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a b s t r a c t

Two robust estimators of amatrix-valued location parameter are introduced and discussed.
Each is the average of the members of a subsample – typically of covariance or cross-
spectrum matrices – with the subsample chosen to minimize a function of its average.
In one case this function is the Kullback–Leibler discrimination information loss incurred
when the subsample is summarized by its average; in the other it is the determinant,
subject to a certain side condition. For each, the authors give an efficient computing
algorithm, and show that the estimator has, asymptotically, the maximum possible
breakdown point. The main motivation is the need for efficient and robust estimation
of cross-spectrum matrices, and they present a case study in which the data points
originate as multichannel electroencephalogram recordings but are then summarized by
the corresponding sample cross-spectrum matrices.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction and Summary

A frequently encountered problem in the analysis of electroencephalogram (EEG) and magnetoencephalogram (MEG)
recordings is the presence of artefacts in the data. Common sources of artefacts are muscle movement, equipment
malfunction, errors in experimental procedures, unusual participant responses or the presence of misclassified individuals
that do not represent the population of interest. A further complication arises from the non-stationarity of the EEG
recordings, which can result in frequency spectra that differ between intervals within the same recording. Visual inspection
of the data is the most common approach used to identify gross artefacts; however, in light of increasing numbers of
sensors in modern recording systems, in addition to experimental designs in which recordings are often obtained across
several time periods and treatment conditions, artefacts or patterns of unusual activity become increasingly difficult to
detect. Because atypical recordings may go undetected and therefore introduce bias into subsequent results, there is a need
for robust methods that can be applied to large channel arrays. Robust estimates of the spectrum and cross-spectrum,
for example, are of particular interest because frequency domain analysis is often the preferred method for the analysis
of time series in applied research. In addition, the spectrum and cross-spectrum often form the basis for other analysis
techniques such as principal component analysis (PCA) and discriminant analysis—see for instance the treatment of such
techniques in Stoffer (1999) and Shumway and Stoffer (2006). In the area of neuro-imaging, where large array recordings

∗ Corresponding author.
E-mail addresses: JohnC.Lind@albertahealthservices.ca (J.C. Lind), doug.wiens@ualberta.ca (D.P. Wiens), vyohai@dm.uba.ar (V.J. Yohai).

0167-9473/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.csda.2012.06.011



Author's personal copy

J.C. Lind et al. / Computational Statistics and Data Analysis 65 (2013) 98–112 99

are common, the estimation of electrical current flow over the surface of the scalp often depends on the calculation of the
surface Laplacian (Nunez and Srinivasan, 2006, pp. 334–337) which is derived from the cross-spectrum. The EEG and MEG
cross-spectrummatrices also form the basis of brain imaging methods such as those based on multiple signal classification
(MUSIC) algorithms (Mosher et al., 1992), low-resolution electromagnetic tomography (LORETA) (Pascual-Marqui et al.,
1994) and Borgiotti and Kaplan (1979) Beamformer methods.

In this article, we introduce and discuss two robust estimators of a matrix-valued location parameter. They have been
derived by us for use in problems in which the data consist of positive semidefinite Hermitian matrices


Sj

. A case in point

is that in which the Sj are cross-spectrummatrices, whose elements are cross-products of the Fourier transforms, at various
frequencies, of the original data vectors. These vectors are typically not retained, in the interest of economizing data storage.
As is the case in the applications described above, the need for robustness arises when cross-spectrummatrices are obtained
for each individual in a group and it is necessary to identify and remove matrices corresponding to those individuals whose
recordings contain outliers or atypical patterns of activity.

The ‘classical’ location estimate is of course the average of the

Sj

; this suffers from awell-known lack of robustness due

to possible outliers. Robust estimates of the frequency spectrum in time series data based on autoregressivemodels for single
channel recordings have been proposed by Kleiner et al. (1979); however, robust methods for multichannel recordings are
less readily available. An appealing property of the estimators presented here is that they can be applied to cross-spectrum
matrices obtained fromhighdimensional arrays. In Section 5,we apply ourmethods to the problemof identifying differences
between the two sets of cross-spectrum matrices obtained from 43-channel EEG recordings, in order to compare results
obtained before and after those matrices identified as outliers have been removed.

Each of the proposed estimates is the average in a particular ‘trimmed’ subsample of the

Sj

. The trimming selects

a subsample minimizing a certain function of its average. In the first case, leading to the ‘Trimmed Minimum Information
Loss’ estimate 6̂TMIL, this function is related to the Kullback–Leibler discrimination information loss incurredwhen the Sj are
summarized by 6̂. In the second, leading to the ‘Minimum Information Loss Determinant’ estimate 6̂MILD, the function is the
determinant, with the subsample restricted by a certain side condition. In each case the intent is to select subsamples whose
members are close to the ‘centre’ of the sample. Since in each case the centre of the sample is defined by the estimate itself,
the computations are iterative in nature, and we propose and assess various algorithms. We also discuss the breakdown
properties and show that the best possible breakdown point is attainable, asymptotically, in each case. We include, in
Section 4, a simulation study inwhich the two estimationmethods are compared; aswell the use of quantile plots to identify
the outlying members of a data set is described. These theoretical and simulated results, together with what is learned from
the EEG example, show these estimators to be valuable additions to the arsenal of robust methods of data analysis.

Code to duplicate all computations presented here has been written in matlab and in r and is available from us. All
derivations are in the Appendix.

2. The TMIL estimate

Throughout this article, S will represent a random, p × p positive semidefinite Hermitian matrix with positive definite
expectation E [S] = 60. For a positive definite matrix 6 and a positive semidefinite 60, define a function

∆ (60, 6) = tr

6−160


− log

6−160
− p.

