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ABSTRACT

Robust estimation of location vectors and scatter matrices is studied under the assumption that the
unknown error distribution is spherically symmetric in a central region and completely unknown in
the tail region. A precise formulation of the model is given, an analysis of the identifiable parameters
in the model is presented, and consistent initial estimators of the identifiable parameters are con-
structed. Consistent and asymptotically normal M-estimators are constructed (solved iteratively
beginning with the initial estimates) based on “influence functions” which vanish outside specified
compact sets. Finally M-estimators which are asymptotically minimax (in the sense of Huber)
are derived.

RESUME

Cet article concerne I’estimation robuste de paramétres de position et de matrices de dispersion
dans les situations ot la loi des erreurs est totalement inconnue sauf pour la présence d’une symétrie
sphérique a I’intérieur d’une région centrale. On formule le modele de fagon précise et on en analyse
les parametres identifiables pour lesquels on construit des estimateurs initiaux convergents. A partir
de ces estimations initiales, un processus itératif nous permet de déduire des M-estimateurs con-
vergents et asymptotiquement normaux. Ceux-ci sont fondés sur des “fonctions d’influence” qui
s’annulent en dehors de certains ensembles compacts. Enfin, on obtient des M-estimateurs qui sont
asymptotiquement minimax au sens de Huber.

1. INTRODUCTION AND SUMMARY

Huber (1964) developed a theory of robust estimation of a location parameter using
M-estimators, which was later extended to a theory of robust regression (Huber 1973) and
robust estimation of multivariate location and scatter (Huber 1977, Marona 1976). Collins
(1976) modified the theory of Huber (1964) to show that when the error distribution in the
model is assumed to be symmetric in the centre, but unknown and asymmetric in the tails,
then robust estimates of location can be obtained using M-estimators with “redescending”
influence curves. Such estimators were first considered by F. Hampel—see Andrews
et al. (1972). The same sort of modification of Huber’s theory was successfully extended
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to the case of robust regression by Collins, Sheahan, and Zheng (1981), and to estimation
of multivariate location, with scale known, by Collins (1982).

In this paper we carry out this type of modification to the theory of robust estimation
of unknown location vectors and scatter matrices. That is, we use redescending M-
estimators to obtain robust estimates of location and scatter in the presence of asymmetry
in the tails of the error distribution. In Section 2 the model is presented. It assumes that
the distribution is elliptically symmetric inside a given ellipsoid {(x — p)’'27'(x — p) =
r’}, r < o, and arbitrary outside. Inside the ellipsoid, the distribution arises through
e-contamination of a known law. If r = o, the model then coincides with that of the
location—scatter-estimation problem of Huber (1977). There is an important difference,
however, in our treatment of the problem, which carries over to this limiting case. For all
r, the parameters are unidentifiable if € > 0. Huber (1977) and Maronna (1976) circum-
vent this difficulty by defining the parameters in terms of the limiting values of the
estimators themselves. In contrast, we estimate p and an appropriately standardized
scatter matrix, e.g. %/tr(2), /2, which are identifiable provided that € is less than an
explicitly given bound €(r), increasing to 3 as r — .

Section 3 then presents the construction of consistent estimators of the identifiable
parameters. In Section 4, M-estimators are constructed, defined as the Newton-Raphson
solutions to an appropriate system of equations. The corresponding influence functions are
chosen to redescend, so as to trim to zero the influence of observations from the arbitrary
tail area of the distribution. The estimators of Section 3 are used as the starting values of
the iteration. We address some of the computational difficulties associated with the
construction of the initial estimator, by giving conditions under which, if r = o, the
solutions to the equations are asymptotically unique. As well, we give a much simpler
scoring algorithm which has, asymptotically, the same convergence properties as the
Newton-Raphson process.

Our estimators are shown to be consistent and asymptotically normal, and their asymp-
totic covariance matrix is exhibited. In Section 5, Huber’s minimax variance criterion for
robustness is then applied to the class of consistent and asymptotically normal M-
estimators. We solve for particular estimators which are optimal, subject to the side
condition that the influence functions have compact support.

2. THE MODEL AND IDENTIFIABLE PARAMETERS

The model is that an unobservable random vector Y € R™, m > 1, has a partially known
density which is a convex combination (1 — €)w,(y) + ev,(y) of densities w,, v, within
the sphere y'y = r?, and is arbitrary off of this sphere. The multivariate densities w,, v,
are spherically symmetric: w,(y) = w(|y|), v;(y) = v(|y|) for functions w, v : [0,r] —
[0,0). Put u, = (1 — e€)w, + €ev,, u = (1 — €)w + ev, so that within the sphere,
u;(y) = u(|y|) is the density of Y. We assume that € € [0, 1), r € [0, =], and w, are known
and fixed, whereas v, is unknown and free to vary over the class of all spherically
symmetric densities which place mass =1 within the sphere of radius r.

