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ABSTRACT

‘We consider the problem of minimax-variance, robust estimation of a location parameter, through
the use of L- and R-estimators. We derive an easily checked necessary condition for L-estimation
to be minimax, and a related sufficient condition for R-estimation to be minimax. Those cases in
the literature in which L-estimation is known not to be minimax, and those in which R-estimation
is minimax, are derived as consequences of these conditions. New classes of examples are given
in each case. As well, we answer a question of Scholz (1974), who showed essentially that the
asymptotic variance of an R-estimator never exceeds that of an L-estimator, if both are efficient
at the same strongly unimodal distribution. Scholz raised the question of whether or not the
assumption of strong unimodality could be dropped. We answer this question in the negative,
theoretically and by examples. In the examples, the minimax property fails both for L-estimation
and for R-estimation, but the variance of the L-estimator, as the distribution of the observation
varies over the given neighbourhood, remains unbounded. That of the R-estimator is unbounded.

RESUME

On étudie le probléme de I’estimation robuste de variance minimax, d’un paramétre de position,
en utilisant les L et R-estimateurs. On obtient une condition nécessaire, facile a vérifier, pour
qu’un L-estimateur soit minimax, et une condition apparentée qui est suffisante pour qu’un R-
estimateur soit minimax. Les cas connus oll un L-estimateur n’est pas minimax, et ceux ol un
R-estimateur est minimax, découlent de ces conditions. De nouvelles classes d’exemples sont
donnés pour chaque cas. Scholz (1974) démontra essentiellement que la variance asymptotique
d’un R-estimateur n’excéde jamais celle d’un L-estimateur si les deux sont efficaces pour la méme
densité fortement unimodale. Il souleva aussi la question a savoir si I’hypothése d’unimodalité
forte pouvait étre relachée. On répond par la négative a cette question, cela tant théoriquement que
par des exemples. Dans ces exemples, la propriété minimax n’est pas vérifiée autant pour le L-
estimateur que pour le R-estimateur. Par contre, la variance du L-estimateur demeure bornée lorsque
la distribution des observations varie dans un voisinage donné, tandis que celle du R-estimateur ne
I’est pas.

1. INTRODUCTION AND SUMMARY

Let X1.p < -+- < Xp.x be the order statistics from a location family, distributed as
F(x — 0). Consider the L-estimator of 0 given by

n .
i
To=n"Y" Xicn,
L n i=lm(n+1) i
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where m(-) is a weights-generating function chosen by the statistician, and the R-
estimator T obtained by inverting a one-sample rank test, with absolutely continuous
scores-generating function J. See Huber (1981), Lehmann (1983) for basic properties
of such estimators. Under appropriate conditions—see Serfling (1980) and references
cited therein, in particular Chernoff and Savage (1958), Chernoff, Gastwirth, and Johns
(1967)—both estimators are consistent and asymptotically normal:

V(T — 8) —4 N(O, E¢[ICA(X; F)]) (1.1)

where ICy represents the influence curve of either T, or Tk. The influence curve of T} is
1

ICL(x; F) = ——f {IF(x) <] —t}m() dF=(1), (1.2)
0

where F~!(#) = inf{x| F(x) > t}. For symmetric, absolutely continuous F, that of Tk is

00

ICr(x; F) = J' o Fx)f(x) dx. (1.3)

JoF(x) B
Dr(F) where Dg(F) = /_

If F is asymmetric, or is not absolutely continuous, then ICg is considerably more
complex—see Chapter 3 of Huber (1981).

Now suppose that F is an unknown member of a convex class F of distributions, in
which the Fisher information for location /(F) is minimized at a member Fj, symmetric
about 8 (= 0, without loss of generality). Assume that 0 < I(Fj) < 0o, so that (Huber,
1981, Section 4.4) Fy(x) has an absolutely continuous density fy(x), tending to zero as
x — +00. Assume that fy(x) > 0 on 0 < F(x) < 1. Put yo(x) = —f;(x)/fo(x), and assume
that yo(x) is absolutely continuous, with a piecewise continuous derivative yg(x).

