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ON THE BUSY PERIOD DISTRIBUTION
OF THE M/G/2 QUEUEING SYSTEM

DOUGLAS P. WIENS,* University of Alberta

Abstract

Equations are derived for the distribution of the busy period of the GI/G/2 queue.
The equations are analyzed for the M/G/2 queue, assuming that the service times
have a density which is an arbitrary linear combination, with respect to both the
number of stages and the rate parameter, of Erlang densities. The coefficients may be
negative. Special cases and examples are studied.

GI/G/2 QUEUE; LAPLACE TRANSFORMS; MIXTURES OF ERLANG DENSITIES

1. Introduction

In this paper, we study the busy period distribution for the GI/G/2 and M/G/2
queueing systems. The queue discipline is that customers receive service in order of their
arrival, with each server drawing upon the pool of customers as soon as the server
becomes available. The first arrival, at time 7 = 0, finds the queue empty; the busy period
ends at the next instant at which both servers become idle.

In Section 2, we derive a system of equations, the solution to which gives the density of
the first busy period of the GI/G/2 queue. Our equations are not as general of those of De
Smit (1973a) who generalizes the methods of Pollaczek (1961) to derive integral
equations for waiting time and queue length, as well as busy period, distributions for
the GI/G/s queue. The equations of De Smit have, however, only been solved for the
GI/M/s (De Smit 1973b) and GI/H,,/s (De Smit 1983) systems. In Section 3, we analyze
our equations in the case that the interarrival times are exponentially distributed, and
the service times have density

(1.1) g(t)=)13 éA,-jg.-j(t); —w<d4; <o, YA4;=1,

jm=] j=1 ij

where g;(f) = (v;t)’ ~'v,exp( — v;1)/(j — 1)!. We give a method for obtaining the joint
Laplace transform of the busy period length, and generating function of the number of
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customers served during the busy period. In Section 4, special cases and examples are
analyzed.

Note that (1.1) contains as special cases the Erlang density E;(I = 1, 4,; = J;;) and the
hyperexponential density (J = 1). Cohen (1982) analyses waiting time distributions for
the M/G/2 queue, assuming that g(¢) is a convex combination of negative exponential
distributions. Erlang service times are used in Heffer (1969), who analyzes waiting time
distributions for the M/E, /s queue. There have been few exact results published for the
busy period of the two-server queue. Karlin and McGregor (1958) obtained the busy
period distribution for the M/M/s queue, Bhat (1966) for the GI/M/2 queue and De
Smit (1973b) for the GI/M/s queue. The results of these papers are in decreasing order
of explicitness. Hokstad (1978) proposed an approximation for the M/G/s busy period
distribution, defining the busy period as the period during which all servers are busy. For
other approximations for waiting time and queue length distributions in the M/G/s
queue see Tijms et al. (1981) and references cited therein.

2. Equations for the GI/G/2 system

The interarrival times to the system are assumed to be i.i.d., with d.f. F(¢), com-
plementary d.f. F =1 — F, p.d.f. f(t), mean A ~! < 0. The service times are assumed to
be i.i.d., with d.f. G(¢), p.d.f. g(¢), mean E[S] < co. We assume that the traffic intensity
p=AE[S)2< 1.

We consider the following random variables:

B = length of the busy period,

N = number of customers served during B,

U, = time of the nth service completion,

V, = time of commencement of service of the (n + 2)th customer,

T, = time of completion of that service which is in progress at time U,,

X, = time of arrival of the (n + 1)th customer.

Define

@2.1) h,,(t)=%P(B§t,N=n +1).