One observes n independent realizations of an afﬁne transformation X = 33y + m
of Y. The problem is to estimate p and X = 373¥. Within the ellipsoid E,(p,3) =
{x](x — p)'T"(x — p) < r?, X then has an elliptically symmetric density u.(x; p,3)

= (1 — ew.(x; P, 3) + ev.(x; p,X), where w.(x;p,2) = Izl‘%ws(Z‘%(x - w),
v(xp,3) = [ @ 2(1': - ).

The parameter space is © = {t, V|t € R™, V a positive definite m X m matrix}, with
typical member 6 = (t, V); and 6, = (@, X). Denote by U, , the set of all densities up(x)
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whose restrictions to E,(t, V) are of the form u.(x;t, V) for some 6 € O.

In several places, our analysis depends only on the distribution of the norm of
Y= E‘%(X — 1) ~ Uy, (y). Putv(y) = my"~'w™?/T'(m/2 + 1). Then, within [0, r], the
density of | Y| is given by f(y) = u(y)v(y); ife = Ot is A(y) = w(y)v(y). We use F and
H for the corresponding distribution functions.

Throughout this paper, we assume:

(C1) Each uy(x) € U, , is continuously differentiable, and the corresponding u(|x|) is
nonconstant on [a,r], for eacha < r.
(C2) The function w(|x|) is nonincreasing on [0, r].

In Section 5, additional assumptions will be made about w.

In the model described above, the scale parameter 2, may fail to be identifiable in U, ,,
even if r = o; and for r < o the location parameter . may also be unidentifiable. The
following examples illustrate these remarks.

EXAMPLE 2.1. Suppose first that m = 1. Define
u(y) = max{(1 — ew.(y;0, 1), (1 — ew.(y;0,)}H{y* = r},

where I(A) is the indicator of the event A, and o is less than 1, but sufficiently close to
1 that the mass of u, within [—r,r] does not exceed unity. Assume further that r is
sufficiently large that w,(y;0, 1) > w,(y;0, 0 on (k, r) for some k < ro. We may take
r = . Now u,(y) may be extended arbitrarily for y> > r% the resulting u,(y) is a member
of U, , under two distinct parametrizations:

(1) As (1 — e)w,.(y;0, 1)I{y* = r*}, contaminated symetrically in [—k, k] and possibly
asymmetrically in (—, —r) U (r, ).

(2) As (1 — €)w,(y;0,0)I{y* = r’c?, contaminated symmetrically in (—ro, —k) U
(k,ro) and possibly asymmetrically in (—o, —ro) U (ro, ).

lNow rotate u.(y) around the coordinate axes, and make a transformation to x =
32y + ., thus obtaining an m-dimensional density up,(X) = ug,(x) € U, with 6, =
(1, %), 6, = (p, 0°%). Note that 3 is identifiable up to a scalar factor.

EXAMPLE 2.2.

(i) Suppose now that r < o, and that e is so large, or r so small, that there may exist
two disjoint ellipsoids E; = E,(p;, %;), supporting (1 — €)w,(x; p;, %;), such that the total
mass thus supported does not exceed unity. Then neither p nor X is identifiable—we have
u(x) = (1 — w(x; u, ZDI(X EE)) + (1 — e)w.(x; 2, 2)I(x E E,) € U, and are
unable to determine whether 8 = (p,, %)) or = (j,, %,). The total mass on E, U E, is
2(1 — €)H(r), and so identifiability requires € < e, where

(1 —eH™' = 2H(r). 2.1)
(ii) Suppose instead that E, N E, # ¢. Elliptically revolve the region of intersection
around p,, and around p,, thus generating two annuli A; = {xlrf =(x-— p.,')Z,_'(x -
w) =< r%,j=1,2. (If, say, p, € E,, then r, = 0 and A, = E,.) Define
up(x) = max{(1 — eyw(x; w;, Z1), (1 — Ow(x; o, o),
(1= |2\ Pw(r), 1 - 9[Z./w(r)}  on E UE,

arbitrary elsewhere. Then the restriction of uy(x) to each of E,, E, is elliptically sym-
metric, and we lose identifiability of both components of 0 if such a uy(x) is a proper
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TABLE 1: Lower bounds on r, and on the proportion of uncontaminated mass, which are sufficient for
identifiability of the parameters.

er m=2 3 4 5 10 20 30 m—» o

0 1.306 1.614 1.892 2.137 3.089 4.420 5.434 m?
(0.574)  (0.543) (0.534) (0.529) (0.518) (0.513)  (0.510) 05000

0.01 1314 1.622 1.900 2.145 3.098 4.429 5.443  (m + 0.018Vm)?
(0.572)  (0.542)  (0.533) (0.528) (0.518) (0.513)  (0.510) (0.500)

0.05  1.349 1.659 1.937 2.183 3.136 4.466 5481 (m+ 0.093Vm)?
(0.568)  (0.540) (0.531) (0.527) (0.518) (0.512)  (0.510) (0.500)

0.10  1.397 1.710 1.989 2.234 3.188 4.519 5533 (m+ 0.198Vm)?
0.561)  (0.537) (0.529) (0.525) (0.516)  (0.511)  (0.509) (0.500)

density. Note that u, is constant on the annuli. This requires the contaminating density v,
to have substantial mass, which can be determined in terms of € and r. If p, € E, or
R € E,, this mass exceeds unity for € < €;; otherwise a sufficient bound is € < e, where

(- e ' =1-H(r) + r%Qw(O), 2.2)

(1 —€)"' =H(r)+ inf (H(r.) +

ri€l0,r]

w(r){rv(r) = ruV(ru)}> 2.3)

2m

See Wiens (1982) for details.

