (= the population size in the hth

stratum), is drawn independently. Then the collection of these samples con-
stitutes a strati�ed sample s = [Lh=1sh with sample size n =

PL
h=1 nh. If

a simple random sample selection scheme is used in each stratum then the
corresponding sample is called a strati�ed random sample.
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Since strata are made up of population elements that are homogeneous
within the stratum and heterogeneous with respect to elements of other strata,
we may assume the following model in the hth stratum:

E(yiji 2 h) = �h; var(yiji 2 h) = �2h;
yi and yj are independent when i 6= j:

Here i 2 h indicates that population unit i is in the hth stratum. The sample
mean of Y within each of the strata is an empirical best predictor of the
corresponding stratum population mean; hence the empirical best predictor
TEB of the overall population total T=

PN
i=1 Yi is given by T

EB =
P

hNhynh.
Here ynh is the sample mean of Y in the h

th stratum. The prediction variance
of TEB is given by

P
h(N

2
h=nh)(1�nh=Nh)�̂2nh where �̂

2
nh
= 1

nh

P
i2sh(yi�ynh)

2

is the unbiased estimator of the variance �2h of Y -values in the h
th strata.

In the sample that motivates this article the auxiliary variable x is uni-
variate, i.e. q = 1. The crucial question for strati�cation is the construction
of the stratum boundaries b1; b2; : : : bL�1 of the target variable Y based on an
auxiliary variable x so that the mean square error of an estimator is minimized.
Dalenius (1950) established equations based on a single continuous auxiliary
variable x with density function f(�) when estimating the mean of x. The so-
lution of the equations would be the optimum boundaries when the equations
are solvable. The method of Dalenius (1950) can be thought to form L strata
as follows: assuming that x is distributed as F0(�), and choosing L� 1 points
between 0 and 1:

0 = a1 < a2 < : : : < ah < : : : < aL�1 < aL = 1;

then

yi lies in the hth strata provided the corresponding xi 2 (F�10 (ah�1); F
�1
0 (ah)):

(1)
Such points a1; : : : ; aL will be chosen to minimize the prediction mean square
error of an estimator for a population parameter, such as the population total
Ty. Since the equations derived by Dalenius are generally unsolvable, Dalenius
and Hodges (1959) derived method to �nd approximately optimum boundaries.
See Horgan (2006) for more methods of constructing stratum boundaries, and
Ghosh (1963) for optimum strati�cation with bivariate predictors.
Another way to model heterogeneity in a population is to use separate ver-

sions of linear regression models linking the target variable Y and the auxiliary
variable x in di¤erent strata. For example, assume the following model is valid
for all the units in the population:

Yi = �h + �hxi + g
1=2
0 (xi)"i; i 2 h; h = 1; � � � ; L: (2)

Here g0(x) > 0, and "1; : : : ; "N (N =
PL

h=1Nh) are independent and identically
distributed random variables with mean zero and variance �2. Assume that
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the method of sampling is non-informative. Then the regression model in the
population also applies in the sample s with sample size n. Assume also that
there is a complete response, so that once the sample has been selected and
the in-sample units observed, the values of Yi; i 2 s are known. Then we can
use the values of Yi; i 2 s and x1; : : : ; xN to estimate or predict the �nite
population total T=

PN
i=1 Yi. The design problem is to specify a rule using

x1; : : : ; xN to select a sample s so that the estimator/predictor T̂ is a member
of class of �acceptable�estimators/predictors of T , and T̂ is optimal in that it
minimizes a loss function such as the mean squared error (mse) E(T � T̂ )2.

In these methods of modelling heterogeneity, the distribution F0(�) and
the assumed variance function g0(�) will typically only approximate reality,
at best. It is perhaps more realistic to assume only that F0(�) and g0(�) are
good approximations �we shall refer to them as a working distribution and a
working variance function respectively �without necessarily being exact; we
then construct robust sampling designs which give good results both at and
�near�this working distribution and this working variance function.

Welsh and Wiens (2013) developed robust, model-based designs for a gen-
eral class of models which includes the ratio model as a special case. Here we
extend their work to the case of strati�ed sampling. General problems of ro-
bust (in some sense) extrapolation or prediction from linear models �of which
model-based sampling design is an example �have been studied by Fang and
Wiens (2000), who constructed designs to minimize the (maximized) mean
square predicted error; also Dette and Wong (1996) and Wiens and Xu (2008),
who studied robustness properties of optimal extrapolation designs. Some
general remarks on model-based design strategies are given by Nedyalkova
and Tillé (2008). A survey of robustness of design is in Wiens (2014).