We derive a recursion for

)
l,,(t,u,x)=i——P(T =, U 2u, X, =x,N=n+1), O=x=u=t<w),
ot u ox
and then L
(2.2) h,,(t)=f f L(t, u, x)F(t — x)dxdu.
0 0

By definition, Uy=0, X;,=0 and T, ~ G(¢), so that
(2.3) I(t, u, x) = g(2)do(1)do(x)

where Jdy(x) is Dirac’s delta, with all mass at 0.
We obtain /, ., from /, by considering separately four cases. The events at times ¥V,
U, +, may be realized by (1) the same server or (2) distinct servers, and the (n + 2)th
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customer may (a) be already waiting at time U, or (b) have not yet arrived at U,.
Considering these cases in the order (1a), (1b), (2a), (2b) gives, for n = 0:

Iy o8, 4, X) = f * fo "1t w, 2) flx — 2)g(u — w)dzdw

+g(u — x) fox fow L@, w, 2) f{x — z)dzdw

(2.4) + f" f: L(u,w, z) fix — z)g(t — w)dzdw

+g(t—x) L . fo "1, w, 2) flx — z)dzaw.

3. Solutions for an M/G/2 system

Assume now that the interarrival times are exponentially distributed, so that f{¢) =
JAe~*_ Any instant between busy periods is now a renewal point, and so the equations of
Section 2 become valid for any busy period, not merely the first. Define

m,(t, u, x)=e*l,(t, u, x)

so that (2.2), (2.3), (2.4) become

G.1) h(t) = e~* fo fo m(t, u, x)dxdu,
(3.2) myt, u, x) = g(t)e™do(1)d(x)
mn+l(t, u7 x)

=2 fu fx m,(t, w, 2)g(u — w)dzdw
x 0

(3-3) + Ag(u — x) f: fow m,(t, w, z)dzdw + A J;u f: m,(u, w, z)g(t — w)dzdw

+ Ag(t — x) fxfwm,,(u, w, z)dzdw.
(V] 0

Assume that the service times have a density of the form (1.1). It is not assumed that
the A, are non-negative. However, if they are, they must form a probability distribution.
The interpretation is then that, with probability 4;, a customer requires service which
consists of j i.i.d. stages, each exponentially distributed with rate v;. In this case, if one
conditions on the type of service, and number of stages remaining in the service, of that
customer whose service is under way at time U, , then it is easy to see that m, (¢, u, x) is
necessarily of the form
(3.4) my(t,u,x)= ¥ A&t —u)rip(u, x)

1=isr1

1sksjsJ

for some functions r{y (u, x).
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In the general case, (3.4) is established by induction. The results are summarized here;
the details are in Wiens (1987). Define

R (e, y) = f ) f exp( — au — yx)r{i(u, x)dxdu,
0 0
b =d; [ exp(— ax)gu(x)dx.
0

Put L = IJ(J + 1)/2 and build up L-vectors b(c), (e, p) as follows:
b (e) = (bfl,- - -, b)), AP (a, ¥) = (Ffe, ¥),- + -, (e, 7)) : 1 X,
b (@)= (b{(a)," - -, b[(a)),
e, p) = (FP (e, ), AP (e, 1)) 1 1 X T,
b7()=(b{(a),- - -, b] (@), F"(a,y) = FMa, 7),+ -+, F (@, 7)) : 1 X L.
Then with '
3.5) r(z;a,7)= ¥ 2%"a,7) (Rea,Rela+7)20, |z| < 1)

n=0
we get from (2.1), (3.1), (3.4) that
(3.6) Ele~3BzN-11=0T(e + A)r(z; ¢ + 4, 0).

From (3.2),
1, k=j
20)] =1{ ’
ik (aa y) {0, k <j.

The induction yields a recursion for 7}’ which, when substituted into (3.5), gives the
equation

AzX(@)

A
3.7 M= [I - 72 X(a)] r(z;a,7)+ (I —yP~Ya+ )Ir(z;a+y,0).
Here, X(«) has entries formed from the Laplace transforms, with parameter «, of the
products g; g,, and g;g. See Section 4 for explicit examples. The matrix P(a) is defined
by
P@y=al + (I —R)D,

where
J J I
D=® @vl, R=© @R,
j=1li=1 Jj=li=1
o0 1 -
o 1 0
R=|0 1 XJj, (R,=0).
1
- 0_
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To complete the derivation of E[e~*8z"~!] we must extract r(z; &€ + A, 0) from (3.7).
In the examples considered in Section 4, this is done as follows. We first find the L
characteristic roots & () of X(«), and the corresponding left characteristic vectors w(a).
We then show that:

Joreachi =L, and all € = 0, there is a unique a; = a(e, z) = 0 satisfying

(3.8) e+ 14 =aqa;+iz{(a)).

