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Abstract In a previous article (Wiens, 1991) we established a maximin property,
with respect to the power of the test for Lack of Fit, of the absolutely continuous
uniform �design�on a design space which is a subset of Rq with positive Lebesgue
measure. Here we discuss some issues and controversies surrounding this result. We
�nd designs which maximize the minimum power, over a broad class of alternatives,
in discrete design spaces of cardinality N . We show that these designs are supported
on the entire design space. They are in general not uniform for �xed N , but are
asymptotically uniform as N ! 1. Several examples with N �xed are discussed;
in these we �nd that the approach to uniformity is very quick.
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1 Introduction

In Wiens (1991), henceforth referred to as [W], we studied the uniform �design�, as
applied to design spaces Sc that are subsets of Rq �intervals, hypercubes, etc. �with
positive Lebesgue measure. We call such design spaces continuous, to distinguish
them from the �nite, discrete design spaces considered in this article.
The uniform design on Sc is the absolutely continuous measure, with constant

density 1=
R
Sc
dx. Of course such a design must be approximated in order to imple-

ment it in an actual experiment. A contribution of [W] was that, in a sense made
precise there and detailed in §2 below, the uniform design possesses an optimality
property in the class of all designs on Sc �it maximizes the minimum power of the
standard F-test for Lack of Fit (lof) of a �tted linear regression model, with the
minimum taken over a broad class of alternatives.
The theory in [W] has been adapted to justify the use of discrete uniform designs

in numerous applications in the sciences. For its application to drug combination
studies see the series of papers Tan, Fang, Tian and Houghton (2001), Fang, Ross,
Sausville and Tan (2008), Tan, Fang and Tian (2009), Fang, Tian, Li and Tan
(2009) and Fang, Chen, Pei, Grant and Tan (2015). The ideas in [W] have gained
traction in the theory of arti�cial neural networks �see Zhang, Liang, Jiang, Yu and
Fang (1998) �and reduced support vector machines �see Lee and Huang (2007).
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The theory has been extended to nonparametric regression models �Xie and Fang
(2000) �and, also allowing for heteroscedasticity, by Biedermann and Dette (2001)
and Bischo¤ and Miller (2006).
The continuous nature of Sc in this context has been controversial. Indeed

Bischo¤ (2010) argues that it allows for classes of alternative regression models
�as used both in [W] and in Biedermann and Dette (2001) �that are too broad
for the optimality property to be asymptotically meaningful (when the continuous
uniform design is viewed as the limit of discrete uniform designs); he proposes a
restricted interpretation.
That the richness of classes of alternatives as in [W] makes discrete designs

inadmissible was noted in Wiens (1992, p. 355), where we state �Our attitude is that
an approximation to a design which is robust against more realistic alternatives is
preferable to an exact solution in a neighbourhood which is unrealistically sparse.�
This remains our view. Nonetheless, in this article we suggest an alternate approach
that we feel is less controversial. We take a �nite design space S = fx1; :::;xNg �
here N can be arbitrarily large, allowing for at least a close approximation of the
space of interest in an anticipated application. We obtain exact designs for small
values of N � these are non-uniform � and show that the maximin designs are
asymptotically uniform, as N ! 1. Theory and examples show that this limit is
approached very quickly.
In the next section we outline the mathematical framework, provide a reduction

of the maximin problem to a simpler minimax problem, and prove the asymptotic
optimality of the uniform design. Some solutions with N �xed are given in §3.
Proofs are in the Appendix. The computing code is available from the author�s
personal web site.