Choose the weights- and scores-generating functions

mo(t) = Wy o Fy ' (8) /1 (Fo),

2 (1.4)

Jo(t) = yo o Fy (1) /1(Fy).
Denote by V,(m,F) and Vg(J, F) the asymptotic variances of 1/n(T;, —8) and /n(Tg —6).
Then (1.4), together with results of Stone (1974) for location and scale equivariant
estimators of location, gives

1
infVy(m, Fo) =V (mg, Fo) = ——,
n L( 0) =Vi(mg, Fo) IFo) s
' .
infVp(J, Fg) = , Fp) = ——.
in R, Fo) =Vr(Jo, Fo) TFo)

In this paper, we investigate whether or not the saddle-point property holds, i.e. (1.5)
combined with

or sf\}pVR(Jo, F)= —l— (1.6)

1
1(Fo) 1(Fo)

sup Vi(mo, F) =
This is of interest because it implies the minimax property—that the supremum, over
7, of the asymptotic variance is minimized, over the class of L- or R-estimators, by the
appropriate choice in (1.4).
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For a brief history of this problem, and a survey of results in specific neighbourhoods,
see Section I of Collins and Wiens (1989). The results to date are restricted to neigh-
bourhoods in which either the minimum information distribution is strongly unimodal,
or there is a strongly unimodal “target” distribution around which the neighbourhood
is formed. Analyses of cases in which neither condition holds are conspicuously absent
from the literature. One aim of this paper is to fill this gap.

Of central importance is the behaviour of the functions

2y(x) — W3(x)

Lo(x) = ) , —00< x <09,
—1 -1
Ko(u) =% °Fy ;?P),{)O)o Fo (u)’ O<u<l.
Note that ffzo Lo(x) dFo(x) = fol Ko(u) dFy ' (u) = 1. Consider the conditions
/ooLo(x)dF(x) >1, all F € F with [(F) < oo, (1.7)
-0
AIKO(M) dF~'(u) <1, all F € F with I(F) < oo. (1.8)

The condition (1.7) is necessary and sufficient for Fy to minimize /(F) in F —see Huber
(1964). It will be shown that (1.8) is a necessary condition for L-estimation to satisfy
(1.6). Furthermore, it is necessary that equality in (1.8) be attained only by Fy and by
members of F equivalent to Fy in a sense made precise by Theorem 2.1 below and in
the examples of Section 3. If Fj is strongly unimodal, i.e. Wo(x) nondecreasing, then
(1.8) is a sufficient condition for R-estimation to be minimax in

These statements are proven in Section 2 of the paper. In Section 3 they are applied to
give simple and straightforward proofs of (1.6), or of its failure, in those cases currently in
the literature and in other classes. In particular, in Kolmogorov or Lévy neighbourhoods
of a strictly increasing d.f., it is shown that (1.6) always fails for L-estimation, and
holds for R-estimation if and only if Fy is strongly unimodal. For e-contamination
neighbourhoods we give a partial converse to the results of Jaeckel (1971), who showed
that both L- and R-estimation are minimax in e-contamination neighbourhoods of strongly
unimodal df’s. '

In some cases in which Fj is not strongly unimodal we construct subneighbourhoods
%1, containing Fy, of ¥ in which both V,(my, F) and Vix(Jy, F) are minimized at
Fo, and with supg, Vi(mo, F) < supgVr(Jo, F) = oo. This answers in the negative
a question raised by Scholz (1974), who showed that Vgx(Jy, F) < Vi(mg, F) if Fy
is strongly unimodal, with F' being symmetric, strictly increasing on its support, and
such that (1.1) holds. He then asked if the assumption of strong unimodality could be
dropped. Our negative answers apply in particular to Kolmogorov and ¢- contamination
neighbourhoods of the Cauchy distribution.

Throughout the rest of the paper we write V, (F) for V; (my, F), and Vg(F) for Vx(Jo, F).