In §2 of this article we de�ne explicitly the neighbourhoods of the working
distribution and working variance function. In §3 we calculate the mse for the
empirical best predictor under the true distribution F (�) and the true variance
function g(�). We then maximize this mse over a neighbourhood of the work-
ing variance function g0(�). We �nd that the resulting maximum is a quadratic
function of the probabilities of strata under the true distribution function, and
go on to maximize over a neighbourhood of the working distribution F0(�).
In this way we obtain the maximized loss function, to be minimized over the
class of possible sampling designs. This minimization is a complex numerical
problem which we handle, in §4, via a genetic algorithm. We introduce a novel
process of �arti�cial implantation� into this algorithm �this greatly acceler-
ates its progress �and go on to �nd the optimal design for the Sugar Farm
population (Chambers and Dunstan 1986).

All derivations are in the appendix.
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2 The neighbourhoods of the working distrib-
ution and working variance function

Suppose that the population is divided into L strata by applying (1). Denote
by Idh = (Idh1; : : : ; IdhN)

0 the indicator vector of the hth strata: Idhi =
1 when i 2 h and zero otherwise. De�ne xN = (x1; : : : ; xN)

0 and ZN =
(Id1; Id1 � xN : : : ; IdL; IdL � xN); where � denotes the pointwise product of
two vectors, and the parameters in the working model (2) are grouped as
� = (�1; �1 : : : �L; �L)

T . Then, we can rewrite (2) as

yN = ZN� +G
1=2
0;N"N ; (3)

with yN = (y1; : : : ; yN)0; "N = ("1; : : : ; "N)0 andG0;N = diagfg0(x1); : : : ; g0(xN)g.
Suppose that the true distribution of x is F (�); but that the experimenter

mistakenly adopts the working distribution F0(�). Then Idh;j is Bernoulli
distributed with parameter pF;h = PF [(F

�1
0 (ah�1); F

�1
0 (ah))]. With pF :=

(pF;1; : : : ; pF;L)
0 we de�ne the neighbourhood of the working distribution F0(�)

to be
F = fall distributions F (�) such that kpF � pF0k � �g;

for a speci�ed � > 0. Here k�k is the Euclidean norm. An equivalent de�nition,
which we �nd somewhat more convenient, is obtained by de�ning p0 = pF0,

P = fp j


p� p0

 � �;p % 0;10Lp = 1g; (4)

and then de�ning F to consist of those distributions with pF 2 P. (We use
p % 0 to denote elementwise non-negativity.)
Suppose that, instead of the working variance function g0(�), the true vari-

ance function is g(�) > 0 �close to�g0(�), in that it belongs to the class

G = fg : R �! R+ : 0 < g(x)g�10 (x) � 1 + � 2gg;

for a speci�ed � g. Then, instead of the working model (3), the true model is
now

yN = ZN� +G
1=2
N "N ; (5)

where GN = diagfg(x1); : : : ; g(xN)g.
Suppose that a strati�ed random sample s = [Lh=1sh, with sample size

n =
PL

h=1 nh, is chosen. The empirical best predictor of the population total
T is

T̂ =
X
i2s
Yi +

X
i=2s

Ŷi;

where for i =2 s, Ŷi is an estimator of E(YijYj; j 2 s; x1; : : : ; xN). Under the
working model (3), we can get Ŷi; i =2 s as follows. Corresponding to the n
in-sample units and the N � n non-sample units, de�ne Zn and ZN�n to be
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the n� 2L and (N � n)� 2L submatrices of ZN , and de�ne G0;n and Gn;N�n
to be the n�n and (N �n)� (N �n) submatrices of GN . Similarly, let yn be
the n-element subvector of yN corresponding to the n in-sample units. Then,
under the working model (3), and using the in-sample units, we compute the
weighted least squares estimate �̂ of the regression parameter � :

�̂ = (Z0nG
�1
0;nZn)

�1Z0nG
�1
0;nyn;

and then predict the unsampled units by ŷN�n = ZN�n�̂.
Under the true distribution F (�) and the true variance function g(�), the

mse of T̂ is Eg;F (T̂ � T )2. Here, the expectation with respect to true model
(5) with variance function g(�) is denoted by Eg(�) and the expectation with
respect to the true distribution F (�) is denoted byEF (�). We adopt a �minimax�
approach in which we choose the sampling design to minimize the mse, scaled
in such a way as to eliminate the dependence on the unknown parameters �2

and � 2g, and maximized over the neighbourhoods of the working distribution
and working variance function. In the next section we concentrate on obtaining
this maximum scaled mean squared error

Lmax = max
F2F

max
g2G

Eg;F (T̂ � T )2
N�2(1 + � 2g)

: (6)

3 Maximizing the scaled mean squared error

We will study the optimization problem of obtaining Lmax, given by (6). We
begin with the �rst stage maximization over the neighbourhood of the work-
ing variance function. Then, we maximize this �rst stage maximum over the
neighbourhood of the working distribution.
We �rst require the mean squared error Eg;F (T̂ � T )2. In the following we

employ the de�nitions, for h = 1; :::; L and i; k; l = 1; :::; N ,

Dk;l
h;i = U1hi + (xk + xl)U2hi + xkxlU3hi;