Motivated by Example 2.1, we propose estimating (p, 2/7(X)), where 7(2) is any
continuous, linear real-valued function which commutes with the expectation operator and
whose restriction to the class of positive definite matrices is positive-valued. Examples are
tr3, and 3,,. We note that this approach, with 7(+) = tr(-), was also adopted by Bickel
(1982) in his treatment of adaptive estimation of the parameters of the multivariate
elliptical model, with r = . If r = o, this in fact settles the identifiability problem. If
e is sufficiently small that the possibilities of Example 2.2 are ruled out, then (p, 2/7(X))
is identifiable for r < o« as well, in the sense that

o DI 2,
u(x; oy, 20) = u(x; po, X)) € U, > <”';(2_5) = (P«z;@)~ (2.4)

More precisely, we have

THEOREM 2.1. Let € = min(e;‘, €)), eX = min(ef, €¥), where ¥ — €¥ are defined by
(2.1)—(2.3). In order that (2.4) hold, for r < :

(i) It is necessary, but not sufficient, that € be less than €.
(ii) It is sufficient that € be less than €.
(iii) ef <€ <31, and ef > Lasr— .

Proof: See Wiens and Zheng (1985).

Note that, as a referee has pointed out, if each u(|y|) may be assumed to be a strictly
decreasing function of |y| in (0, r), then Example 2.2(ii) is ruled out and the larger bound
€Z is sufficient for identifiability.

In the important special case that w,(y) is the m-variate normal density (2m) ™?
exp(—3Y'y), so that H(y?) is the X, distribution function, Table 1 gives the minimum
permissible values of r for specified proportions €} of symmetric contamination. The
figures in parentheses are the minimum permissible amounts of uncontaminated mass,
ie., [5(1 — €)d(x;p,T)dx.
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3. CONSISTENT INITIAL ESTIMATORS

In the model given in Section 2, it was seen that the parameters p and X /7(2) are
identifiable when the known value of € is sufficiently small (e < €[). Section 4 will
consider M-estimators of the identifiable parameters based on “influence functions” which
vanish outside a compact set. As in the one-dimensional location problem (Collins 1976),
solutions to such equations are not unique. To obtain consistent M-estimators of the
parameters, one must take solutions close to initial estimators of the parameters which are
themselves consistent. In this section consistent initial estimators of p and X /7(3) are
constructed, to be used as starting points for the iteratively defined M-estimators of
Section 4.

First note that by the definition of €}, there is a number m > 0 such that

fl u,(y)dy > 1+ 3.1

yl=r

for all u € U, ,. Hence for each u € 9, ,, there is a constant A(u) < 1 such that

f u(y)dy =3 + . (3.2)
Iyl= A

LetD = {x:x'x < r%, and let {D'\”,D{", . . (")} be any sequence of partitions of the
set D which satisfies the following three condmons

(i) k./Vn— 1lasn— o

i) d(D") = Vm2{L(D)/Vn}"", where d(D™) denotes the diameter of D™ and
L(D) denotes the Lebesque measure of D; and

(iii) if the set D" does not contain any point which belongs to the boundary of D, then
it has the following form:

D = {(x., . ,xm):e,(L\(/’%))”m <x< e,ﬂ(%)vm,j = lm}

where the £;’s are fixed scalars.

The main idea of the construction is as follows. For each 8 € ©, we can empirically
estimate the restriction to D of the density of the transformed observations gq(x;) =
V712(x; — t). If 6 = 0y, this density is spherically symmetric about 0. We select the value
of 6 which, using a criterion of average squared deviation, is closest to yielding a
spherically symmetric density estimate on D. Spec1ﬁcally, we begin by defining

Un(%,0,X,,...,X,) = EH&M)EUW

L(D"”)
for x€D{”, i=12,... k. (3.3)
The estimator §™ is defined by

sup [u,,(x . X,, ..., - u,(0x,0", X,,...,X,)]Pdx

Q€2

+ ;l- > Klgan(X)| =rt — ¢ + n)’
j=1

= inf{supj [u.(x,0,X,,...,X,) — u,(0x,0,X,,...,X,)?dx

€6 lgea Jp

ol 2 Hal=n - ¢+ wl) 0o
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where 2 denotes the set of all orthogonal matrices.