As noted by Kakizawa et al. (1998), ∆ (60, 6) is the Kullback–Leibler discrimination information, measuring the loss when
a Gaussian density with covariance 60 is approximated by one with covariance 6. The function is non-negative, and is zero
if and only if 6 = 60—this is a consequence of the inequality

f (λ) = λ − log λ − 1 ≥ 0 = f (1), (λ > 0) , (1)
applied to the eigenvalues of 6−160.

Define also

g (6) = E [∆ (S, 6)] = tr

6−160


− E


log

6−1S
− p. (2)

Let

Sj
n
j=1 be a sample of n i.i.d. copies of S. The empirical version of g (6) is

ḡ (6) =
1
n

n
j=1

∆

Sj, 6


=

1
n

n
j=1

tr

6−1Sj


−

1
n

n
j=1

log
6−1Sj

− p.

Minimization of ḡ (6) corresponds to minimum information loss estimation in Gaussian populations. A standard result of
multivariate analysis, used for instance to obtain the maximum likelihood estimate of a common covariance matrix 6 from
n normal samples with sample covariances


Sj

, and again based on (1), is that – even without the normality assumption –

ḡ (6) is minimized uniquely by the average S̄ = n−1n
j=1 Sj. Indeed,

ḡ (6) = ∆

S̄, 6


−

1
n

n
j=1

log
S̄−1Sj

 ,
and so is minimized by the minimizer S̄ of ∆


S̄, 6


. See for instance Srivastava and Khatri (1979, Section 7.6).
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We consider a robust version of this estimate, which uses only a subset of the observed matrices for which ∆


Sj, 6̂


is

smallest. We call such an estimate a ‘Trimmed Minimum Information Loss’ (TMIL) estimate.

Definition 1. For given h (n/2 ≤ h ≤ n) and positive definite, p × p Hermitian matrices 6, let ∆(k) (6) (k = 1, . . . , h) be
the kth smallest of the values


∆

Sj, 6

n
j=1. The Trimmed Minimum Information Loss estimate 6̂TMIL is the minimizer of

their average:

6̂TMIL = argmin
6>0

1
h

h
k=1

∆(k) (6) .

To facilitate comparisons with a related estimate to be introduced later in this article, we give an alternate, equivalent
formulation. Let H be the set of all h-element subsets H of {1, 2, . . . , n}, for which

S̄H =
1
h


j∈H

Sj

is positive definite. Note that

∆̄H
def
=

1
h


j∈H

∆

Sj, S̄H


= log

S̄H − 1
h


j∈H

log
Sj ; (3)

this can be interpreted as the loss in information when the subsample is summarized by S̄H , and is infinite if the subsample
contains any singular members. For positive definite, p × p Hermitian matrices 6, define a pair

6̂,H0


= argmin

6>0,H∈H

1
h


j∈H

∆

Sj, 6


.

Then 6̂ is the TMIL estimator and is given by

6̂TMIL = S̄H0 ,

where, by (3),

H0 = argmin
H∈H

∆̄H . (4)

2.1. Computing the TMIL estimate

Consider the following algorithm:

Algorithm 1.

Initialization Select a starting set H ∈ H . Define H(1) = H . Compute the average 6̂(1) = S̄H(1) , and ∆̄H(1) as at (3).
For k = 1, 2, . . . to convergence of ∆̄H(k) :

Iterative step Let H(k+1) be the set of indices j resulting in the h smallest values of ∆


Sj, 6̂(k)


. Set 6̂(k+1) = S̄H(k+1) , and

compute ∆̄H(k+1) .

The following theorem implies that each sequence

∆̄H(k)


, constructed as above, and forwhich themembersH(k) remain

inH , decreases to a limit ∆̄∞(H), and that

6̂TMIL,H0


defined above are the limits


6̂(∞),H(∞)


corresponding to one such

sequence.

Theorem 1. Let

Sj
n
j=1 be a sample of n i.i.d. copies of S and let H(1) be any subset of H . Let H(2) be the set of indices j resulting

in the h smallest values of the ∆

Sj, S̄H(1)


. If S̄H(2) is positive definite, so that H(2) ∈ H , then

∆̄H(1) ≥ ∆̄H(2) , (5)

with equality if and only if S̄H(1) = S̄H(2) .

Of course it is not often feasible to apply Algorithm 1 and Theorem 1 to all
 n
h


subsequences


∆̄H

, each corresponding

to a different starting set H ∈ H . An option is to repeat the algorithm for many randomly chosen subsamples. But such
subsamples will, with high probability, contain outlying (or inlying) values which may determine the final estimate. Thus
we prefer the following approach, similar to an improved subsamplingmethod given by Rousseeuw and vanDriessen (1999)
for the Minimum Covariance Determinant (MCD) (Rousseeuw, 1985) estimate. For each non-singular Sa in the sample,
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define H(a) to be the set of indices of the sample values

Sj

with the h smallest values of ∆


Sj, Sa


. Now apply Algorithm

1 repeatedly, starting with one of the sets H(a) each time. Each such ‘run’ results in a limit matrix 6̂ = S̄H(∞)
; the S̄H(∞)

for
which ∆̄∞


H(a)


is a minimum is the (approximation to) the TMIL estimate. In the – very unlikely – event that some S̄H(k+1)

is singular, our algorithm defaults to 6̂ = S̄H(k) .
We have investigated the use of a genetic algorithm as a means of improving on this selection of starting sets. In this

algorithm, the sets H(a) def
= H(a)

1 described above are viewed merely as the first ‘generation’ of starting sets. Subsequent

generations

H(a)

g


for g = 2, 3, . . . are formed via stochastic processes of ‘crossover’ and ‘mutation’. Crossover is a process

whereby ‘fit parents’ – pairs of starting sets with small values of ∆̄∞


H(a)


– are randomly chosen to produce ‘children’. The

children are starting sets formed from the parents in amanner very similar to that employed byWelsh andWiens (in press),
who used a genetic algorithm to construct sampling designs. For an application of genetic algorithms to frequency domain
methods, see Mitra et al. (2006).