Dh = B1hB3h �B22h;

where

U1hi =
(B2hxi �B3h)2
g20(xi)D

2
h

;

U2hi =
�(B1hxi �B2h)(B2hxi �B3h)

g20(xi)D
2
h

;

U3hi =
(B1hxi �B2h)2
g20(xi)D

2
h

;
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and

B1h =
X
i2sh

1

g0(xi)
; B2h =

X
i2sh

xi
g0(xi)

; B3h =
X
i2sh

x2i
g0(xi)

:

Lemma 1 The mse of T̂ with respect to the true variance function g(�) and
true distribution F (�) is given by

Eg;F (T̂ � T )2
�2

= 10N�nQr

LX
h=1

�
p2hCh;g + ph(1� ph)Rh;g

�
Q0
r1N�n +

X
k=2s

g (xk) :

(7)
Here Qr is an (N � n) � N incidence matrix, with entries 1 or 0 de�ned by
ZN�n = QrZN , Ch;g is an N �N matrix with (k; l)th entry

Ck;lh;g =
X
i=2sh

g(xi)D
k;l
h;i; (8)

and Rh;g = �Nk=1C
k;k
h;g .

We now maximize (7) over g 2 G.

Theorem 1 The mse Eg;F (T̂ � T )2 satis�es

max
g2G

Eg;F (T̂ � T )2
N�2(1 + � 2g)

=

p0FBpF + c
0pF +

P
k=2s
g0 (xk)

N
: (9)

Here B = diagfbh : h = 1; : : : ; Lg and c = (c1; ::; cL)0, with

bh =

B1h

�P
k=2s
xk

�2
� 2B2h(N � n)

P
k=2s
xk +B3h(N � n)2

Dh

� ch;

and

ch =

B1h
P
k=2s
x2k � 2B2h

P
k=2s
xk +B3h(N � n)

Dh

:

Following Theorem 1 we continue the development by maximizing (9) over
the neighbourhood F of F0(�). For this it su¢ ces to �nd the maximum value

L0;� = max
P

p0Bp+ c0p

N
; (10)

since then
Lmax = L0;� + Lv

with Lv =
P
k=2s
g0 (xk) =N .
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Theorem 2 There exists a solution p0 to the problem

maximize p0Bp+ c0p, subject to (i) 10p = 1, (ii)


p� p0

 � �, (iii) p % 0.

(11)
This maximizer has elements

p0;h (�; �) =

�
�p0h + ch=2� �

�� bh

�+
;

where � and � are to maximize

p0Bp+ c0p =
X
h

p0;h (�; �) (bhp0;h (�; �) + ch) ;

subject to (i) and (ii).

If � is su¢ ciently small, then Lemma 2 can be made much more explicit.

Theorem 3 If � � minh p0h, the maximum value L0;� at (10) can be obtained
as follows. De�ne

� = � (�) =
X
h

(bhp
0
h + ch=2)�h (�) ; (12)

for coe¢ cients �h (�) = (�� bh)�1 =
P

h (�� bh)
�1. Then the maximizing p0

of Lemma 2 has elements

p0;h (�; �) =
�p0h + ch=2� � (�)

�� bh
; (13)

and

L0;� = max
�

P
h p0;h (� (�) ; �) (bhp0;h (� (�) ; �) + ch)

N
; (14)

with this maximization carried out subject tominh p0;h (�; �) � 0 and kp0 � p0k2 =P
h (p0;h (� (�) ; �)� p0h)

2 � �2.

Even when � � minh p0h, Theorems 2 and 3 are inconvenient for numerical
work, since they requires auxiliary optimizations to be carried out each time
a sampling design is assessed. Since our numerical algorithm calls for a huge
number of such assessments, we give another approach. We will solve (11)
without the non-negativity requirement (iii), obtaining an explicit maximizer
p0 in the larger class de�ned by (i) and (ii). If this p0 also satis�es (iii), then
it is a fortiori a maximizer in the smaller class P.
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The solution to this problem relies in turn on results for the problem

max
kwk=�

(w0Ew + 2d0w) ; (15)

with matrices E(L�1)�(L�1). The following Lemma summarizes Lemmas 1 and
2 of Hager (2001).