THEOREM 3.1. Let X, ...,X, be a random sample from a distribution with density
ug(x) € U ,, with € < 1. Then the estimator 8™ given by (3.4) is well defined and
converges in probability to (w, N(ug)%), where Nug) < 1 is the scalar uniquely
determined by Equation (3.2).

The proof of this theorem is long and technical, and so the reader is referred to Zheng
(1980) for the details. We remark that the second term on each side of (3.4) is included
to preclude the possibility of the first coordinate of 8™ converging to some point outside
of E, (., 3), which may have a neighbourhood (of necessarily small total mass) in which
the density is elliptically symmetric.

An immediate corollary of Theorem 3.1 is that a consistent estimator of the identifiable
parameter (., %/7(X)) is obtained as follows. Write 8 = (ji, X), and then define

b= (=), (.9
()
In practice, very large sample sizes are needed to obtain good initial estimates 8, because
of the use of empirical density estimation. For an alternative construction of a consistent
initial estimator of (., 2/7(X)) which avoids density estimation, but which still requires
quite large sample sizes for practical success, see Section 2 of Wiens (1982).

4. THE M-ESTIMATORS

In this section we derive M-estimators of p and that multiple of X which has
(%) = 1. Since ¥ is not identifiable, the region within which the observations are
symmetrically distributed can also not be known, if r < ®. We thus assume that 7(X) is
known, and may then assume, by applying the methods of this section to x;/V1(3,), that
7(Z) = 1. If r = o, then 7(¥) need not be known, and we estimate X /7(2).

We will derive a system of equations, and define an estimator § as the Newton-Raphson
solution to these equations, with 8, as starting value. We show that § is a consistent
estimator of 6, and that \/r—n(e — 8) is asymptotically normally distributed. In the case
r = oo, it will be shown that under fairly mild restrictions the solution to the equations is
asymptotically unique. Comparisons are made with the estimators of Maronna (1976) and
Huber (1977).

4.1. Derivation of the Equations.
If X has density ug,(x), with 7(2) = 1, then
(i) for all functions ao(*) vanishing off of [0, r’],
Eag((x = W'E7'(x - p(x — W} =0;
@ii) for all such a(-),
%a(x — W'E7'(x — P 2(x — W(x — W'EF) = &L,

for some k = k(a,, v);

(iii) 7(X) = 1.

Pre- and postmultiplying by Stand 3% in (i), then applying 7 to both sides (recalling
that T commutes with the expectation operator), and using (iii) gives k = &{r(a,(*)(x —
p)(x — p)’)}. It follows that (ii) and (iii) are together equivalent to
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(iv) Bla((x — w2 'x — i — W —p)' —17((x — p(x— w)HEH = 0pxm.

Let ay(z), a,(z) be continuous, piecewise continuously differentiable functiPns vanishing
off of [0, r*]. For 8 = (t, V) € O and sample values x|, . . ., X, puty; = V°i(x; — t). The
estimator O is defined to be the Newton-Raphson solution 6* to

n 2 ao(yy)(X = 1) = Okt (41)

n 2 ai(yiy){x — t)(x; — ) — 7(x; = t)(x; = ) )V} = 0,0, (4.2)

starting with 8, if the iteration process converges; 9, otherwise.
Recall that vec A is the column vector formed by stacking the columns of a matrix A,
in their natural order. For A symmetric, denote by vec A the subvector of vec A containing

only those elements of A on or below the main diagonal. For any 8 € O, put

0 =(t', (vec V)')',  o(x;0) = ao(yiy)(x; — 1),
Ui(x50) = al(yi,yi){vgc (x;i = t)(x; = t)" — 7((x; — t)(x; — t)") vee v},

U=, F.0)=n" 2 (x;0).
i=1

Then (4.1), (4.2) can be written more succintly as F.(0) = 0.

4.2. Consistency and Asymptotic Normality.

The consistency of 8, easily implies consistency of @, and that lim,_,. P(§ = 0%) = 1,
as long as é(dvs/90)s, is nonsingular. From this,

. P
nF,(0) — 0.
The mean-value and central limit theorems then imply that

V(@ - ) 2 N, 0, g1001),

--{oG),} v,

is the influence function. The details are given in Wiens (1982).
Theorlem 4.1 below gives conditions under which €(\s/90)s, is nonsingular. With
y = 27(x — p), define

where

a = B[2ylai(y'y) + a(y'y)l, o = $[yias(y'y)l,
B=28lyla(yyl, v=2%8hyaly'y, v =%Lyaiyyl

Let 8;; be the m X m matrix with 1 in the (i, j)™ position, zeros elsewhere, and define
T:m X m by Tij = T(Bij + 8},’).