Todorov (1992) presented a simulated annealing algorithm for the computation of the MCD, and found it to be generally
more effective than the then current competitor – the ‘Iterative Improvement’ algorithm – which uses an initial random
subsample. In contrast, we will argue in the simulation study of Section 4 that our method of choosing the first generation
H(a)

1 |a = 1, . . . , n

is so efficient that improvements arising from the genetic algorithm are at best only very slight.

2.2. Breakdown properties

The breakdown point of an estimator is, roughly speaking, the maximum fraction of arbitrarily ‘bad’ members of
the sample which the estimate can tolerate. See Rousseeuw and Leroy (1987) for further details. Given a ‘clean’ sample
S =


Sj|j = 1, . . . , n


, we define breakdown as the tending of the smallest or largest eigenvalue of the estimate to 0 or ∞,

respectively, when S is replaced by ‘contaminated’ samples. To formalize this, let SSm be the set of samples with at least
n − mmembers in common with S:

SSm =


SĎ

=


SĎj
n
j=1

:


I(SĎj = Sj ∈ S) ≥ n − m


.

Denote by chmin(·) and chmax(·) the smallest and largest eigenvalues of a Hermitian matrix.

Definition 2. Given an estimate 6̂n which assigns to each sample S a p×p positive definite Hermitian matrix 6̂n(S), define
the finite sample breakdown point at the sample S by

εĎ(6̂n, S) =
m(S, 6̂n)

n
,

where

m(S, 6̂n) = min

m : sup
SĎ∈SSm

 1

chmin


6̂n(SĎ)

 + chmax


6̂n(S

Ď)
 = ∞

 .

A natural requirement for a location estimate 6̂n is that it be scale equivariant – for any λ > 0 we must have
6̂n(λS1, . . . , λSn) = λ6̂n(S1, . . . , Sn). It is easy to check that both 6̂TMIL, being discussed here, and the companion estimator
6̂MILD which is the subject of the next section, are scale equivariant. It is intuitively clear that no scale equivariant estimator
canwithstand breakdown ifmore than 50% of the sample is contaminated; the best one can hope for is to attain a breakdown
point of 0.5, and then, typically, only asymptotically. This observation is made rigorous by the following result.

Lemma 1. Let 6̂n be as in Definition 2, and suppose as well that 6̂n is scale equivariant. Denote by v(S) the number of
singular members of S. Then for all n and 1 < v0 < n, there exists samples S = {S1, . . . , Sn}, with v(S) = v0, such that
εĎ(Σ̂n, S) ≤ (n − v0)/2n.

Together with Lemma 1 the following theorem asserts that the TMIL estimate with h = n/2 has the maximum possible
breakdown point among equivariant estimators in samples with v(S) = 0, and asymptotically the maximum possible
breakdown point assuming that v(S) = o(n).

Theorem 2. Let S =

Sj
n
j=1 be a set of positive semidefinite Hermitian matrices. Then for h ≥ n/2, the finite sample breakdown

point ε
Ď
TMIL(S)

def
= εĎ(6̂TMIL, S) of 6̂TMIL satisfies

ε
Ď
TMIL(S) ≥

n − h − v(S)

n
.
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2.3. Bias properties

The bias of an estimator is always in reference to a given location parameter and a nominal distribution. For example, in
the case of location is the sample median biased? If the goal is to estimate the population mean then the sample median is
biased except for some particular nominal distributions such as those with a symmetric distribution around the centre of
location. However, when the goal is to estimate the populationmedian, the samplemedian is asymptotically unbiased. Note
that the population mean is very unstable under small changes in the distribution and therefore in many cases it is more
convenient to choose the median as the location parameter to estimate. On the other hand, in a completely non-parametric
setup which includes asymmetric distributions there are no asymptotically unbiased robust estimators of the mean.

Similar considerations apply when estimating the location parameter of a population of positive semidefinite Hermitian
matrices. If the goal is to estimate the mean, our proposed estimators are biased. However these estimators themselves
define location parameters – their corresponding asymptotic values – and for these location parameters they are obviously
asymptotically unbiased. Again these location parameters may be better choices than the population mean.

We do not know how to exactly compute the asymptotic bias of our estimators with respect to the mean in a given
nominal distribution. Some estimates are obtained, by simulation, in Section 4.

3. The MILD estimate

For fixed subsets H of H , there is an interesting, alternate formulation of the estimate 6̂TMIL. First define

Ω (60, 6) = tr

6−160


,

and recall the definition of g (·) at (2).

Proposition 1. For any 6, there exists 6′ with Ω

60, 6′


= p and g


6′


≤ g (6).

An immediate consequence of Proposition 1 is the following lemma.

Lemma 2. The following problems are equivalent:

P1: find a matrix 6 minimizing g (6);
P2: find a matrix 6 minimizing |6| subject to the constraint

Ω (60, 6) = p. (6)

For H ∈ H , define

Ω̄H,6 =
1
h


j∈H

tr

6−1Sj


.

Lemma 2 yields the following characterization of 6̂TMIL of Section 2, for a fixed set H ∈ H .

Theorem 3. Let H0 ∈ H be as at (4). Then 6̂TMIL is the matrix with minimum determinant among all p × p positive definite
Hermitian matrices satisfying Ω̄H0,6 = p.

We note that, if Sk is a covariance matrix arising from centred data

xjk

, then Ω (Sk, 6) is the average of the (squared)

Mahalanobis distances x∗

jk6
−1xjk. Here and elsewherewe denote by ‘∗’ the conjugate transpose of a possibly complex-valued

vector or matrix.
An alternate estimate, which we call the Minimum Information Loss Determinant (MILD) estimate, arises from

minimizing the determinant |6| over subsets of H . Note that Ω̄H,6 = tr

6−1S̄H


. By Corollary 1 of the Appendix, |6| is

minimized, subject to Ω̄H,6 = p, by 6 = S̄H .