Lemma 2 (Hager 2001) The vector w is a solution vector for (15) if and
only if kwk = � and there exists � such that �I � E is positive semide�nite
and (�I � E)w = d. In terms of the eigenvalues �1 � �2 � � � � � �L�1
and corresponding orthogonal eigenvectors w1; � � � ;wL�1 of E, the vector w =PL�1

i=1 ciwi is a solution of (15) if and only if c is chosen in the following way.
De�ne �1 = fi : �i = �1g, �2 = fi : �i < �1g and �i = d0wi. Then:

(i) If �i = 0 for all i 2 �1 andX
i2�2

�2i
(�i � �1)2

� �2;

then � = �1 and ci = �i
�1��i for i 2 �2. The ci for i 2 �1 can be arbitrarily

chosen subject to the conditionX
i2�1

c2i = �
2 �

X
i2�2

�2i
(�1 � �i)2

:

(ii) If (i) does not apply, then ci = �i
���i ; 1 � i � L� 1, for any � > �1 subject

to the condition
L�1X
i=1

�2i
(�i � �)2

= �2:

We can now state the main result, giving the maximized loss L0;� at (10).

Theorem 4 Denote by P0 the class P de�ned at (4), without the non-negativity
requirement p % 0. Then:
(i) The maximizer

p0 = argmax
P0

p0Bp+ c0p

is given by p0 = p0 +Dw�, where w� is one of (a) �E�1d, or (b)
PL�1

i=1 ciwi
as in Lemma 2, whichever results in the larger value of w0

�Ew�+2d
0w�. Here

E = D0BD : (L � 1) � (L � 1) and d = D0(Bp0 + c=2) 2 RL�1 for an
L�(L�1) matrix D whose columns form an orthogonal basis of the orthogonal
complement to the column space of 1L.

(ii) If p0 % 0 then p0 is also the maximizer in P, and

L0;� =
p00Bp0 + c

0p0
N

:
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Our algorithm for �nding sampling designs which minimize L0;�, described
in the next section, accepts as candidates only designs for which (ii) of The-
orem 4 holds. It often fails if � is too large, but typically accepts values of �
substantially larger than the upper bound imposed in Theorem 3.

4 Minimizing the loss function for the sugar
farm population

We will use a genetic algorithm to �nd the optimal robust design, which sam-
ples in each strata in such a way as to minimizes the loss Lmax given in the
preceding section. For some general theory on genetic algorithms, see Mandal,
Johnson, Wu and Bornemeier (2007). The algorithm used here is a modi�ca-
tion of that of Welsh and Wiens (2013), and so we describe only the general
features and di¤erences.
First a �population�of ng strati�ed random samples is generated; to con-

struct each of these we take one random sample in each stratum of pre-speci�ed
size nh � Nh and then form a strati�ed sample s = [hsh with sample size
n =

P
h nh. This procedure is repeated ng times, thus yielding the population

of sampling designs. A measure of ��tness�is evaluated for each design, with
designs having smaller values of Lmax being deemed more �t. Then pairs of
�parent�designs are randomly chosen from a probability distribution assigning
probabilities to designs which are proportional to their �tness values. De-
signs chosen to be parents, and the resulting �children�, undergo processes of
�crossover�and �mutation�. The major di¤erence between the methods adopted
here, and those in Welsh and Wiens (2013), are in the crossover mechanism, by
which two parent designs are combined to yield a child. We have introduced a
method which we call �arti�cial implantation�(AI), to the genetic algorithm.
To do AI, we identify the best design (i.e. the design with largest �tness level)
and its largest stratum. Then we replace the corresponding stratum of each
design by that stratum in the best design.
This process is repeated, until the current �generation�of ng designs has

been replaced by ng new designs. As in Welsh and Wiens (2013), in each gen-
eration we identity the Nelite = ng�Pelite most �t designs, which pass through
to the next generation unchanged �in e¤ect they become their own children.
The e¤ect of this is that the minimum value of Lmax, in each generation, is
necessarily nonincreasing. The algorithm terminates when it has failed to �nd
an improved design in 200 consecutive generations. We have used ng = 40 and
Pelite = :05, but �nd that the results are quite insensitive to these and other
tuning constants. Relative to the crossover method used in Welsh and Wiens
(2013), the AI method does result in signi�cantly faster runs, i.e. convergence
to an apparent minimum in signi�cantly fewer generations.
We consider the sugar farm population (Chambers and Dunstan 1986) to
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Figure 1: Case 1, g0(x) = x; � = 0:15

Table 1. Sugar farm: components of loss for Case 1, g0 (x) = x.
�

Loss 0 .05 .10 .15 .20 .25 .30 .35 .40
L0;� 10.299 12.816 16.336 20.851 26.394 32.890 40.403 49.131 59.050
Lv 0.186 0.186 0.188 0.188 0.188 0.190 0.190 0.190 0.190
Lmax 10.485 13.002 16.524 21.039 26.582 33.080 40.593 49.321 59.240

apply our design methodology in a small but realistic population. This pop-
ulation consists of N = 338 sugar cane farms in Queensland, Australia. The
population has a single auxiliary variable x which is the area on each farm
assigned to cane planting. Assume that, based on the auxiliary variable x;
the population is divided into six strata (L = 6) with sizes Nh; h = 1; : : : ; L.
Then, we form a sample s = [Lh=1sh with sample size n (= 40) by independently
choosing a simple random sample sh in the hth stratum without replacement.
We use proportional allocation to determine the strata sample size nh. We
use the relative frequencies fNh=NgLh=1 of the six strata as the p0h of the strata
under the working distribution F0(x).
We ran the genetic algorithm described above in the following two cases.