2. MAIN RESULTS

2.1. Minimax-Variance L-Estimation

Recall (1.2), and that the asymptotic variance of T} is V. (F) = EF[ICi(X ; F)]. For
continuous F, a useful alternate form is

VL(F) = Ey[ICZ(F~\(U); F)], @2.1)
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where 1
ICL(F~ () F) = — / {I{u < 11— t}mo(r) dF ' (1),
0

and where U is a r.v. uniformly distributed on [0, 1].
We are aware of only two sets of sufficient conditions implying the saddle-point
property (1.6), both of them pointwise:

(1) all F € F continuous, with

[ICL(F~'(w); F)| < |ICL(Fy'(w); Fo)l  ae.u€(0,1), (2.2)
or
(2) both
[ICL(x; F)| < |ICL(x; Fo)| [= |wo(x)/I(Fo)]]  ae.x, allF, (2.3a)
and o o
f ww%(x) dF (x) < / oow%)(x) dFo(x) [= I(Fo)). (2.3b)

That (2.2) and (2.3) each imply (1.6) is trivial. See Section 2.3 and Example 3.2 for
applications.

The following theorem generalizes Theorem 4 of Collins and Wiens (1989), where
a similar result was established for Lévy neighbourhoods of certain strongly unimodal
distributions.

THEOREM 2.1. Assume that T, satisfies (1. 1) (Asymptotic normality) and (1. 6) (the saddle-
point property) for F € F. It is then necessary that (1.8) hold. Furthermore, if

Fo = {F € F|F strictly increasing on 0 < F(x) < 1,

1
I(F) < oo, / Ko(u) dF ~'(u) = 1}
0

then for F € %y we have either

(i) VL(F) Z VL(Fy), or

(ii) In each interval /;, on which y{(x) is continuous and a.e. nonzero, we have Fo(x) =
F(x + ¢;) for some constant ¢;(F) and all x € I;.
Proof. If (1.6) holds and I(F) < oo, then F is absolutely continuous and V. (F) < oc;
hence (2.1) applies and we have the identity

VL(F) =VL(Fo) + 2[Couy {ICL(F~'(U); F),ICL(Fy ' (U); Fo)} — Vi(Fo)]
+Ey[{ICL(F~'(U); F) — IC(F5 '(U); Fo)}*] 2.4

Applying Fubini’s theorem gives Ey[IC,(F~'(U);F)] = EU[ICL(FO_‘(U);FO)] = 0,
as is required by the definition of the influence curve. Also, IC.(Fy'(u); Fo) = o o
Fy Y(u) /1(Fp), whence another application of Fubini’s theorem gives

Covy [ICL(F~'(U); F),IC(Fy (U ); Fo)]
_ /' (I u < 1] — Omo(t)yo © Fg' ) dF (1) du
0

0 1(Fo)
_ _/' mo(t) {Iu < 11— thyoo Fy'(u) du dF (1)
0 0 I(Fo)

_ f‘ Ko dF~' () 2.5
0

1(Fo)
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Now (2.5) in (2.4) yields the necessity of the condition (1.8), and that if equality holds
in (1.8) we must further have IC.(F~'(u); F) = ICL(Fy ' (u); Fo) a.e. u € [0, 1], i.e.

Yo o Fy ' (w)

(o) a.e. u. (2.6)

u 1
/ tmo(1) dF 1 (r) — / (1 — Omy(t) dF (1) =
0 u

For F € %y the left side of (2.6) is a continuous function of u, as is the right side; hence
equality holds throughout (0,1). Differentiating (2.6) gives d/duF ~'(u) = d/duFy l(u) at
every continuity point of mg(u) at which mo(u) # 0; hence F~'(u) — F~'(up) = Fy '(u) —
Fy !(up) whenever my is continuous and a.e. nonzero on [uo, u]. Then if v is continuous
and a.e. nonzero on an interval I; D [a;, x], the last equality, with u = Fo(x), up = Fo(a;),
becomes F~! o Fy(x) = x + F~' o Fo(a;) — a; = x +¢;, say; hence Fy(x) = F(x +¢;) on
I;. QE.D.