2 Preliminaries

As far as possible we use notation as in [W], to which we refer the reader for back-
ground material relating the standard F-test for lack of �t to properties of the
design. We denote by � the uniform probability measure on S, viz. � (xi) = 1=N;
i = 1; :::; N . To facilitate comparisons with [W] we now write �c (x) for the contin-
uous uniform design on a continuous design space Sc.
For a design � on S we write �i = � (xi). An implementable design with n

observations requires that n�i be an integer; we shall loosen this restriction and
allow � to be any probability distribution on S. In particular, we include � as a
possible design.
For p-dimensional regressors z (x) we entertain a class of departures

E [Y (x)] = z0 (x)� + f (x)
�
f 2 F+

�

�
; (1)

(the �full�models, in lof terminology) from the �tted (�reduced�) regression model

E [Y (x)] = z0 (x)�: (2)
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In [W] we de�ned this class of functions on Sc by (i)
R
Sc
f 2 (x) d�c (x) � �2 and (ii)R

Sc
z (x) f (x) d�c (x) = 0p�1. We now adopt an analogous de�nition of F+

� on the
discrete design space S, viz.,Z

S

f 2 (x) d� (x) =
1

N

NX
i=1

f 2 (xi) � �2; (3a)

Z
S

z (x) f (x) d� (x) =
1

N

NX
i=1

z (xi) f (xi) = 0p�1: (3b)

Condition (3a) enforces a separation between the �tted and alternate models, so
that the test has positive power, and (3b) ensures the identi�ability of the regression
parameters under (1), via

�
def
= argmin

t

NX
i=1

(E [Y (xi)]� z0 (xi) t)2 :

This de�nes � uniquely, in the presence of (3b) and the requirement, made here, that

the matrix ZN�p = [z (x1)
... � � � ...z (xN)]0 be of full column rank. We write fi = f (xi)

and de�ne f = (f1; :::; fN)
0 and D� = diag (�1; :::; �N). De�ne as well

bf;� =

Z
S

z (x) f (x) d� (x) =
NX
i=1

z (xi) f (xi) �i = Z
0D�f ;

B� =

Z
S

z (x)z0 (x) d� (x) =
NX
i=1

z (xi)z
0 (xi) �i = Z

0D�Z;

and assume that B� is non-singular. Then as at (2.2) of [W] the non-centrality
parameter (ncp) of the F-statistic for testing the lof of the �tted model (2), with
alternatives of the form (1), and using a design �, is proportional to

B (f; �) = f 0D�f � b0f;�B�1
� bf;�:

The power of the test is an increasing function of the ncp, as long as the F-statistic is
stochastically increasing in this parameter. This monotonicity is well known to hold
in �nite samples under a Gaussian error distribution, and is at least asymptotically
valid otherwise, under mild conditions.
In its alternate form

B (f; �) =
NX
i=1

�
f (xi)� z0 (xi)B�1

� bf;�
�2
�i;

we see that B (f; �) is the L2 (�) distance from f to the nearest function of the form
(2). Thus minf B (f; �) is a natural measure of the discrepancy between the �full�



4 Douglas P. Wiens

and �reduced�models being compared, with larger values leading to a more e¤ective
test.
It is reasonable to think that the following conjecture should hold. If true, it

extends the main result of [W] to discrete design spaces.

Conjecture For any design � on S we have that minF+� B (f; �) � �
2 = minF+� B (f; �),

so that the uniform design � maximizes the minimum power of the F-test of lof.

Despite its plausibility this conjecture turns out to be false �a �rst counterexample
is furnished in Example 1 below.
To express the conjecture more explicitly, we �rst characterize the classes F+

�

parametrically. Write the qr-decomposition of Z as

Z =

�
Q1
...Q2

��
R
0

�
;

where the columns of Q1 : N � p form an orthogonal basis for col (Z), the column
space of Z, and the columns of Q2 : N � (N � p) form an orthogonal basis for

the orthogonal complement col (Z)? = col (Q1)
?. Then Q

def
=

�
Q1
...Q2

�
is an

orthogonal matrix. Condition (3b) requires f to lie in col (Q2), i.e. f = �
p
NQ2d

for some dN�p�1, and then (3a) requires kdk � 1 for f 2 F+
� .

With

P
def
=
p
ND

1=2
� Q =

�p
ND

1=2
� Q1

...
p
ND

1=2
� Q2

�
def
=

�
P1
...P2

�
;

H
def
= P1 (P

0
1P1)

�1
P01 =D

1=2
� Q1 (Q

0
1D�Q1)

�1
Q0
1D

1=2
� ;

we �nd that
B (f; �) = �2d0P02 (IN �H)P2d:

We denote by � the set of all designs on S, and by chmin and chmax the minimum
and maximum eigenvalues of a matrix. The conjecture then asks that we solve

max
�2�

min
kdk�1

B (f; �) = �2max
�2�

chmin [P
0
2 (IN �H)P2] ;

and show that the solution is � = �.
The problem is greatly simpli�ed by the following theorem.