Definition 3. Let H be as defined in Section 2 and let SH be the set of positive definite Hermitian matrices 6 for which
Ω̄H,6 = p. Define

6∗

H = arg min
6∈SH

|Σ |,

and

H1 = argmin
H∈H

|6∗

H |.

Then the Minimum Information Loss Determinant estimate 6̂MILD is given by 6̂MILD = 6∗

H1
= S̄H1 .

The following example shows that, in general, the setH0 determining 6̂TMIL does not coincidewith the setH1 determining
6̂MILD, and so the estimates need not agree.
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Example. Take p = 1 and consider a sample

Sj


= {1, 100, 100, 100, 100, 100, 100, 100, 100, 100}. Take h = n/2 = 5.
Then the TMIL estimate minimizes

1
h


j∈H


Sj
Σ

− log
Sj
Σ


− 1,

and so arises from

Sj

j∈H0

= {100, 100, 100, 100, 100}, with Σ̂TMIL = 100 and ∆̄H0 = 0. The MILD estimate arises from
Sj

j∈H1

= {1, 100, 100, 100, 100} and is Σ̂MILD = 80.2. This example also shows that when p = 1 the MILD estimate is
merely the average of the smallest h of the Sj.

3.1. Computing the MILD estimate

We compute 6̂MILD via the following algorithm.

Algorithm 2.

Initialization Select a starting set H ∈ H . Define H(1) = H . Compute the average 6̂(1) = S̄H(1) , and the determinant
6̂(1)

.
For k = 1, 2, . . . to convergence of

6̂(k)

:
Iterative Step Let H(k+1) be the set of indices j resulting in the h smallest values of Ω


Sj, 6̂(k)


. Set 6̂(k+1) = S̄H(k+1) , and

compute
6̂(k+1)

.
Theorem 4 implies that each sequence

6̂(k)

 constructed as above, and for which the sets H(k) remain in H (note that

by construction they are then also in H1) decreases to a limit, and that 6̂MILD arises from one such sequence. It is analogous
to Theorem 1 of Rousseeuw and van Driessen (1999).

Theorem 4. Let

Sj
n
j=1 be a sample of n i.i.d. copies of S and let H(1) be any subset of H . If

S̄H(1)

 > 0, compute theΩ

Sj, S̄H(1)


.

Let H(2) be the set of indices of the h smallest of the Ω

Sj, S̄H(1)


. Then H(1),H(2) ∈ H1 andS̄H(1)

 ≥
S̄H(2)

 ,
with equality if and only if S̄H(1) = S̄H(2) .

We initialize Algorithm 2 inmuch the samemanner as Algorithm 1. For each non-singular Sa in the sample, define H̃(a) to
be the indices of the sample values


Sj

with the h smallest values of Ω


Sj, Sa


. Then apply Algorithm 2 repeatedly, starting

with one of the sets H̃(a) each time. Again this can be followed by a genetic search for improved starting sets, as described
in Section 2.1, the only difference being in the specification of the loss function.

3.2. Breakdown and bias

The following theorem asserts that the MILD estimate has, in common with 6̂TMIL, the maximum possible breakdown
point.

Theorem 5. Let S =

Sj
n
j=1 be a set of positive definite Hermitian matrices and let v(S) be as in Lemma 1. For h ≥ n/2, the

finite sample breakdown point ε
Ď
MILD(S)

def
= εĎ(6̂MILD, S) of 6̂MILD satisfies

ε
Ď
MILD(S) ≥

n − h − v(S)

n
.

We note that the same considerations as in Section 2.3 apply to the bias of 6̂MILD.

4. Simulations

In this section, we report the results of a small simulation study to compare the two estimationmethods—TMIL andMILD.
Samples of np × p Hermitian matrices S = XX∗, with X = U/

√
2L + iV/

√
2L, were constructed from independent p × L

matrices U and V. A fraction ε1 of these 2n matrices (U,V) were contaminated; the remainder had i.i.d. N (0, 1) elements.
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Table 1
Performance of the sample average S̄ = 6̂MEAN : values of per-element root mean squared error (rmseMEAN )a and its standard error [·]a , followed by the
bias ⟨biasMEAN ⟩a and average values of


min ∆̄H ,min |6̂|

1/p
H


; p = 30, n = 100 and N = 100.

fsmall = 0 fsmall = 0.5 fsmall = 1

ε1 = 0.3, (177.94) [0.15] (80.43) [0.10] (23.17)[0.03]
ε2 = 0.4: ⟨175.04⟩ {16.44, 1.95} ⟨77.71⟩ {12.01, 1.42} ⟨20.04⟩ {9.79, 0.89}

ε1 = 0.5, (148.35) [0.14] (67.41) [0.09] (20.37) [0.03]
ε2 = 0.2: ⟨146.02⟩ {12.69, 1.79} ⟨64.78⟩ {10.55, 1.35} ⟨16.63⟩ {9.31, 0.91}

ε1 = 0: (rmseMEAN )a= (12.87) [0.03], ⟨biasMEAN ⟩
a
= ⟨1.30⟩, average


min ∆̄H ,min |6̂|

1/p
H


= {9.12, 1.00}.

a Values have been multiplied by 1000.