Table 2. Sugar farm: components of loss for Case 1, g0 (x) = x2.
�

Loss 0 .05 .10 .15 .20 .25 .30 .35 .40
L0;� 2.118 2.939 4.100 5.619 7.489 9.665 12.178 15.024 18.258
Lv 0.051 0.053 0.054 0.054 0.054 0.055 0.056 0.056 0.056
Lmax 2.169 2.992 4.154 5.673 7.543 9.720 12.234 15.080 18.314
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Figure 2: Robust designs for case 1 with g0(x) = x3
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Figure 3: Robust designs for Case 1 with � = 0:15

Table 3. Sugar farm: components of loss for Case 1, g0 (x) = x3.
�

Loss 0 .05 .10 .15 .20 .25 .30 .35 .40
L0;� 0.577 0.873 1.275 1.785 2.400 3.121 3.924 4.845 5.896
Lv 0.018 0.018 0.018 0.018 0.020 0.021 0.021 0.022 0.021
Lmax 0.595 0.891 1.293 1.803 2.421 3.142 3.945 4.866 5.917
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Case 1. N1 = 79; N2 = 54; N3 = 88; N4 = 59; N5 = 31; N6 = 27.
Here, the strata sample sizes are n1 = 9; n2 = 6; n3 = 10; n4 = 7; n5 = 4;

n6 = 4 and p0 = (79=338; 54=338; 88=338; 59=338; 31=338; 27=338)0. We ran
the algorithm to �nd optimal robust designs for the working distribution and
variance function in (3) with g0(x) = x and � = 0:15. We found a minimum
loss of 21.039. For the robust design, the sampled covariates are

x =

�
18; 19; 20; 34(2); 35(6); 44(3); 45(4); 61(2); 62; 63(3);
64(2); 65; 66(3); 84(3); 85; 103; 106(3); 110; 280:

�
The corresponding design is represented as a histogram in Figure 3 (b). From
Figure 1, we can see that the loss decreases for roughly the �rst 100 gener-
ations and then is fairly stable; the algorithm terminated in fewer than 400
generations.
In Fig 2, the designs for di¤erent values of � are represented as histograms.

To see the e¤ect of g0(x) on the design, in Fig 3, we draw the histograms corre-
spondiong to the robust designs in Case 1 for di¤erent g0(x): The components
of the loss for the optimal design for di¤erent values of � are shown in Table 1
for g0(x) = x, Table 2 for g0(x) = x2 and Table 3 for g0(x) = x3.
To see the e¤ect of the initial distribution F0(x); we take di¤erent Nh; h =

1; : : : ; L, in Case 2 and then compare the results with corresponding results in
Case 1.
Case 2. N1 = 70; N2 = 63; N3 = 98; N4 = 49; N5 = 28; N6 = 30:
Here, the strata sample sizes are n1 = 8; n2 = 7; n3 = 12; n4 = 6; n5 = 3;

n6 = 4 and p0 = (70=338; 63=338; 98=338; 49=338; 28=338; 30=338)0. We reran
the algorithm, with these strata but the remaining inputs as in Case 1, and
found a minimum loss of 27.15 �substantially larger than that in Case 1. The
sampled covariates are

x =

�
18; 19; 20; 33(2); 34(6); 44(3); 45(8); 66(2); 67(3);
68(2); 69; 82; 84(3); 85; 102(2); 103; 106; 213;

�
which are somewhat di¤erent than those in Case 1.
To see the e¤ect of initial p0, the robust designs in Case 1 and Cases 2 are

represented as histograms in Fig 4.
The components of the loss for the optimal design for di¤erent values of

� are shown in Table 4 for g0(x) = x, Table 5 for g0(x) = x2 and Table 6
for g0(x) = x3. Comparing Table 1 with Table 4, Table 2 with Table 5, and
Table 3 with Table 6, we observe that the minimum loss depends heavily on
the initial distribution F0(x).
Now, we compare robust designs with non-robust designs. For the Case 1

of Sugar farm population when g0(x) = x and � = 0; applying the algorithm,
we obtain the design, denoted by �0, with sampled covariates

x =

�
18; 19; 34(3); 35(6); 44(3); 45(3); 61(3); 62; 63(3);
64(2); 65; 66(3); 84(3); 85; 103; 106(3); 263; 280:

�
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Figure 4: Robust designs for Cases 1 and 2 with g0(x) = x3; � = 0:15

Table 4. Sugar farm: components of loss for Case 2, g0 (x) = x.
�

Loss 0 .05 .10 .15 .20 .25 .30 .35 .40
L0;� 11.533 15.057 20.208 26.960 35.233 45.053 56.425 69.384 84.221
Lv 0.188 0.189 0.189 0.190 0.190 0.191 0.191 0.192 0.191
Lmax 11.721 15.246 20.397 27.150 35.423 45.244 56.62 69.576 84.22

Table 5. Sugar farm: components of loss for Case 2, g0 (x) = x2.
�

Loss 0 .05 .10 .15 .20 .25 .30 .35 .40
L0;� 2.478 3.700 5.480 7.798 10.616 13.942 17.770 22.100 26.921
Lv 0.054 0.054 0.054 0.055 0.056 0.056 0.056 0.057 0.056
Lmax 2.532 3.754 5.534 7.853 10.672 13.998 17.826 22.157 26.977
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Table 6. Sugar farm: components of loss for Case 2, g0 (x) = x3.
�

Loss 0 .05 .10 .15 .20 .25 .30 .35 .40
L0;� 0.699 1.134 1.747 2.517 3.451 4.539 5.811 7.248 8.837
Lv 0.018 0.018 0.020 0.021 0.022 0.022 0.023 0.023 0.023
Lmax 0.717 1.152 1.767 2.538 3.473 4.571 5.834 7.271 8.860

Table 7. Comparison of robust designs and non-robust designs.
�

.05 .10 .15 .20 .25 .30 .35 .40
Lmax 13.002 16.524 21.039 26.582 33.080 40.593 49.321 59.240
Lmax;�0 13.003 16.538 21.20 27.033 34.056 42.278 51.706 62.341

Then we calculate the maximum loss corresponding to �0 for di¤erent values
of �; denoted by Lmax;�0 in the third row of Table 7. In the second row of Table
7, we list the minimum loss corresponding to robust designs. We can observe
that robust designs give us smaller loss than non-robust designs.

Appendix: Derivations

Proof of Lemma 1: It follows from T̂ =
P

i2s Yi +
P

i=2s Ŷi that

T̂ � T =
X
i=2s

(Ŷi � Y ) = 10N�n(ŶN�n � YN�n):

Under the true model (5), yN�n = ZN�n� +G
1=2
N�n"N�n and ŷN�n = ZN�n�̂ ;

hence
ŷN�n � yN�n =M"n �G1=2

N�n"N�n;

whereM = ZN�n(Z
0
nG

�1
0;nZn)

�1Z0nG
�1
0;nG

1=2
n . Then

(ŷN�n � yN�n)(ŷN�n � yN�n)0

=M"n"
0
nM

0 +G
1=2
N�n"N�n"

0
N�nG

1=2
N�n �M"n"0N�nG

1=2
N�n �G

1=2
N�n"N�n"nM

0;

and we �nd that

Eg(T̂ � T )2

= Eg(1
0
N�n(ŶN�n �YN�n)(ŶN�n �YN�n)

01N�n)

= �210N�n[MM
0 +GN�n]1N�n

= �210N�n[(ZN�n(Z
0
nG

�1
0;nZn)

�1Z0nG
�1
0;nGnG

�1
0;nZn(Z

0
nG

�1
0;nZn)

�1Z�1N�n +GN�n]1N�n:
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WithQr as de�ned in the statement of the Lemma, and noting that 10N�nGN�n1N�n =P
k=2s
g (xk), we have

Eg(T̂ � T )2
�2

= 10N�n

�
(QrZN(Z

0
nG

�1
0;nZn)

�1Z0nG
�1
0;nGn�

G�1
0;nZn(Z

0
nG

�1
0;nZn)

�1Z0NQ
0
r

�
1N�n +

X
k=2s

g (xk) :

(A.1)
Note that Zn = (Ids1 ; Ids1�xn : : : ; IdsL ; IdsL�xn), with Idsh = (Idsh1; : : : ; Idshn)0
for Idshi = 1 if i 2 sh and zero otherwise, h = 1; : : : ; L. Using this we �nd that

Z0nG
�1
0;nZn = �Lh=1

�
B1h B2h
B2h B3h

�
;

hence

(Z0nG
�1
0;nZn)

�1 = �Lh=1
�
1

Dh

�
B3h �B2h
�B2h B1h

��
:

Since, in each stratum, we take at least two di¤erent values of xi to do regres-
sion analysis, the Hölder inequality implies Dh > 0. Similarly, with