Theorem 1 The following are equivalent:
(a) A design �0 is maximin with respect to the power of the test of lof, in that

�0 = argmax
�2�

chmin [P
0
2 (IN �H)P2] :

(b) A design �0 places positive mass at each point of S and is a minimax design
within the set �+ of all such designs, in that

�0 = arg min
�2�+

chmax
�
Q0
2D

�1
� Q2

�
:

If � 2 �+ then chmin [P02 (IN �H)P2] = N=chmax
�
Q0
2D

�1
� Q2

�
.
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To obtain the required maximin/minimax design we are to minimize

L (�) def= chmax
�
Q0
2D

�1
� Q2

�
;

over the set �+ of designs that place positive mass on each point of S. Note that
L (�) = N ; the following theorem shows that we cannot expect much improvement
on this, for large N .

Theorem 2 For any design � 2 �+, L (�) � N � p, so that

1� p

N
� min�2�+ L (�)

L (�) � 1:

In a sense made precise by Theorem 2 the uniform design is asymptotically
optimal, as N !1. The following example shows that this optimality does not in
general hold for �nite N .

Example 1. Suppose N = 2, p = 1, Q2 = (�; �)
0 with �2 + �2 = 1 and �; � > 0.

Then there is only one eigenvalue, given by

Q0
2D

�1
� Q2 =

�2 +
�
�2 � �2

�
�1

�1 (1� �1)
:

This is minimized by �0;1 = �= (�+ �) = 1��0;2, with L (�0) = (�+ �)
2 = 1+2��.

This improves on �, for which L (�) = 2 � 1 + 2�� for all �; �. There is strict
inequality unless � = � = 1=

p
2, in which case �0 = �.

3 Minimax designs for �xed N

The set �+ is not closed, and this poses technical di¢ culties which will become
evident. Thus we shall �rst minimize instead over the closed, convex set �" of
designs that place mass of at least " > 0 on each point of S. In most cases it turns
out that the minimax design lies in the interior of this set, so that the restriction to
�" is moot and the solution holds for all of �+.
When the maximum eigenvalue of Q0

2D
�1
� Q2 is simple, the minimax design has

a parametric form.

Theorem 3 Denote by q01; :::;q
0
N the rows of Q2. For a positive constant � and a

vector xN�p�1 de�ne a design by

�0;i (�;x) = max

�
jq0ixjp
�
; "

�
: (4)
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(i) If � and x satisfy

NX
i=1

�0;i (�;x) = 1; (5)

x = eigenvector belonging to chmax
h
Q0
2D

�1
�0(�;x)

Q2

i
; (6)

and if this maximum eigenvalue is simple, then �0 minimizes chmax
�
Q0
2D

�1
� Q2

�
in

�".
(ii) If q0ix 6= 0 for all i, then we may take " = 0 in (4) and the solution in �+ is
�0;i = jq0ixj =

p
�;with

p
� =

PN
i=1 jq0ixj and L (�0) = �.

Example 1 continued. In this example Theorem 3(ii) applies. With q1 = �, q2 = �,
we have x = 1, � = (j�j+ j�j)2, and �0;1 = j�j = (j�j+ j�j) = 1� �0;2, extending the
solution obtained earlier, when we took �; � > 0.

Example 2. Here we consider cubic regression (p = 4) with N = 7 and (randomly
generated) design space

S = f�0:4240; 0:0522; 0:2069; 0:3358; 0:4145; 0:4594; 0:5628g :

Then the regressors are z (x) = (1; x; x2; x3)
0. We implement Theorem 3 via a

constrained nonlinear minimizer in matlab. The minimax design is found to be

�0 = f0:0086; 0:1356; 0:1901; 0:1707; 0:1781; 0:1863; 0:1306g :

The eigenvalues of Q0
2D

�1
�0
Q2 are f5:9799; 5:6917; 5:5114g, so that Theorem 3(i)

applies; we then check numerically that (ii) does as well. The maximizing eigenvector
(6) is x = (0:4223; 0:3314;�0:8437)0, and � = L (�0) = 5:9799.