2.2. Minimax Variance R-Estimation

Assume that every F € F is symmetric about 8 = 0, and has finite Fisher information,
so that (1.3) applies. Note that ffzo Jg oF(x)f(x)dx =1 /I (Fp). Make the substitution
u = F(x) in Dg(F). Assume that Dg(F) > 0—otherwise, as in the proof of Theorem 2.2
below, supp<a<iVr((1 — A)Fp + AF) = 0o. We then have that the saddle-point property
(1.6) holds iff, for all F € F,

fooFy'(u)

Forw @7

1
Dr(F) = / mo(yrrw)™" du > 1, where rg(u) =
0

THEOREM 2.2. Assume that Ty satisfies (1. 1) (asymptotic normality) for F € F In order
that the saddle-point property (1.6) hold, it is sufficient that Wo(x) be nondecreasing and
that the condition (1.8) hold. The requirement that \y be nondecreasing is necessary
in the following sense. Suppose that there is an interval [a,b] throughout which  is
strictly decreasing, and on which 0 < fy(x) < 0o. Define

Fr={F € F|F =Fyonl(a,b)U(=b,—a)]}.

If F is sufficiently rich that supg, j; b f2(x) dx = o0, then supg, Vr(F) = oo.

Proof. If Wy is nondecreasing, then mg(u) is a density on [0,1] and by Jensen’s inequality

1 1 1
/ ooy o)™ du > ( / —, du) _ ( / Ko(w) dF—‘(u))
0 (1] 0

Then (1.8) implies (2.7) for all F € F . Now let [a, b] and F; be as above. It suffices to
show that under the stated conditions there exists F; € F, for which Dg(F 1) < 0. Then
with Fy, = (1 —A)Fp + AF; and ¢(A) = Dg(F), we have ¢(0) > 0,¢(1) < 0, and, since
IFx = Fxll = A = X[ |Fo — Fi]l,6(A) is continuous with respect to any norm || - || on
Fi. It must then assume arbitrarily small positive values.

To establish the existence of Fi, note that

-1 =1

Fo(b)

Dr(F) = 2/m0(u)r,:(u)‘l du + 2/ fo F_'(u).l(’,(u) du,
A

Fo(a)
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where )
A= [5, 1] N (Fo(a), Fo(b))“.

For F € Fy, rp(u) = 1 on (Fo(a), Fo(b)). The assumptions on Yo imply that 0 >
SUP[Fy(a) o) Jo() = —C?, say, so that

Fo(b)
Dg(F) <2 / mo(u) du — 2C? foF Y u)du
A

Fola)

Fo(b) b
=1-2 / mo(u) du — 2C? f f2(x) dx;
F a

o(@)

hence infg, Dp(F) = —00. Q.E.D.

2.3. Minimax L-Estimation versus Minimax R-Estimation.

In the class ¥ = {F | F symmetric and absolutely continuous, [ x> dF(x) < 1}, the
sample mean is the minimax L-estimator. This follows from (2.3). See Mason (1983)
for cases in which this L-estimator is also optimal with respect to a different minimax
criterion. Chernoff and Savage (1958) [see also Gastwirth and Wolff (1968)] showed that
the variance of the normal scores estimator—the R-estimator efficient at the minimum-
information normal distribution—never exceeds that of the sample mean in ‘% hence it
too is minimax.

Under the conditions leading to (2.5) and (2.7), we have

Vr(F) _ Corry [ICL(F~'(U); F), ICL(F5 ' (U); Fo)l
VUE) [ f mouyre() du f moGuyre)~! du)?

(2.8)

If o is nondecreasing, then mg(u) > 0 and Jensen’s inequality asserts that the denomi-
nator of (2.8) is > 1. This proves:

Tueorem 2.3. If F is the class of symmetric distributions, with finite Fisher information,
for which (1.1) holds for T, and for T, and if y is nondecreasing, then Vg(F) < V.(F)
for F € F Thus if g is nondecreasing and (1.6) is to hold for Ty, it is necessary that
it hold for Tkg.

RemARK. The first statement of Theorem 2.3 was proven by Scholz (1974), under the
additional assumption that each F is strictly increasing on its support. Froda (1986)
extended Scholz’s result to possibly discontinuous, but still nondecreasing, yo. As an
application of Theorem 2.2, we show in the remarks following Theorems 3.1, 3.2 that
the assumption that y, is nondecreasing cannot, in general, be dropped. Without it, even
the weaker statement sups Vz(F) < sups V.(F) can fail.