THEOREM 4.1. Necessary and sufficient for the nonsingularity of €(3ys/30)y, are
(i) o # 0, (ii) B # 0, (iii) B + 2y # 0. If (i) —(iii) hold, then V'n(® — 8y) is asymptotically
normally distributed with mean 0. The asymptotic covariance matrix is of the form
diag (A x ms Bomm+ 1)/2)x (mem+ 1y/2))s SO that the location and scale components of the
estimator are asymptotically independent. Here, A = (a,/a®2, and B is described by
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lim Cov[Vnéy, Vné;]
n—o _ 'Y]

m{oijok, + g0y + 1(ETR)o,0

- 17(0,0; + 0,0))0; — 7(0;0/ + 0,0})0.-k},

where 3, = (o)) = ||lo), ..., 0.

The proof of Theorem 4.1 is given in the Appendix. See Tyler (1982) for a similar
analysis of the covariance structures of the estimators of Maronna (1976) and Huber
1977).

REMARKS.
(1) The proof of Theorem 4.1 also shows that the influence function is
(D = diag(a_llm9 (B + 27)_Ilm(m+l)/2)‘bloo' (4*3)

The method of scoring, whereby the (k + 1)th iterate is given by

o0 (o))

is less cumbersome than the Newton-Raphson method and has, asymptotically, the same
superlinear convergence properties (Ortega and Rheinboldt 1970). Using (4.3), this
iteration method becomes

Fn(ek),

0,= 0,

i1 = 8, + diag(a, 'L, (Be + 270 'DF.(0y),

where oy, By, v« are the method-of-moments estimates of ., 3, y based on 0.

(2) From McCulloch (1982), or from Magnus and Neudecker (1979), one sees that the
maltrix C, defined at (6.5) in the proof of Theorem 4.1, is the covariance matrix of
n 2vecW where W is an m X m Wishart matrix ~W,,(%, n). From this, it follows that
if the scale components of § are arranged as an m X m matrix E and if U ~ W,(I, n),
then

1
3
Yi

1ol
VB + 29) {U — (22021, }

\/;(2_%5)2"%’ -1, and

have the same asymptotic distribution. This suggests the possible use of the dlstrlbutlon
of the latter to approximate the former, in small samples For instance, if 31 is lower

triangular, and 7(%) = 3,,, then the latter matrix is {y’ /\/_(B + 291U = uy,1L,).

(3) InSection 5, we consider the problem of choosing functions ay, a, so as to minimize
the maximum (with respect to the natural ordering by positive-definiteness) of the asymp-
totic covariance matrix of \/_(0 — 0y) as u varies over U, ,. From Theorem 4.1, it is
clear that this reduces to independently minimaxing the scalar funtions «,/a’ and
vi/(B + 2v)*. We can put this reduced problem into a more unified form.

Recall that on [0, r], |2 #(X — )| has density f = uv. With respect to this density we
have
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@ m&{(X)}
= = Vo, u) = ’
2 X 2
« fi(om - 02 + i)}
(4.4)
¥ S m(m + DX Y(X)}
" _ u) = ,
® + 2y U 8{im + DX (X)) + XA OO
where
bo(x) = xao(x?y),  Ui(x) = xa,(x?). (4.5)
If we may integrate by parts, the variance functionals (4.4) become
[ Weoutom v
V(ly,u) = — 4.6)

ﬂﬂ%uwumﬂwumdf

where m;(x) = m™'{2x*/(m + 2)}, j = 0,1. This is the form that will be used in
Section 5 below.

4.3. The Case r = o,

If r = », then 7(Z) need not be known and @ is consistent for 3/7(3), for all
distributions in U .. In this case, the problem of completely spurious solutions to
F,(0) = 0 is no longer present. A partial result on asymptotic uniqueness of solutions is
given below. Its proof entails only simple modifications to those of Theorems 1 and 3 of
Maronna (1976), and so is omitted. The details are given in Wiens (1982).

THEOREM 4.2. If r = o, then under the following conditions the zero 8y of €[(X; 0] is
unique:

(@) The function {,(x)/x is nonincreasing and x\s,(x) is nondecreasing; and either
(bl) the function Y5y(x) is nondecreasing, or
(b2) each u(|x|) is a strictly decreasing function of |x|.

The approaches taken by Maronna (1976) and Huber (1977) in estimating multivariate
location and scale are somewhat different than ours. The major differences are that their
estimators are invariant under arbitrary affine transformations, but that in neither case does
it appear to be the intent to construct estimators of p and a specified multiple of 2 which
are globally consistent throughout U, .. if € > 0.

In both cases, the estimator @ is the zero of n™' Z(x;;0), where y; = V”%(x,» - t),
¥ = (ao(yiy)yi ai(yiy)y:yi — ax(yiy)l), and ao, a,, a, are sufficiently smooth func-
tions. Maronna takes a, = 1. Under conditions similar to those in Theorem 4.2, Maronna
shows that unique solutions 0 exist and are asymptotically normally distributed around the
zero 0* of €[s(X; @)]. He conjectures that a certain set of conditions is sufficient to ensure
finite-sample uniqueness. Huber states similar asymptotic results in the more general case.