It turns out to be quite rare for Theorem 3 to hold �in most cases the maxi-
mum eigenvalue is not simple. This is of course expected asymptotically, since all
eigenvalues are then equal, and is illustrated for �xed N in the following example.

Example 3. Take N = 3, p = 1, Q = I3, so that " > 0 and Q2 = [0
...I2]0. Then

Q0
2D

�1
� Q2 = diag (1=�2; 1=�3), and L (�) = 1=min (�2; �3). The problem of maximiz-

ing the minimum of (�2; �3) subject to �2+�3 = 1�" leads to �0;2 = �0;3 = (1� ") =2,
so that the maximum eigenvalue is not simple and Theorem 3 does not apply.
When Theorem 3 does not apply we minimize L (�) directly over �+, using ran-

domly generated designs on S as starting values, which are then used in a constrained
nonlinear minimizer. While this might not be feasible for very large design spaces,
we have found that the limiting behaviour implied by Theorem 2 is approached very
quickly - for all but very small values of N the designs are, to the limits of numerical
accuracy, uniform on S. See Figures 1 and 2 for illustrations.
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Figure 1: Maximin lof designs for testing the �t of a quadratic model (p = 3);
S = f�1 + (i� 1)=(N � 1)ji = 1; :::; Ng; N = 4; 6; 8; 10.
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Figure 2: Maximin lof designs for testing the �t of a cubic model (p = 4); S =
f�1 + (i� 1)=(N � 1)ji = 1; :::; Ng; N = 5; 7; 9; 11.

3.1 An open problem

Our results have pointed out the limitations of any design, supported on a proper
subset of S, in providing robustness against alternatives in F+

� . Indeed, it is brought
out in the proof of Theorem 1 that if the design is not supported on all of S then
there will be departures in F+

� for which the ncp is zero. Such departures may
be pathological and inconsequential, but against them the power of the test is no
greater than the size. This is a re�ection of the richness of F+

� ; an interesting open
problem is to �nd a smaller but still realistic class in which this di¢ culty is avoided.

4 Appendix: Proofs

Proof of Theorem 1: Note that

P02 (IN �H)P2 = N
n
Q0
2D�Q2 �Q0

2D�Q1 (Q
0
1D�Q1)

�1
Q0
1D�Q2

o
; (A.1)
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and that

Q0D�Q =

�
Q0
1

Q0
2

�
D�

�
Q1 Q2

�
=

�
Q0
1D�Q1 Q0

1D�Q2

Q0
2D�Q1 Q0

2D�Q2

�
;

so that

jD�j = jQ0D�Qj = jQ0
1D�Q1j �

���Q0
2D�Q2 �Q0

2D�Q1 (Q
0
1D�Q1)

�1
Q0
1D�Q2

���
=

�
1

N

�N�p
� jQ0

1D�Q1j � jP02 (IN �H)P2j ;

using (A.1). Note that P02 (IN �H)P2 � 0, since IN �H is idempotent, hence non-
negative de�nite. The eigenvalues of Q0

1D�Q1, assumed non-singular, are positive.
Hence if, and only if, all �i are strictly positive is jP02 (IN �H)P2j > 0, equivalently
chmin [P

0
2 (IN �H)P2] > 0. Thus a maximin design places positive mass on every

point in S �otherwise it is �beaten�by such a design.
We then have that

(Q0D�Q)
�1
= Q0D�1

� Q =

 
� �
�
�
P02(IN�H)P2

N

��1 ! ;
so that P02 (IN �H)P2 = N

�
Q0
2D

�1
� Q2

��1
. Thus

chmin [P
0
2 (IN �H)P2] = Nchmin

h�
Q0
2D

�1
� Q2

��1i
=

N

chmax
�
Q0
2D

�1
� Q2

� :
�

Proof of Theorem 2: De�ne K = Q2Q
0
2, an idempotent matrix whose diagonal

elements fkii j i = 1; :::; Ng lie in [0; 1] and sum to rk (Q2) = N � p. Since the
average eigenvalue of a positive de�nite matrix cannot exceed the maximum, we
have that