Put a=ae, z), y = Az&(a;) in (3.7) to get

3.9  wl(a)fO=wl(a)I—(e+i—a)P e+ A)r(z;e+4,0), 1=i=L.
Now with

(3.10) WT(e, z) = (W), - -, wilay)), A(e, z)=diagla,,- -, ay),

(3.9) becomes 7

(3.11) W(e, 2)PO=[W(e,z) —(I —R)D + A(e, 2)W (e, )P~ (e + A)r(z; ¢ + 4, Q).

Put ¢T =bT(e + A)P(¢ + A)D~!. An easy calculation shows that ¢ is independent of
¢ + A, and is built up as

e =y, 0, -, 0): 1 X 56T =(ef, -+, ef): IX s eT = (e, -+, ¢f): 1 X L.

Then if W(e, z) is non-singular, (3.6) and (3.11) now give
(3.12) Ele ®8z¥ " 1=cT[I — R+ W, 2)A(e, z2)W (e, z)D~'}7'FO,

Even in the singular case, (3.11) appears to give enough information to determine
E[e~*2z"¥~!] — see the treatment below of Erlang service times.

We have not obtained a general description of the characteristic roots and vectors of
X(a), but remark that one such pair is (£(3a), b "(3x)). For this pair, (3.8) becomes

(3.13) e=a+ Az8(ja) — A.

To show the existence of a unique, real such «, it suffices to show that (3.13) defines a
function &(a) (@ = 0), with €(0) =0, &(0) = o0, &’(a) > 0. The first two of these con-
ditions are immediate, and

A P
e(a) = 1 +72g"(5a)g 1 +-2—-Zg"(0)=l—ngl—p>0.

4. Special cases and examples

A. Hyperexponential service times. Put J = 1in (1.1) and write 4; = 4;;, & = &, 50
that g(t) = Z/_, A4,g(t), with g(¢t) = v; exp( — v;t). We find

(4'1) c=(Al’°"7AI)Ta ﬁm:(l’“')l)ra R=0’ D=diag(v17“'av1);
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24,v, Aka .
S+ v,) + A la+v)=—r —_—, i=];
g(a l) g( ‘) a+2v,~ k¢5a+v,-+vk J
42) Xjo= 4
Y.
AA A‘ + v" b # b i # ..
8 (et i) at+v,+v; J

Cohen (1982) studies the matrix X(e) (his M7(c)) and shows that the eigenvalues &,(a)
are real.

Example 1. I=2, g(t)=Av, exp(— 1) + Ay, exp( — »,t). With X(a) given by
(4.2), the characteristic roots and vectors are

=& la T _ T, — Alvl AZVZ )
&(a) =8Ga), wie)=1b"(3a) (—-—a+2vl,a—+ 2.’
(4.3)
o) = At (s 2v), (@ + 2vy).
a+v,+v,

Then «/(e, z) is defined by (3.13), a,(e, z) as the positive solution to (3.8). Equiva-
lently,

4.4 o+ v, +v,—e—Alay— [(e + A(1 — 2))(v; + vy) + 2pzv,v,] = 0.
Now (4.1) and (4.3) in (3.10) and (3.12) give the result. Define
wila) = AV, + 3a)(v, + @),  Wilay) = AV, (v + $a)(v, + a)y).
A calculation yields
E[e~%zV 1]

_ EGa ), + da)(v; + da )y (a) + wAa)) + 4 WAV — V) B
O+ a)(v2 + ja)wi(a) + (v, + o)V, + e )yfa)