3. EXAMPLES

Recall the conditions (1.7) and (1.8). In “regular” classes % (1.8) implies (1.7). This
is seen by noting that (1.8) implies that the Gateaux derivative

d 1
2 f Ko{Fo(w) + MF\ — Fo))} dulaco
0

is < 0 for all F; € ¥ ; this becomes (1.7) after a calculation. At least when ¥ ~! =
{F7' | F € F} is convex, as is the case of Kolmogorov or Lévy neighbourhoods,
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(1.7) implies (1.8). This is seen by writing /(F) as a functional of F~' before taking the
Gateaux derivative. We do not make these arguments rigorous here, since (1.7) is part of
the definition of Fyp and (1.8), where required, is more easily verified directly.

In particular, (1.8) holds in those cases in which F has been obtained for the important
contamination classes

G(G)={F | F =(1 —¢)G +€eH; G symmetric and fixed,

H symmetric and arbitrary }
(e-contamination neighbourhood),
K (G) = {F|sup |[F(x) — G(x)| <€ G symmetric}

X

(Kolmogorov neighbourhood), and
L5(G)={F|G(x —8 —e <F(x) <G(x+3d)+e¢, all x; G symmetric}

(Lévy neighbourhood). The minimum-information distributions were obtained for G.(G)
by Huber (1964) for strongly unimodal G and by Collins and Wiens (1985) in more
general situations; for X .(G) see Huber (1964) and Sacks and Ylvisaker (1972) if G = ®
and Wiens (1986) for general G; for L, 5(G) see Collins and Wiens (1989).

The solutions obtained by the above authors all satisfy

Fo(o0) =1, lim Ko(u) <0, 3.1

and
Lo(x) is piecewise continuously differentiable and

nondecreasing on {S;l_p F(x) = Fo(x)},

nonincreasing on {i?f F(x) = Fo(x)},
constant on {ing(x) < Folx) < sgp F(x)}. (3.2)
For K.(G) and L, 5(G), (3.1) and (3.2) are necessary features of Fy, under the assumption
G is strictly increasing on (—o00, 00), with I(G) < 0o

and — g'/g twice continuously differentiable. (3.3)

See Section 2 of Wiens (1986) for X .; the extension to L. is straightforward. In any
% if (3.1) and (3.2) hold, then so does (1.8). Using Kj(u) = %L{, o Fy'(u) and then
integrating by parts gives

1
1— / Ko(u) dF ~'(u) =1lim Ko(w){F ™' () — Fy '(u)}
0 u—0
— lim Ko@) {F ') — Fy' ()}

b5 [ A oFo) — it dlow 0. (.4
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ExampLE 3.1 (Kolmogorov and Lévy neighbourhoods). Sacks and Ylvisaker (1972)
showed that the saddle-point property fails for L-estimation in & (®) if ¢ > 0.07;
Collins and Wiens (1989) extended this result to ¢ > 0 and to more general, but still
strongly unimodal, G in Lévy as well as Kolmogorov neighbourhoods. Collins (1983)
established that R-estimation is minimax in X (®); see Collins and Wiens (1989) for
generalizations to L, 5(G), G strongly unimodal. The following consequence of Theorems
2.1 and 2.2 subsumes all of these results, and greatly simplifies their proofs.

THeOREM 3.1. Under the assumption (3.3), the saddle-point property (1.6) fails for L-
estimation in every neighbourhood F = K (G) or F = L.5(G). The saddle-point
property holds for R-estimation in these neighbourhoods if, and only if, Fy is strongly
unimodal. If Fy is not strongly unimodal, then supg Vg(F) = 00.

Proof. Under (3.3), further necessary features of Fy can be shown, as in Section 2 of
Wiens (1986), to be:

(a) There is a set I of finite, symmetrically placed open intervals on each of which
Fo(x) is strictly between the boundaries defining % and on each of which Ly(x) is constant.

(b) There is a set J of finite, symmetrically placed closed intervals on which Fy(x) is
on one of the boundaries.