Table 2
Without a genetic search for improved starting sets: values of per-element rootmean squared errors (rmseTMIL, rmseMILD)

a and their pooled standard errors
[·]a , followed by the biases ⟨biasTMIL, biasMILD⟩

a and average values of

min ∆̄H ,min |6̂|

1/p
H


; p = 30, n = 100 and N = 100.

fsmall = 0 fsmall = 0.5 fsmall = 1

ε1 = 0.3, (18.34, 18.27) [0.04] (18.41, 18.45) [0.05] (18.37, 44.35) [0.04]
ε2 = 0.4: ⟨1.86, 2.69⟩ {8.85, 0.98} ⟨1.90, 2.80⟩ {8.86, 0.98} ⟨1.90, 41.88⟩ {8.85, 0.77}

ε1 = 0.5, (18.28, 18.28) [0.04] (18.27, 18.27) [0.04] (27.53, 36.40) [0.16]
ε2 = 0.2: ⟨1.85, 1.85⟩ {9.05, 0.99} ⟨1.83, 1.83⟩ {9.07, 1.00} ⟨21.99, 33.22⟩ {8.92, 0.81}

ε1 = 0: (rmseTMIL, rmseMILD)
a
= (18.49, 18.61) [0.04], ⟨biasTMIL, biasMILD⟩

a
= ⟨1.84, 3.85⟩,

average

min ∆̄H ,min |6̂|

1/p
H


= {8.71, 0.98}.

a Values have been multiplied by 1000.

The division by
√
2L ensures that, without contamination,60 = E [S] = Ip. Within the contaminatedmatrices, the elements

of U and Vwere simulated from the distribution

(1 − ε2)N (0, σ = 1) + ε2 · fsmallN (0, σ = 0.3) + ε2 · flargeN (0, σ = 3) ,

the interpretation being that, of the contaminated elements, a fraction fsmall had standard deviations of 0.3 while the
remaining proportion flarge = 1 − fsmall had standard deviations of 3. Estimates 6̂TMIL and 6̂MILD were then computed from

this sample. This process was carried out N times. We report the averages 6̄TMIL and 6̄MILD of the N estimates

6̂j

N
j=1

so

obtained, and the ‘per-element’ bias and root mean squared errors

bias =
1
p


N
j=1

6̂j

N
− Ip

 , rmse =

 N
j=1

6̂j − Ip
2

Np2
;

here we use the Euclidean norm ∥A∥ =
√
trAA∗. Except where otherwise noted, in all cases reported in this section we have

used p = 30, L = 2p, n = 100,N = 100, and h = [(n + 1) /2]. The value of h is the integer giving the largest possible
breakdown point, according to Theorems 2 and 5. Other values of these inputs gave qualitatively similar output.

We first ran the simulations using the sample average S̄ def
= 6̂MEAN , i.e. h = n, obtaining the values in Table 1. For the robust

estimators, when the algorithms were stopped after the first generation, i.e. no genetic searching for improved starting sets
was done, we obtained the performance measures in Table 2. When the genetic algorithm was also applied, until there had
been no change for 5 consecutive generations, we obtained the values in Table 3. For all estimators, as a benchmark we first
took ε1 = 0—no contamination. Combinations of various values of (ε1, ε2, fsmall) yielded the remaining values in Tables 1–3.

Some observations to be made from these simulations are the following.

(i) For the sample average 6̂MEAN , and except in clean samples, the bias was the dominant contributor to themean squared
error (mse). The bias and mse of the proposed estimators 6̂TMIL and 6̂MILD were very stable under contamination at the
levels (ε1, ε2) = (0.3, 0.4) and (ε1, ε2) = (0.5, 0.2), with bias making only a minor contribution, except for those
of 6̂TMIL at (ε1, ε2) = (0.5, 0.2) with all contamination ‘small’ (fsmall = 1), and those of 6̂MILD at both levels with
all contamination small. With fsmall = 1 the performance of 6̂MEAN was surprisingly good—especially in view of its
disastrous performance in the other cases.

(ii) As could perhaps have been anticipated from the Example of Section 3, TMIL outperforms MILD in terms of mse when
there is a preponderance of ‘small’ contamination. In other cases the differences were at most only slight.
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Table 3
Following a genetic search for improved starting sets: values of per-element root mean squared errors (rmseTMIL, rmseMILD)

a and their pooled standard
errors [·]a , followed by the biases ⟨biasTMIL, biasMILD⟩

a and average values of

min ∆̄H ,min |6̂|

1/p
H


; p = 30, n = 100 and N = 100.

fsmall = 0 fsmall = 0.5 fsmall = 1

ε1 = 0.3, (18.35, 18.28) [0.04] (18.43, 18.45) [0.05] (18.39, 44.35) [0.04]
ε2 = 0.4: ⟨1.83, 2.69⟩ {8.84, 0.98} ⟨1.87, 2.81⟩ {8.86, 0.98} ⟨1.90, 41.89⟩ {8.85, 0.77}

ε1 = 0.5, (18.28, 18.28) [0.04] (18.27, 18.27) [0.04] (22.91, 36.40) [0.17]
ε2 = 0.2: ⟨1.85, 1.85⟩ {9.05, 0.99} ⟨1.83, 1.83⟩ {9.07, 1.00} ⟨14.86, 33.22⟩ {8.88, 0.81}

ε1 = 0: (rmseTMIL, rmseMILD)
a
= (18.55, 18.61) [0.04], ⟨biasTMIL, biasMILD⟩

a
= ⟨1.80, 3.86⟩,

average

min ∆̄H ,min |6̂|

1/p
H


= {8.71, 0.98}

a Values have been multiplied by 1000.

Fig. 1. Representative qq-plots of (a)

tj
n
j=1 , and (b)


dj
n
j=1 for ‘clean’ samples.

(iii) The time required when the genetic steps were included averaged about 4.5 times that without these steps. This is
perhaps a heavy price to pay, especially given that in almost all cases there was no significant reduction in the loss
realized beyond the first generation of subsamples. We view this as testament to the efficiency of our method of
choosing this first generation.