Put k = (0, 1); then

(4.5)

gy~ E6) [, Loile) ~ el 51—yt — VZ)Z} :
1—p 2E[STwi(x) + wia(x)]
(4.6) E[N] = 1 n payi(x) + viys(i) — A Ay (v, — 1,)?]
1—p E[S1(1 = pvvily(x) + (k)]

In the important special case that g(¢) is the convolution of independent exponential
densities with rates v, and v,, so that 4, = v,/(v, — v,) = 1 — A4,, we have k = 1 and (4.6)

becomes
E[S] 2
BB = T+ -t
1—p vt v D+ 2+ 3p)vy, + 3]

4.7) 1 P+ v+ + v, + 1)

l—p (1=p)v+v)v+v,+34)

E[N]=
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B. Erlang service times. Put I =1, A;=4;,, v,=v in (1.1), so that g(¢)=

(vt)?~ve="/(J — 1)\. Then
[ Sy(@) Uy
S 0 Uy(a)
X@=| 0 ; ,
Sy-1(a) U;_i(a)
Sy(a) + Uya) |

where S; and U; are j X j matrices with (a, b)th elements

J+b—a-—1 v \/+b-a jtb—a-1 y \jté-e
_ 1,5y and .
b—a a+2y j—a a+2y

respectively. The roots () of X(a) are (v/(a + 2v)) J, repeated $J(J — 1) times, and the
J roots of S;(a) + U,(a). There is only one characteristic vector belonging to {(a) =
(v/(a + 2v))’, so that W(e, z) has rank J + 1 and (3.12) does not apply. However, since

y v
b7(a) = (oT, e (v > a)') — (07, BI(@),

say, E[e~*z"~'] depends only on the last J elements of r(z; ¢ + 4, 0). Denote these by
r,(z; & + 4, 0) so that E[e~Ez¥ '] = b] (¢ + A)r,(z; ¢ + 4, 0). Let &(a), - « «, &;(a) be the
roots of S;(e) + Uj(a), with corresponding left characteristic vectors y{(a),- - -, yJ(a).
Put w7 (a) = (07, y7(a)) : 1 X L so that w7(a) is a characteristic vector of X(a) belonging
to &;(a). Then (3.9) becomes

Y (a)F? =yF(a)lI — (e + A —a)P; (e +A)rfz;e+4,0), i=1,---,J;

where F® = (0,---, 0, 1)7:J X 1, Py(e + A) = (e + A)] + v(I — R;), and the o; are deter-
mined from (3.8). Put

Wi(e, z) = (yi(a), - -, yAe))), A (e, z) =diag(a,,- - -, ).
Then, as in the passage from (3.9) to (3.12), we get
E[e=2zV "\ =cJ[I — R, + v 'W; (e, 2)4,(e, z2)W,(e, z)] ',
where ¢f =(1,0,---,0): 1 XJ. Thus
El[e~®zN~1is the (1, J)th element of
[I—R,+ v 'W;l(e, z)A;(e, 2)W,(e, z)] 7.

It is shown in Wiens (1987) that the & (a) are of the form ¢;§(3a), with ¢;real, |c;| = 1.
This implies the existence and uniqueness of solutions to (3.8), in the same manner that
(3.13) was handled.

Example 2: J =2, g(t) =v*e™. We have S, + U, = }§(}a)E ~(a)KE(a), where

(4.8)
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2
s -am( 5 (7))

and K = (?}{). Then

= s
a|+2v a|+2v

= s
24 + 2v (2 5 + 2y
where a, = ¢ + 1 and «, is obtained from (3.13). From (4.8), E[e ~%*z¥~'] is the (1,2)th

[( ) l l ( l Z) ] | '

The calculations give

E[e-:BzN—l]

(4.9 W3¢ + 34 + 4v — ay]

T a3t + 34 + 4v] + o[ 142+ 120(e + A) + (€ + 2)7] + 2v]3¢ + 34 + 4v]

with
E 2 34 6p2+ 14p + 8
4.10)  E[B]= [S](1+ 4 ) EN =2t te
: 1—p 4(3p + 4) 2(3p +4)1 —p)
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