L (�) � 1

N � ptr
�
Q0
2D

�1
� Q2

�
=

1

N � ptr
�
D�1
� K

�
=

NX
i=1

��1i
kii

N � p:

We now view fkii= (N � p)g as a probability distribution and apply Jensen�s In-
equality to the convex function f (�) = ��1 to obtain

NX
i=1

��1i
kii

N � p �
1PN

i=1 �i
kii
N�p

� 1PN
i=1

�i
N�p

= N � p:

�
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Proof of Theorem 3: (i) Put �t = (1� t) �0+ t�1 for any �1 and t 2 [0; 1]. For an
undetermined multiplier � put

F (t; �) = chmax

h
Q0
2D

�1
�t
Q2

i
+ �

�
10D�t1� 1

�
:

Since 10D�t1 � 1 � 0 for designs �t, it su¢ ces to show that F (t; �) is minimized
unconditionally at t = 0 for �xed � and any �1 2 �", and that the side conditions
ensuring that �0 2 �" are satis�ed. (That all �0;i � " is obtained without the use of
a multiplier.)
Note that F (t; �) is convex in t: we have that D�1

�t
� (1� t)D�1

�0
+ tD�1

�1
by

the convexity of matrix inversion, so that

chmax

h
Q0
2D

�1
�t
Q2

i
� chmax

h
Q0
2

�
(1� t)D�1

�0
+ tD�1

�1

�
Q2

i
� chmax

h
Q0
2

�
(1� t)D�1

�0

�
Q2

i
+ chmax

h
Q0
2

�
tD�1

�1

�
Q2

i
= (1� t) chmax

h
Q0
2D

�1
�0
Q2

i
+ tchmax

h
Q0
2D

�1
�1
Q2

i
:

A necessary and su¢ cient condition for a minimum at t = 0 is then that
(d=dt)F (t; �)jt=0 � 0; this must hold for all �1 2 �". With � = � (�0) and x = x (�0)
being the maximum eigenvalue (assumed simple) and corresponding eigenvector of
unit norm of Q0

2D
�1
�0
Q2 we have, using Theorem 1 of Magnus (1985), that

d

dt
� (�t)jt=0 = x

0 (�0)
d

dt

h
Q0
2D

�1
�t
Q2

i
jt=0
x (�0) ;

whence

d

dt
F (t; �)jt=0 =

�
x0 (�0)Q

0
2

d

dt

h
D�1
�t

i
Q2x (�0) + �1

0 d

dt
D�t1

�
jt=0

= �x0 (�0)Q0
2D

�1
�0

�
D�1 �D�0

�
D�1
�0
Q2x (�0) + �1

0 �D�1 �D�0

�
1

=
NX
i=1

�
�1;i � �0;i

� "
��

�
q0ix (�0)

�0;i

�2#
:

If (5) and (6) hold then �0 2 �" and for any �1 2 �" the �nal line above is

d

dt
F (t; �)jt=0 = �

X
�0;i="

�
�1;i � "

�
"2

"
"2 �

�
q0ix (�0)p

�

�2#
� 0;

since jq0ix (�0)j =
p
� � " when �0;i = ", and the summands vanish when �0;i =

jq0ix (�0)j =
p
� > ".

(ii) If we have that q0ix 6= 0 for all i, then the minimizing design lies in the interior
of �+ and so it is the solution in �" for any " � mini=1;:::;N jq0ixj, and hence for all
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of �+. In this case (4) and (5) become �0;i = jq0ixj =
p
�, with

p
� =

PN
i=1 jq0ixj, and

then (6) yields

L (�0) = x0Q0
2D

�1
�0
Q2x =

NX
i=1

(q0ix)
2

�0;i
=
p
�

NX
i=1

jq0ixj = �:

�
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