As diagnostic tools we computed as well, for j = 1, . . . , n,

tj = ∆


Sj, 6̂TMIL


, (7a)

dj = Ω


Sj, 6̂MILD


, (7b)

in each sample and prepared qq-plots of the results. Some representative plots – each from one of the N samples – are
shown in Figs. 1–4; we have found them to be useful discriminators between those h matrices Sj near the centre of the
sample as defined by 6̂ – these have smaller values of these measures tj and dj – and those n− h that are farther away. Note
that tj ≥ 0, with equality if and only if Sj = 6̂TMIL, yielding the interpretation of tj as a measure of the distance between
Sj and the centre of the subsample. In view of a remark made earlier – that dj is the average of the Mahalanobis distances
associated with the vectors from which Sj is computed – we would not expect this measure to identify the contaminated
vectors themselves.Wewould however expect the dj, and by extension the tj, to be approximately normally distributed, and
so we plot against quantiles of the Normal distribution. See also Hardin and Rocke (2005), who investigate outlier detection
and removal methods after plotting the individual Mahalanobis distances against chi-square quantiles.

5. Case study revisited

In the study described in Section 1, a portion of which is detailed here, 43-channel recordings were obtained from each of
68 healthy,male, dextral volunteerswith amean age of 26.8 (s.d. = 7.9) years. Recordings for each individualwere obtained
for a period of 3min, duringwhich timeparticipantswere required to look at a spot projected onto a screen at a fixed location.
Each channel was digitized at a rate of 256 samples/s. using a 12-bit analog to digital converter. The 43 sensor locations
represent standard sensor positions described in the American Electroencephalography Society Guidelines (Sharbrough
et al., 1990). The sensor locations were AF3, AF4, FC5, FC6, FC1, FC2, C3, C4, C1, C2, TP7, TP8, CP5, CP6, CP1, CP2, P3, P4, P1, P2,
PO3, PO4, AFz, Fz, FCz, Cz, CPz, Pz, POz, FP1, FP2, F7, F8, F3, F4, FT7, FT8, T7, T8, P7, P8, O1 and O2. All recordings were made
relative to a left-ear reference. The digitized datawere visually edited off-line in an attempt to select 20, 1-s artefact-free data
segments. Data segments containing voltage spikes, large eye movements or muscle activity were not selected for analysis.
The fast Fourier transform (FFT) was applied to each channel following the subtraction of the mean and the application of
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Fig. 2. Representative qq-plots of (a)

tj
n
j=1 , and (b)


dj
n
j=1; (ε1, ε2) = (0.3, 0.4) and fsmall = 0.

Fig. 3. Representative qq-plots of (a)

tj
n
j=1 , and (b)


dj
n
j=1; (ε1, ε2) = (0.3, 0.4) and fsmall = 1.

Fig. 4. Representative qq-plots of (a)

tj
n
j=1 , and (b)


dj
n
j=1; (ε1, ε2) = (0.5, 0.2) and fsmall = 0.5.

a 50% Hamming taper {ht} (Brillinger, 1981, p. 55). For each individual these transforms were then averaged over the 20
segments and over the 6 frequencies in the band from 8 to 13 Hz. Specifically, let


x(j,s)
t |t = 1, . . . , 256, s = 1, . . . , 20


be

the centred, artefact-free segments for the jth participant (j = 1, . . . , 68). The FFT (of the tapered data) at frequency ω is

X(j,s) (ω) =
1

√
256

256
t=1

htx
(j,s)
t e−2π iωt .

We form 43 × 120 matrices X(j), whose columns are the vectors X(j,s) (ω) for s = 1, . . . , 20 and ω = 8/256, 9/256, . . . ,
13/256.We then compute Sj = X(j)X(j)∗/120. The p×p (p = 43)Hermitianmatrices Sj summarize the ‘alpha band’ for each
of the n = 68 subjects.

Both the TMIL and MILD estimates were computed using a value of h determined by comparing qq-plots for h =

n − 1, n − 2, . . . , until additional trimming failed to show an improvement in the linear fit of the estimate. After an
examination of quantile plots obtained from the discrimination measures (7), 27 of the 68 matrices were identified as
outliers with respect to the TMIL measure and removed, yielding a trimmed sample of 41 matrices. Similarly, 17 matrices
were removed after computing the MILD estimate. Quantile plots for the untrimmed and trimmed samples appear in Fig. 5.
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Fig. 5. Top: qq-plots of

tj = ∆


Sj, 6̂TMIL


for the (a) untrimmed and (b) trimmed samples of EEG spectral matrices. Bottom: qq-plots of

dj = ∆


Sj, 6̂MILD


for the (c) untrimmed and (d) trimmed samples.

Fig. 6. Left: Diagonal elements of mean cross-spectrum matrices obtained from the untrimmed (solid line) and trimmed (broken line) samples of EEG
spectral matrices. Right: First 10 eigenvalues of the mean cross-spectrum matrices obtained from the untrimmed (solid line) and trimmed (broken line)
samples of EEG spectral matrices.

Heaviness in the lower tail shown in Fig. 5(d) suggests the presence of ‘inliers’ in the data that were undetected by the MILD
estimate. The TMIL estimate therefore seems preferable, and so the rest of the output is for this estimate only.

Fig. 6 (left) contains the diagonal elements, or spectral power values at each sensor location, of the mean of the cross-
spectral matrices for the trimmed and untrimmed matrix samples. A reduction in spectral power of the trimmed matrix
estimate is observed across all sensor locations with a large reduction in spectral power occurring at some sites. The
reduction in overall spectral power is reflected in the corresponding reduction in the magnitude of the eigenvalues of the
mean trimmed matrix sample shown in Fig. 6 (right).

In order to examine the sensitivity of the eigenvectors to the presence of outliers, plots of the real and imaginary
components for the first 3 eigenvectors are shown in Fig. 7. Using the standard method for normalizing principal
components, the eigenvectors were normalized for the ith variable and jth eigenvalue λj, according to a′

ij = aij


λj/si which
yields the coherence of aij with the jth principal component. The first eigenvector appears to be the most sensitive to the
effects of trimming as shown in Fig. 7(a), (d) where differences between the trimmed and untrimmed samples are present
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Fig. 7. (a), (b), (c): Real parts of the elements of the first three eigenvectors plotted against the sensor locations {1, 2, . . . , 43}. (d), (e), (f): Imaginary parts
of the elements of these eigenvectors plotted against the sensor locations. Solid lines correspond to untrimmed samples of EEG spectral matrices, and
broken lines to trimmed samples.