It is a bit unclear what these estimators really would estimate in U, ... Suppose that 8*
is to be of the form (p, %/k?), where k is some scalar. The relationship €[ys(X; 0%)] =
0 is then seen to be equivalent to

Bllky|a,(|ky]) — ma(ky|» = 0. @.7
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If a, = 1 and za,(z) is nondecreasing, as in Maronna’s development, it seems clear that
for any distribution in U, there exists a scalar k, depending upon the underlying distribu-
tion, satisfying (4.7). But global consistency throughout U, , for the same multiple of %,
forces the choice a,(z) = m~'za,(z). Note that then any scalar multiple of X, is a solution.
See Tyler (1985) for a treatment of this case, with location assumed known.

In Huber’s consideration of U, .. (his “F’), with w the normal density and (p, )
assumed to be (0, I), he states that, with a, = 1, the optimum choice of a, has minimax
properties with respect to the variance of 0 for “that subset of F for which () is a
consistent estimator of the identity matrix.” The problem of identifiability is not
considered.

It can be seen [although it is not explicitly stated in Huber (1977)] that the choice
a, = 1 is optimum, in the minimax sense, under the side condition €[Ys(X; 0*)] = 0. With
this choice, the minimax problems considered by Huber are equivalent to minimaxing the
functionals V({;, u), defined at (4.6), with r = . We shall thus concentrate, in
Section 5, on solutions to these problems for finite r.

5. THE MINIMAX SOLUTIONS

We now consider the problem of determining functions ao, a; which minimize the
maximum (ordered by positive definiteness) asymptotic covariance matrix of Van(d - 6,).
As in Remark 3 of Section 4, this is equivalent to determining pairs (b, Us;), j = 0, 1,
such that

s%p Vs, u) = s:p V@, u) forall ¢ € ¥, 5.1

where U = {u(|x|)|u(x) € U,,} and V¥ is the set of all continuous, piecewise con-
tinuously differentiable functions on [0, ) vanishing off of [0, r]. We then put a;(x) =
P(Vx)/Va.

This problem motivated the work in Section 4 of Collins and Wiens (1985), to
which the reader is referred for complete details. Here, we proceed in a more heuristic
fashion. We temporarily drop the subscript j, in order to treat the two minimax problems
simultaneously.

Similar to the treatment of similar problems in Huber (1964, 1981), one first finds
Uy € U minimizing the Fisher information there, and then chooses y, = —uj/u4 to attain
maximum efficiency at uy. For our purposes, a definition of the Fisher information
equivalent to the classical one is

I(u;m) = 2[: (:g;)zu(x)c(x) dx,

where a(x) = v(x)n(x). By Lemma 6 of Huber (1964), I is a convex functional of u. A
standard variational argument then shows that / is minimized by u, if

0=< a‘.i;[((l — NDuy + tw;m),—o forall u € .

Carrying out the differentiation, and then integrating by parts, yields the equivalent
condition

Lr I () (X)V(x) (1 — uy) (x) dx + 11?(1) bx()o(x)(u — u)(x) =0 (5.2)

where J(P)(x) = {2¢'(x) — $*(x) + 2¢(x)o’ (x)/a(x)}m(x).



1986 M-ESTIMATORS OF LOCATION AND SCATTER 171

Writt u = (1 — €)w + €v, uyx = (1 — €)w + €v,. It then follows from (5.2) that J ()
must attain a constant minimum value —\ < 0 on the support of v, and that v, must place

mass 1 within [0, r]. It is then also necessary that, with {(x) = —w'(x)/w(x), the region
{x|J()(x) < —\} be contained in the support of v. This latter condition then determines
that support.

We assume:

(A1) I(w;m) < o.

(A2) w(x) > 0on [0,r], and {(x) = —w’'(x)/w(x) is continuously differentiable and
positive on (0, r), and bounded on [0, r].

(A3) Either (i) {(x) is nondecreasing on (0, r), or (ii) J({)(x) is nonincreasing on that
subset of (0, ) on which it is negative.

(A4) € < €.

Let £(x; \) be the solution to J(§)(x) = —\ passing through (7, 0), and let k(x; \) satisfy
—k'(x;N)/k(x,\) = &(x; \). Define
w(ay)
k(ax; \)

u(x;N) = {(1 —ow(x),(1 — ¢ k(x; M), (1 — E)W(x)},

P(x; N) = {l(x), &(x; N), 0} (5.3)

on [0, a,], [@, r], [r, ®) respectively. Assumptions (A1)—(A4) imply the existence of a
unique pair A > 0, a; > 0 satisfying

f v ) dx = 1, (5.4i)
{(ay) = &ax;N) (5.4ii)

and such that {x|J({)(x) < —A} C [a5, r]. Put Yu(x) = P(x;N), us(x) = u(x;X). Then
in (5.2) the limit is nonnegative, since v4(0) = 0. The integral is

foax J@)(x)v(x)v(x)dx — X(Jr v(x)v(x)dx — 1)

ax

= —X(L’v(x)v(x)dx - 1) = 0.