(c) {1 UJ)" is of the form (—oo, —b) U (b, 00); on these intervals yo(x) is constant;
i.e., Fy has exponential tails.

Define ¥,/ C ¥ to be those strictly increasing F, with I(F) < oo, which agree with
Fo on J. For x € I, we have K{ o Fo(x) = jL{(x) = 0, so that K, is constant
on Fo{l}. On Fo{J}, F7' = Fy'; and on Fo{(l UJ)}, Ko = 0. It follows that
i Kow) dF~'u) = [ Ko@) dFy'(u) = 1 for F € %), so that F/ C %o, where
Fo is as in Theorem 2.1. Continuity considerations now dictate that each c¢;(F) there
be zero. Note that the set / of (a) above must contain a neighbourhood of the origin
(since Fy is necessarily symmetric) and that y;(x) is continuous and nonzero in this
neighbourhood—the constant solution to Lo(x) = const, satisfying as well y,(0) = 0, is
clearly untenable.

Thus, by Theorem 2.1, Fy minimizes V. (F) over %y, there exists F € Fy violating (ii)
of Theorem 2.1, and V. (F) strictly exceeds V. (Fp) at any such F.

For R-estimation, the statements of the theorem follow directly from Theorem 2.2 and
(3.4). QE.D.

ReMARKS. We can now show that the first conclusion of Theorem 2.3 can fail if vy is
nonmonotone. In X (G), with G the Cauchy d.f. and € < 0.0377, there is an interval
(a,b) € I on which vy is a strictly decreasing solution to Lo(x) = const, and f; is
decreasing and positive. See Wiens (1986, Example 2). Define ¥, as in Theorem 2.2;
then supg, Vr(F) = oo. In contrast, V. (F) is bounded in ¥;. As in the proof of Theorem
2.1, we have fol Ko(u) dF~'(u) = 1 for F € . It then follows from (2.4), (2.5), and
an easy calculation that V,(F) = V. (Fy) + 4a* fol A%(u) du, where Ko(u) = —a? on
(Fo(a), Fo(h)) and

Fo(h) 1[14 < t] —¢
Aw) = Mus<t—t oy o
(u) /F”(a) foo Fal) {Fo @ 0}

has |A(w)| < 4(b — a)/fo(b) < o0. Thus for € < 0.0377,

Vi(Fo) = inf Vi(F) < sup Vi(F) < SUp Vi (F) = oo. 3.5)
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For € > 0.0377, Fy is strongly unimodal and R-estimation is minimax.

ExamrLE 3.2 (e-Contamination neighbourhoods). For G.(G), with G strongly unimodal
and satisfying (3.3), Jaeckel (1971) showed that L-estimation is minimax, by verifying
(2.2). In this case, Wy is nondecreasing, so that by Theorem 2.3, R-estimation is minimax
as well. This was shown directly by Jaeckel (1971).

In this class, Fo = (1 — €)G + eHy places all contaminating mass Hy on intervals on
which yo(x) is the constant solution to Lo(x) = const. A partial converse is then given
by

THeoReM 3.2. Let F = G.(G), with G satisfying (3.3) and Fo = (1 — €)G + eHy the
minimum-information distribution in F. If there is an interval [a, b] with Hy = hy(x) >0
on (a,b) and Yo(x) nonconstant on [a,b), then the saddle-point property fails for L-
estimation. If there exists such an interval on which Wy(x) is strictly decreasing, then the
saddle-point property fails for R-estimation as well, and (3.5) holds, where | is as in
Theorem 2.2.

Proof. On any interval [a,b], with hy(x) > 0 on (a,b), Wo(x) is a continuously dif-
ferentiable solution to Ly(x) = const. [See Theorem 3 of Collins and Wiens (1985).]
Then Ko(u) is constant on (F;'(a), Fy'(b)), so that if F; is as in Theorem 2.2, we have
fol Ko(u) dF~'(u) = 1. Thus F, C F,, with F; as in Theorem 2.1, and we conclude that
Fo minimizes V,(F) over ;. Any F # F, which places all of its contaminating mass
on (—b,—a)U(a, b) has V (F) ; VL(Fp). For R-estimation, Theorem 2.2 applies directly.
Now (3.5) follows exactly as before. Q.E.D.