Fig. 8. Left side view of spherical spline interpolated eigenvector coefficients from mean cross-spectrum matrices. Top row: untrimmed matrix sample.
Bottom row: trimmed matrix sample.

across all sensor locations in both the real and imaginary components. For all 3 vectors the imaginary parts appear to be
the most sensitive to the effects of trimming. The oscillations observed in Fig. 7(c), (f) are the result of positive eigenvector
coefficients for sensor locations on the right side of the scalp,while the corresponding locations on the left side have negative
values.

The eigenvector differences between the trimmed and untrimmedmean spectralmatrices are summarized in the form of
topographical displays shown in Figs. 8 and 9. These displays represent a spherical approximation to the surface of the scalp
and were constructed using spherical spline interpolation (Wahba, 1981) through the 43 sensor locations. An examination
of these displays shows that differences in the real part of the first eigenvector appear to be associated with the frontal
regions of the head, while the largest differences in the imaginary components are in the temporal regions associated with
the first two eigenvectors.

Overall, the results from this example indicate that sets of cross-spectralmatrices are sensitive to the presence of outlying
or unusualmatrices in the data. The results further show that an important property of the TMIL estimate is that it is effective
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Fig. 9. Right side view of spherical spline interpolated eigenvector coefficients frommean cross-spectrummatrices. Top row: untrimmed matrix sample.
Bottom row: trimmed matrix sample.

for the identification of matrices that can be considered inliers. The value of using these techniques in practice is supported
by the fact that thesemethods were able to identify subsets of matrix outliers even though the data had been visually edited
for gross artefacts prior to analysis. This has implications for subsequent analyses such as PCA, or methods based on PCA,
as well as EEG or MEG imaging methods that rely on the analysis of eigenvector subsets. The use of robust estimates of the
spectrum and cross-spectrum therefore provides a means of improving the reliability of experimental findings with large
array recordings, and this will in turn aid in improving the understanding of brain pathology and function.
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Appendix. Derivations

Proof of Theorem 1. Inequality (5) follows from

∆̄H(1) =
1
h


j∈H(1)

∆

Sj, S̄H(1)


≥

1
h


j∈H(2)

∆

Sj, S̄H(1)


≥

1
h


j∈H(2)

∆

Sj, S̄H(2)


= ∆̄H(2) . (A.1)

The first inequality in (A.1) follows from the definition ofH(2) as the set ofminimizing indices, and the second is the assertion
that for any H, h−1

j∈H ∆

Sj, 6


is minimized by 6 = S̄H . If equality holds in (5) then the inequalities in (A.1) must be

equalities, and then S̄H(1) = S̄H(2) follows from the fact that h−1
j∈H(2)

∆


Sj, 6̂


is uniquelyminimized by S̄H(2) . �

Proof of Lemma 1. Take a sample S = {S1, S2, . . . , Sn} such that the members S1, . . . , Sv0 have all elements equal to
0 and the remaining members are arbitrary, but positive definite, Hermitian matrices. It suffices to show that for any
m ≥ (n − v0) /2 there is a sequence of contaminated samples Sk ∈ SSm culminating in breakdown, i.e. with

1

chmin


Σ̂n (Sk)

 + chmax


Σ̂n (Sk)


→ ∞. (A.2)

Thus letm ≥ (n − v0) /2 and put

S
(1)
k =


S1, S2, . . . , Sv0 , kSv0+1, . . . , kSv0+m, Sv0+m+1, . . . , Sn


, 1 ≤ k < ∞.

Define L = sup1<k<∞ chmax


Σ̂n


S

(1)
k


. The number of members of S

(1)
k not in S is equal to m, so that S

(1)
k ∈ SSm;

therefore if L = ∞ we are through. Suppose on the contrary that L < ∞. In that case we consider the sequence of samples
S

(2)
k = S

(1)
k /k, i.e.

S
(2)
k =


S1, S2, . . . , Sv0 , Sv0+1, . . . , Sv0+m,

Sv0+m+1

k
, . . . ,

Sn
k


∈ SSm.
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The number of members of S
(2)
k not in S is equal to n − v0 − m ≤ m and so S

(2)
k ∈ SSm. Moreover, by scale equivariance,

chmin


Σ̂n


S

(2)
k


≤ chmax


Σ̂n


S

(2)
k


= chmax

 Σ̂n


S

(1)
k


k

 ≤ L/k,

and therefore chmin


Σ̂n


S

(2)
k


→ 0. This establishes (A.2). �

Proof of Theorem 2. Let λ01(S) = min{chmin(Sj) : 1 ≤ j ≤ n, λ1(Sj) > 0} be the minimum of the smallest eigenvalues of
the positive definite members of S. It is enough to show that if m < n − h − v(S) then there exist constants γ− = γ− (S)
and γ+ = γ+ (S) for which

inf
SĎ∈SSm

chmin


6̂n(S

Ď)


≥ γ− > 0, (A.3)

and

sup
SĎ∈SSm

chmax


6̂n(S

Ď)


≤ γ+ < ∞, (A.4)

since thenm(S, 6̂n) ≥ n − h − v(S).
Take m < n − h − v(S) and let SĎ

∈ SSm. Since m + v(S) < n − h ≤ h, for any H ∈ H there exists j ∈ H such that
SĎj = Sj ∈ S with Sj positive definite. Then chmin(S

Ď
j ) ≥ λ01 and so chmin


SH


≥ λ01/h. Since this lower bound does not

depend on SĎ we have that infSĎ∈SSm chmin


6̂n(S

Ď)


≥ λ01/h, and so (A.3) holds with γ− (S) = λ01(S)/n.
For (A.4), recall that the estimate is obtained by running Algorithm 1 repeatedly, initialized each time by one of finitely

many sets H(a). Since n − m − v(S) > h, we can find a set H0 ∈ H such that for all j ∈ H0 we have SĎj = Sj ∈ S with Sj
positive definite. Thus there is at least one setH(a) for which S̄H(a) is positive definite. For each such set, and in the notation of

Theorem1,we setH(1) = H(a) and construct a sequence

H(k)


forwhich the sequence


1
h


j∈H(k+1)

∆

Sj, S̄H(k)


is bounded.