Thus (5.2) holds, and it then follows in a manner very similar to that in Theorem 2 of
Huber (1964) that (s, uy) is a saddle-point solution to the minimax problem, in that

V(‘l’*au) = = V(‘b*a u*) = V(l!’, u*) (55)

I(ux;m)

forallu € U, y € V.

Before applying this theory to the V({;, u) at (4.6), we first check the conditions of
Theorem 4.1. That B = m™'"€[X 1(X)] > 0 is clear, since Py, > 0 on (0, r). The
requirements that o and B + 2y be bounded away from zero are ensured by (5.1). Thus
Theorem 4.1 applies, and the minimax solutions are given by (5.3) and (5.4). With

e/(1 —€) + H(r) — H(a)
h(a) ’

o(a) =

(5.4) becomes
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r m—lk ’X
&a,\) = {(a), f (f—l) ﬁdx=8(a). (5.6)

5.1. Case I: Location Estimation (me(x) = m™').

For notational convenience we work with the equation J(§) = —4\*/m, i.e.,

+ 2(m — 1)

—f= -4\ (5.7

2§/ _ §2

Putting £ = —2y'/y = —k'/k, where k = y?, gives

yt/+m lyl -, )\2)750,

X

which in turn transforms into Bessel’s equation—see Watson (1966). Compare also (10.7)
of Huber (1981). The solution to (5.7) satisfying &(r, A\) = O is then obtained in terms of
the modified Bessel functions / and K:

2N (@K p(Ax) — Lnp(AX))

) = : .

SN = K o0 + Ton ) (5-.8)

k(x, N = xz_m(wK(m—z)/z()\x) + l(m—z)/z()\x))z, (5.9
L2(\r)

= Ko r) . (5.10)

Now (5.5) holds, with {5, o(x), us o(x) given by (5.3), (5.6), (5.8)—(5.10).
In the families of m-variate densities

Py = {w|w,(y) = w(ly]) = const(exp(—|cy|*), ¢, ¢ > 0},

2\ —(m+¢)/2
P, = {w|w,(y) = w(y|) = const(l + %) , ¢, > 0},

assumptions (A.1)—(A.3) hold for P, if £ = %, and for P, if € = m — 4 or if € >
m—4and r’ < c{l + 4m/(€ — m + 4)}.

For odd m, the modified Bessel functions above have closed-form expansions. If
m = 3, then

(\2xr — Dtanh(A\r — A\x) + (\r — )\x)]
\r — tanh (\r — Ax) ’

e [)\rcosh (Ar — Ax) — sinh(Ar — )\x)]2
Tr Nx(r + 1) '

gxn = 2

k(x,\) =

In particular, if w(y) = (211')‘% exp(—%y’y), so that {(x) = x, then (5.6) becomes
NM(a® = 2)r + 2a}
(@* — 2) + 2\’ra ’
AN {1 — tanh’(\r — \a)} + a(a* -2 — 4)\2)'
{\r — tanh(\r — @)}’ 4\?

tanh(A\r — \a) =

d(a) =

Incidentally, this answers a conjecture of Collins (1982), who considered the problem
of multivariate estimation of location, with scale known and with w(y) the normal density.
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It was conjectured there that ({4 ¢, 4x.o) would be of the above form with, in the case m
= 3, the constants determined from six equations and inequalities.
5.2. Case lI; Scatter Estimation (n;(x) = 2x*/m(m + 2))
Here, we work with the equation J(§) = —2m\A/(m + 2), i.e.,
2x% — X8+ 2(m + DxE = —m’\.

Put z,(x) = x§ — m to get zf — 2xz{ = m*(1 + \). A particular solution is z,(x) =
mV'1 + \. The general solution is obtained by setting z,(x) = mV1 + N + {1/z(x)} and
solving the resulting equation z' + (mV'1 + \/x) z = —1/2x with the integrating factor

x™1** Unravelling these transformations and choosing the solution through (r, 0) gives
mR
- (3)
+ r
g, ) = B F Dm . wheeR=VI+N\, (.11)
* R+ l(x)"‘”
1 +——I=
R—1\r
whence
mRY)2
)
R—-1\r
k(x,\) = : (5.12)

<x)m(R+ I
r

The pair Py 1(x), Uy, 1(x) given by (5.3), (5.6), (5.11), (5.12) then possesses the
saddle-point property (5.5).