REMARK. We note that (3.5) holds, for all € > 0, if G is a Student’s ¢-distribution. This
follows from Theorem 3.2, together with Example 3.2 of Collins and Wiens (1985),
where it is shown that hy(x) is of the required form.

ExampLE 3.3. This example shows that:

(a) Even if vy is strictly increasing, (1.8) is not a necessary condition for R-estimation
to be minimax.

(b) The Hodges-Lehmann estimator is the minimax-variance R-estimator in the largest
convex class in which the logistic distribution Fo(x) = (1 + ¢™*)~! minimizes the Fisher
information; and sup V;(F) = oo in this class.

For this Fy(x), we have yy(x) = tanh %x, Lo(x) = 3(1 — 2 tanh? %x), Ko(uw) =
6u*(1 — u)?. Then as at (1.7), any convex class in which /(F) = min is a subset of
F. = {F | Er[tanh® 1X] < 1}. It is easy to see that supg, fol Ko(u) dF~'(u) = oo;
hence by (2.4) and (2.5), supg, V.(F) = 0o. See also the remark on p. 72 of Huber
(1981).

The efficient R-estimator at F is the Hodges-Lehmann estimator, with Jy(f) = 3(2t—1)
and Dr(F) = 6 [>° f*(x) dx. Put F) = (1—A)Fo+AF,. Then Dg(F}) is a convex function
of A; hence (2.7) is equivalent to “(d/dA) Dr(F))|x=o > 0, all F| € F, . This becomes
exactly the definition of ¥, after a calculation.

ExampLE 3.4. The robustness of the R-estimator of Example 3.3 is destroyed if the score
function is truncated, say by replacing it by W.(x) = {tanh }x,tanh a,tanh —(1a)} on
{lx] < a, x > a, x < —a} respectively. The corresponding F, has density f,(x) =
{fO)sech® 1x,f(@e* M} on {|x| < a, |x| > a} respectively, and F, has minimum
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information in

£={F

f 2£.x) — fu(@)] d(F — F.)(x) > 0} .

Sacks and Ylvisaker (1982) constructed an F; for which equality is attained in the
definition of ¥, and with Dg(F;) < 1, so that R-estimation fails to satisfy (1.6) in
{F = (1 —MF.«+AF; 0 <A< 1}, aconvex class in which F, minimizes information.
As shown by Sacks and Ylvisaker, or now by appealing to Theorem 2.3, L-estimation
also fails to satisfy (1.6) in this class.

In general, suppose that Y is strictly increasing on a finite interval [—a, a], and
constant on x > a and x < —a. Suppose there is an F| € 7, strictly increasing on
[—a, a], whose restriction to [—a, a] satisfies

@ [ dFy < [° dFo,
(b) [, Lox) d(Fy — Fo)x) [= [* {Lo(x) +w3(@)/I(Fo)} d(Fi — Fo)(x)] = 0.

Suppose also
(c) The structure of F places no restrictions on the behaviour of its members in
x| > a.

Then R-estimation fails to satisfy (1.6) in ¥ . This is because

F(a) Fo(a)
Dr(F) =/ J§@)f o F~'(u) du+2/ Jo(w) o F~'(u) du
F(—a) F(a)
= 01(F) + 02(F),
say. A calculation gives
d 1 [ _ 2yp(@ ) (F\ — Fo)(a)
FOE| =3 /_ Lot Py = Foy + OO <0

by (a) and (b), so that ¢,(Fy) < ¢,(Fp) = 1 for sufficiently small A > 0. Since (a) and (b)
restrict F, only in [—a, a], we may now, by (c), extend any such F) in |x| > a so as to
make ¢o(F3) sufficiently small that Dg(F) > 1, violating (2.7) and hence (1.6).

Thus, any ¥ in which the Fisher information is minimized at a strongly unimodal F
with exponential tails can be embedded in a neighbourhood ¥’ in which F continues
to have minimum information, but in which the saddle-point property fails for both L-
and R-estimation.
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