In particular, there is a positive constant α = α

H(a)


for which α ≥ maxj∈H(k+1) ∆


Sj, S̄H(k)


= maxj∈H(k+1)

p
l=1 f


λl,j

,

where f (·) is as at (1) and

λl,j
p
l=1 is the set of eigenvalues of S̄−1

H(k)
Sj. Since f is non-negative, f


λl,j


≤ α uniformly in j, l.

Then ifλ+ = λ+


H(a)


> 1 is the largest root of the equation f (λ) = α, we have, for all j ∈ H(k+1), that chmax


S̄−1
H(k)

Sj


≤ λ+.
Thus

chmax


S̄−1
H(k)

S̄H(k+1)


≤

1
h


j∈H(k+1)

chmax


S̄−1
H(k)

Sj


≤ λ+,

and so
S̄−1

H(k)
S̄H(k+1)

 ≤ λ
p
+, i.e.

S̄H(k+1)

 ≤ λ
p
+

S̄H(k)

. Iterating this inequality givesS̄H(k+1)

 ≤ λ
kp
+

S̄H(1)

 .
Now let ka be the number of iterations required, in Algorithm 1, before convergence is declared. This in the last inequality
gives S̄H(k+1)

 ≤ λ
kap
+

S̄H(1)

 =

λ+


H(a)kap S̄H(a)

 .
Since the estimate is the limit of one of the sequences


S̄H(k)


, we have6̂n(S

Ď)

 ≤ β (S) , (A.5)

for

β = max
a


λ+


H(a)kap S̄H(a)

 .

By this and (A.3),

β ≥

6̂n(S
Ď)

 =

p
i=1

λi


6̂n(S

Ď)


≥ γ
p−1
− chmax


6̂n(S

Ď)


,

and then (A.4) holds with γ+ (S) = β (S) / [γ− (S)]p−1. �
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Proof of Proposition 1. For µ > 0 define

k (µ) = g (µ6) =
1
µ

Ω (60, 6) + p logµ − E

log

6−1S
− p.

It suffices to show that if µ0 minimizes k (·), then 6′ def
= µ06 satisfies Ω


60, 6′


= p. For this we note that the only

critical point of k (·) is µ0 = Ω (60, 6) /p, with Ω (60, µ06) = Ω (60, 6) /µ0 = p, as required. Since k (µ) → ∞ as
µ → 0, ∞, µ0 furnishes a minimum of k (·). �

Before proving Theorem 4 we must establish two preliminary results. The first characterizes 60 as the solution to a
minimization problem; it is analogous to a result of Grübel (1988) which gives a motivation for the MCD estimator.

Lemma 3. Among all 6 > 0 satisfying (6), |6| is uniquely minimized by 60.

Proof of Lemma 3. First note that Ω (60, 60) = trIp = p, so that 60 satisfies (6). Now suppose that 6 > 0 satisfies (6) and
let

λj
p
j=1 be the eigenvalues of 6−160. By the arithmetic–geometric mean inequality,

1 =
1
p
Ω (60, 6) =

1
p

p
j=1

λj ≥


p

j=1

λj

1/p

=
6−160

1/p ,

so that |6| ≥ |60|. The inequality is an equality iff all λj are equal, necessarily to 1, so that 6 = 60. �

Taking expectations with respect to the empirical distribution gives the following corollary.

Corollary 1. For H ∈ H , among all 6 > 0 such that Ω̄H,6 = p, |6| is uniquely minimized by S̄H .

Proof of Theorem 4. Assume that
S̄H(2)

 > 0, else there is nothing to prove. That H(m) ∈ H1 for both m = 1 and m = 2 is
true by construction, since in each case 6(m) = S̄H(m)

is the average of the members of H(m). By the definition of H(2) as the
set ofminimizing indices,

λ
def
=

1
hp


j∈H(2)

Ω

Sj, S̄H(1)


≤

1
hp


j∈H(1)

Ω

Sj, S̄H(1)


= 1. (A.6)

Note also that λ > 0, else Ω

Sj, S̄H(1)


= 0 for all j ∈ H(2) and hence

S̄H(2)

 = 0. By the definition of λ,

1
hp


j∈H(2)

Ω

Sj, λS̄H(1)


=

1
λhp


j∈H(2)

Ω

Sj, S̄H(1)


=

λ

λ
= 1.

Thus
1
h


j∈H(2)

Ω

Sj, λS̄H(1)


= p,

so that by the inequality established in (A.6), followed by Corollary 1,S̄H(1)

 ≥
λS̄H(1)

 ≥
S̄H(2)

 ,
with equality iff S̄H(2) = λS̄H(1) and λ = 1, i.e. iff S̄H(1) = S̄H(2) . �

Proof of Theorem 5. It suffices to establish (A.3) and (A.4). That (A.3) holds is shown exactly as in the proof of Theorem 2.
For (A.4), first let H0 ∈ H be as in the proof of that theorem. Then (A.4) will follow, exactly as before, if we establish a
bound of the form (A.5). For this, let λ0p = λ0p (S) = maxH∈H {chmax(SH)} be the maximum of the largest eigenvalues of the
h-element averages of the members of S. Then chmax


S̄H0


≤ λ0p, and therefore

S̄H0

 ≤ λ
p
0p. Since 6̂n(S

Ď) minimizes
S̄H 

we have
6̂n(S

Ď)

 ≤ λ
p
0p; thus (A.5) holds with β (S) = λ

p
0p. �
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