6. APPENDIX: PROOF OF THEOREM 4.1

It is convenient to first recall some notions useful in matrix differentiation, as given
in Henderson and Searle (1979) and Wiens (1985). There exists a unique matrix
G :m? X m(m + 1)/2 such that G vec A = vec A for all symmetric A:m X m, and the

Moore-Penrose inverse H = (G'G)~'G’ has Hvec A = vec A. The mn X mn permutation

matrix I, , is defined by its action I,, ,,vecA = vecA’ for all A:n X m, and has the
property that HI,, ,, = H. If A, B are m X m symmetric, then the matrix of partial
derivatives of the functionally independent elements of A with respect to those of B is

(3 e A) SACECINP:
d vec B dvecB/
where the ordinary Jacobian matrix appears on the right, calculated ignoring functional
relationships. For arbitrary A:m X m we have the identities
(A®A)G = GH(A ® A)G, H(A® A) = H(A ® A)GH (6.1)
(see Henderson and Searle 1979), implying
{H(A ® A)G}'=HA'® A)G. 6.2)

Here, ® represents the Kronecker product. We denote by A @ B the direct sum
diag(A, B).
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Withp = m + m(m + /2, g=m*+mputH, =1, ®H:p X q,G, =L, @
G:gxp, 2=V (VI® V2):q X q. Define S:m X mby S, = T(V§8,jV2’), so that

(Viyy' Vi) = 3 yyS; = y'Sy = (vecS)' (y ® y).
ij

Then ¢ factors as Y = H,Mv, where

M= Q[Im @ {Im2 - (VCCI,,,)(VCCS)’}]:Q X q,
v = (a(y'y)y,ai(yy)(y ®y)) :q X 1.

(30) = (5

Thus

an>
v G,.

A straightforward application of matrix differentiation techniques, as outlined neatly in
Nel (1980), then gives

Ay Ay B, 0
ol e (L
A2| A22 B]Z B22
where

Ay =2a(yY)(y®Y)mXm, Ap=a@yYyR®V ®Yy):mx m?

Ay = 2ai(y'y)I — (vecI,)(vecS)I(y ® y ® y') :m* X m,

Ay = ai(y'y)I — (vecL,)(vecS) (v @ YR Y ® ¥):m* X m?,
By = —ao(y'V)ln  Bn = —a(y'y)(vecS) (y ® y)l,2,

B, = ay(y'Y)[(vecV)Y'VI'T = (I + Lpm)(Vly ® L) :m? X m.

By symmetry, Aj;, Ay, and B, have zero expectations at § = 6,, and E(A1)e, =
B12y;ai(y'y)]L,. Put So = S|y_s, @ = Q|y_s. Then

€[Bxls, = —B(vecSy) (vecl,)L2 = —B(trSp)L,2 = —B1(Z) L2 = —BI,2.

For any random vector Y with a spherically symmetric density, Y/|Y]| is distributed
independently of |Y/|, and the former is uniformly distributed over the surface of the unit
sphere. It follows that 8{Y{b(Y'Y)} = 3%{Y1Y2(Y'Y)} for all functions ¢ for which the
expectations are defined. This fact allows a simple generalization of Theorem 4.1 of
Magnus and Neudecker (1979), giving

EHaiyNYRYR®Y @Y} = I+ Ipnm + (vecL)(vecL,)’}  (6.3)

so that 6Ay, = y[I + L, . — (vecl,){vec (S, + S¢}'].
Collecting terms and applying (6.1), (6.2) gives

20
= _’(Hp QOGp)[aIm @ H{Blm2 + %(AZZ)DO}G](HP Q(;le)
= -'(HpﬂOGp)(aIm @ [(B + 27)Im(m+l)/2
— yH(vecL,){vec(S, + SO} G (H, Q;' G,).

%(@').,0 = ~H,Qjlol, @ {BLe + 8(Ax)e,}12;'G,

Applying the identity [I — xy’| = 1 — y’x shows that, if and only if (i)—(iii) of Theorem
4.1 hold, the inverse exists and equals
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~(H,26,) {aL, ® @ + 29"

X (1 + %H(vecl,,,){vec(so + Sé)}'G>}(HpﬂalGP)

= —[a"lm @@+ 27)-'(1 + %(vec 3){vec(So + SOF T ® 2'%)G)].

Now (4.3) follows, since
{vec(So + SON'(Z ™ @ TGl
= {vec(So + So)}' {2 — (vecI,)(vecSo)'}a;(y'Y)(y ® ¥)
= a)(y'y){vec(So — So)}' (y ® y) = ai(y'y)(y'S¢y — y'Soy) = 0.
The asymptotic covariance matrix of \/;(é — 0,) is thus
B(PP) = {a' T D B + 2v) ' [JEWA Yol T D B + 2y)7'1}. (6.4)
With Mo, M, defined by M|y-z = My, = 3} @ M|,
cg(l'llll,)oo = HpM()cé(VV’)oOM'SH;
a2 @ vHM({I + I, . + (vecL,)(vecL,)IM{H',

by symmetry and the analogue of (6.3). With A = I — -;H(vec 3)(vecT)'G and C =
2H(X ® X)H’, this becomes
EW Y, = X @ v ACA'. 6.5)
Combining (6.5), (6.4) gives
Q) Y1
EP@P)=—XP———ACA".
@) = 2O 2y

Evaluating the individual elements of {y,/(B + 2y)’} ACA’ = B then completes the proof.
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