K1h =
X
i2sh

g(xi)

g20(xi)
; K2h =

X
i2sh

xig(xi)

g20(xi)
; K3h =

X
i2sh

x2i g(xi)

g20(xi)
;

we have

Z0nG
�1
0;nGnG

�1
0;nZn = �Lh=1

�
K1h K2h

K2h K3h

�
:

After some simpli�cation we obtain

(Z0nG
�1
0;nZn)

�1Z0nG
�1
0;nGnG

�1
0;nZn(Z

0
nG

�1
0;nZn)

�1 = �Lh=1
�
W1h W2h

W2h W3h

�
;

for

W1h =
X
i2sh

g(xi)U1hi; W2h =
X
i2sh

g(xi)U2hi; W3h =
X
i2sh

g(xi)U3hi:

It follows from ZN = (Id1; Id1 � xN ; : : : ; IdL; IdL � xN) that

ZN(Z
0
nG

�1
0;nZn)

�1Z0nG
�1
0;nGnG

�1
0;nZn(Z

0
nG

�1
0;nZn)

�1Z0N

= (Id1; Id1 � xN ; : : : ; IdL; IdL � xN)
�
�Lh=1

�
W1h W2h

W2h W3h

��
Z0N

= (akl)

with

akl =
LX
h=1

IdhlIdhk (W1h + (xk + xl)W2h + xlxkW3h) ; for k; l = 1; : : : ; N:
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The expectation of akl with respect to F (�) is

EF (akl) =

� PL
h=1 ph(W1h + 2xkW2h + x

2
kW3h); k = l;PL

h=1 p
2
h(W1h + (xk + xl)W2h + xlxkW3h); k 6= l:

Thus, with
Ck;lh;g = W1h + (xk + xl)W2h + xkxlW3h;

we obtain

EF [ZN(Z
0
nG

�1
0;nZn)

�1Z0nG
�1
0;nGnG

�1
0;nZn(Z

0
nG

�1
0;nZn)

�1Z0N ] =

LX
h=1

�
p2hCh;g + ph(1� ph)Rh;g

�
;

this in (A.1) give us the desired mse (7). Finally, we express Ck;lh;g in the simpler
and more convenient form (8). �
Proof of Theorem 1: From (7) and (8) we obtain

Eg;F (T̂ � T )2
�2

=
LX
h=1

�
p2h1

0
N�nQrCh;gQ

0
r1N�n + ph(1� ph)10N�nQrRh;gQ

0
r1N�n

�
+
X
k=2s

g (xk)

=
LX
h=1

 
p2h
X
k=2s

X
l =2s

Ck;lh;g + ph(1� ph)
X
k=2s

Ck;kh;g

!
+
X
k=2s

g (xk)

=
LX
h=1

X
i2sh

g(xi)

 
p2h
X
k=2s

X
l =2s

Dk;l
h;i + ph(1� ph)

X
k=2s

Dk;k
h;i

!
+
X
k=2s

g (xk)

:= Sgjs + Sgjsc :

Since Sgjs depends only on the value of g(x) in s and Sgjsc depends only on the
value of g(x) out of sample s;

max
g2G

Eg;F (T̂ � T )2
�2

= max
g2G

Sgjs +max
g2G

Sgjsc :

For the maximum problem out of sample s, we have

max
g2G

Sgjsc = max
g2G

X
k=2s

g (xk) = (1 + �
2
g)
X
k=2s

g0 (xk) ; (A.2)

attained with g(xk) = (1 + � 2g)g0(xk) for all k =2 s.
It remains to solve the maximization problem in sample s. Note that

U2hi = �
p
U1hiU3hi, so that

Dk;k
h;i = U3hix

2
k + 2U2hixk + U1hi =

�
xk
p
U3hi �

p
U1hi

�2
� 0;
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hence X
k=2s

Dk;k
h;i � 0: (A.3)

Similarly,

X
k=2s

X
l =2s

Dk;l
h;i = U3hi

 X
k=2s

xk

!2
+ 2(N � n)U2hi

 X
k=2s

xk

!
+ (N � n)2U1hi � 0:

(A.4)
Note also that ph(1� ph) � 0 for all h. Then using (A.3) and (A.4), we have

max
g2G

Sgjs = max
g2G

 
LX
h=1

X
i2sh

g(xi)

 
p2h
X
k=2s

X
l =2s

Dk;j
h;i + ph(1� ph)

X
k=2s

Dk;k
h;i

!!
:

= (1 + � 2g)
LX
h=1

X
i2sh

g0(xi)

 
p2h
X
k=2s

X
l =2s

Dk;j
h;i + ph(1� ph)

X
k=2s

Dk;k
h;i

!
(A.5)

by taking g(xi) = (1 + � 2g)g0(xi) for all i 2 s.
Combining (A.2) and (A.5) we obtain, after a rearrangement,

max
g2G

Eg;F (T̂ � T )2
�2

= (1 + � 2g)

"
LX
h=1

 
p2h

 X
k=2s

X
l =2s

Ck;lh;g0 �
X
k=2s

Ck;kh;g0

!
+ ph

X
k=2s

Ck;kh;g0

!
+
X
k=2s

g0 (xk)

#
:

Finally, upon inserting Ck;lh;g0 = (B3h � (xk + xl)B2h + xkxlB1h) =Dh,

max
g2G

Eg;F (T̂ � T )2
�2(1 + � 2g)

= p0FBpF + c
0pF +

X
k=2s

g0 (xk) ;

with B and c as in the statement of the Theorem. �
Proof of Theorem 2: Write the constraint (ii) as

(ii)0: �2 � �2 �


p� p0

2 = 0; for a slack variable �2:

Denote by p0 the maximizer, which is guaranteed to exist since the objective
function is continuous on its compact domain. Let p1 2 P be arbitrary, de�ne

pt = (1� t)p0 + tp1; 0 � t � 1;

and consider the function

� (t;�; �) =
p0tBpt + c

0pt � 2� (10pt � 1) + �
�
�2 � �2 � kpt � p0k2

�
N

:
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In order that p0 be the maximizer, it is necessary and su¢ cient that � (t; �; �)
be maximized at t = 0 for all p1, for multipliers � and � chosen to satisfy the
side conditions (i) and (ii)0. This condition is that, for all p1,

0 � �0 (0;�; �) = (�2 (�I�B)p0 + c� 2�1+ 2�p0)0 (p1 � p0)
N

: (A.6)

Condition (A.6) entails�
�2 (�I�B)p0 + c� 2�1+ 2�p0

�
h
= 0 if p0;h > 0;�

�2 (�I�B)p0 + c� 2�1+ 2�p0
�
h
� 0 if p0;h = 0;

i.e.

p0;h (�; �) =

�
�p0h + ch=2� �

�� bh

�+
;

with � and � determined by (i) and (ii)0, and with �2 then chosen to max-
imize the objective function. Equivalently, � and � are determined by the
requirement that they maximize the objective function, subject to (i) and (ii).
�
Proof of Theorem 3: If � � minh p

0
h then p % 0 for all p for which

kp� p0k � �; in particular the solution given by Theorem 2 satis�es (13),
with � determined by (12) in order to satisfy constraint (i). �
Proof of Theorem 4: (i) Set v = p� p0. Then

max
P0

p0Bp+ c0p = L0 + L0� ; (A.7)

where

L0 =
�
p0
�0
Bp0 + c0p0; and

L0� = max
v:10Lv=0;kvk��

v0Bv + (2Bp0 + c)0v:

Thus it su¢ ces to �nd L0�. The orthogonality condition 10Lv = 0 holds if
and only if v lies in the orthogonal complement to the column space of 1L.
Denote by D the L� (L� 1) matrix whose columns form an orthogonal basis
for this orthogonal complement. Then v = Dw for some w 2 RL�1 with
kwk = kvk � �, and

L0� = max
kwk��

w0Ew + 2d0w; (A.8)

with E = D0BD : (L� 1)� (L� 1) and d = D0(Bp0 + c=2) 2 RL�1. If w� is
a solution to Problem (A.8) then

p0 = p
0 +Dw�
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is a solution to Problem (A.7).
Problem (A.8) is a quadratic optimization problem over a closed ball. The

optimizer is either in the interior or on the boundary of the ball. We claim
that the maximizer in (A.8) is either w� = �E�1d or the solution to (15). For
this, we consider the following three possibilities:
Case 1: E is positive semide�nite. In this case (A.8) is a problem of maxi-

mizing a convex function over a convex set. According to Corollary 32.3.2 of
Rockafellar (1970), the solution of (A.8) must be a boundary point of kwk � �.
Thus it su¢ ces to solve (15).
Case 2: E is negative semide�nite. If the maximizer w of (A.8) is obtained

in the interior of kwk � �; then the problem

min
kwk��

w0(�E)w � 2d0w

has a solution in the interior of kwk � �. It must be the global minimizer
since �E is positive semide�nite. So, the minimizer is w = �E�1d.
Case 3: E is neither positive semide�nite nor negative semide�nite. Ac-

cording to Lemma 2.4 of Sorensen (1982), the maximizer w of (A.8) is a
solution to the equation

(�I� E)w = d
with � � 0; �(kwk2 � �2) = 0 and �I � E positive semide�nite. Since E
is not positive semide�nite or negative semide�nite, the largest eigenvalue �1
of E must be positive. Thus, choose � � �1 > 0 so that �I � E is positive
semide�nite. Then �(kwk2 � �2) = 0 implies that the maximizer w must
satisfy kwk = �.
This establishes our claim, and completes the proof of (i). Assertion (ii) is

immediate. �
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