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A robust treatment of a dose–response study
Douglas P. Wiens*† and Pengfei Li

We give a description of the steps leading to a robustification of a dose–response study. The original experiment was designed and
described by Rosenberger and Grill (1997) and has since been discussed by several other groups of researchers. Our robustification
consists of redesigning the experiment so as to build in flexibility over a range of possible link functions, including the logistic link
assumed by the original experimenters. We consider as well an asymptotic Neyman–Pearson test of the validity of the assumed link
function. Copyright © 201 John Wiley & Sons, Ltd.
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1. Introduction

At the recent Joint Research Conference on Statistics in Quality, Industry and Technology (May 2010, National Institute
of Standards and Technology, Gaithersburg, Maryland), the following experimental scenario was discussed. Rosenberger
and Grill [1] designed an experiment, the goal of which was to elicit information about the relationship between stimulus
level (x) and response, by estimating quantiles of the stimulus response curve. Subjects sequentially received ‘marking
stimuli’ (auditory marking clicks) at various levels and at random times near to those of a certain event and were then
asked whether the event occurred before or after the stimulus. The response Y was binary, with Y D 1 being recorded
if the subject reported that the event occurred before the stimulus. The principal goal was to estimate the median of the
stimulus response curve. A secondary goal was to design so as to allow for the estimation of other quantiles such as the
lower and the upper quartiles. The investigators assumed a logistic link relating P .Y D 1/ to a linear function of the
stimulus level and, in their discussion, stated:

The effects of using logistic regression to analyse data that more closely follow a probit, Weibull, or other distribution (‘violation
of link assumption’) is not particularly well-known among practitioners, even in the independent case. However, in estimating the
median, it is likely that logistic and probit analysis would yield similar results.

This question of how the designs might change in response to uncertainty about the appropriate link was the subject of
our presentation, and our observations are detailed here. The theoretical development and mathematical details may be
found in Li and Wiens [2]. A basic feature of our approach is that we entertain a class of possible link functions, forming
a neighbourhood of that used by the experimenter to analyse the data. We introduce certain loss functions, obtain the
maximum loss as the links vary over the neighbourhood and, finally, choose a design to minimise the maximum loss.

In §2, we return to the experimental scenario described previously and compare our methods with those of Biedermann
et al. [3] and Zhu and Wong [4] who have also constructed designs for this experiment. We note that there is another,
rather different, approach to dose estimation—one might observe a continuous response Y to a dose x and then model
E ŒY jx� via (typically nonlinear) regression. A referee has kindly pointed us to work by Bornkamp et al. [5], Bretz et al.
[6], Dette et al. [7, 8], Dragalin et al. [9, 10] and Zhou et al. [11]; in these papers, the aforementioned regression approach
is applied, and so there is only a passing relevance to the problems discussed here.

Despite the robustness arising from our minimax approach, questions of model discrimination remain—the experi-
menter may wish to test that other nearby links are more appropriate for his or her data. Thus, in §3, we investigate
the properties of the Neyman–Pearson test to compare two link functions and illustrate the results in the context of the
Rosenberger and Grill [1] experiment.
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1.1. Model and robustness requirements

The experimental situation described previously is common to ‘dose–response’ studies, in which a binary response is
linked to a ‘dose’ x via a cumulative distribution function evaluated at a linear function of the dose. The experimenter
assumes that the mean conditional response is given by E ŒY jx� D F0 .˛0C ˇ0x/, for a specified distribution function
(link) F0. The common links are F .t/ D ˆ.t/ (the ‘probit’ link) and F .t/ D L .t/ D 1=

�
1C e�t

�
(the ‘logistic’ link).

The fitted link F0 .t/ might, however, not be the ‘true’ one, and we entertain a family of alternative response functions:

Prn .Y D 1jx/D Fn .˛nC ˇnx/
def
D Hn .x/ :

Here, nD
PI
iD1 ni is the sample size, with ni responses

˚
yij
�ni
jD1

being recorded at dose level xi . The levels are chosen

from a finite set fxig
N
iD1. Both the link Fn and the parameters �n D .˛n; ˇn/

T may depend on n; this is necessary for an
asymptotic treatment of the problem, which requires the true and the fitted links to be contiguous in order that errors due
to link misspecification, and those due to variation, remain of the same order.

The purpose is to estimate the dose xnp required to attain Hn .x/D p for one or more specified values of p:

xnp
def
D xp .�nIFn/D

F �1n .p/� ˛n

ˇn
:

The parameters are to be estimated by maximum likelihood based on the fitted link F0, and so satisfy the likelihood
equations

X
i;j

 0

�
yij I zTi O�n

� 1
xi

!
D 0;

where  0 .yI t /D .y �F0.t// w0.t/ for w0 .t/D d
dt

log
�

F0.t/
1�F0.t/

�
D f0.t/

F0.t/.1�F0.t//
. The experimenter then estimates the

appropriate dose by

Oxp
def
D xp

�
O�nIF0

�
D
F �10 .p/� Ǫn

Ǒ
n

:

He or she desires a design that will afford some robustness against errors arising from link misspecification. By ‘design’
we mean the design measure �n, placing mass ni=n at xi . To construct a robust design, we first obtain the asymptotic
normal distribution of

p
n
�
Oxp � x

n
p

�
. From this, we obtain the mean squared error; this will be maximised over Fn and

then minimised by the choice of design.
We define

Pn .t/D
p
n .Fn.t/�F0.t// .t 2R/ ;

Qn .p/D
p
n
�
F �1n .p/�F �10 .p/

�
.p 2 .0; 1// ;

and allow Fn to vary over

Dn .F0/D fFn j jPn.t/j6 � for all tg ;

for a fixed � . This then defines a sequence of shrinking Kolmogorov neighbourhoods (Figure 1).
We must impose a minor restriction on Dn .F0/ to prevent possible loss of identifiability. Note that if more than one

member of a location/scale family belongs to Dn .F0/, then varying the linear parameters can yield the same response
function, viz.

Fn .˛nC ˇnx/� F
0
n

�
˛0nC ˇ

0
nx
�
;

for appropriate ˛0n; ˇ
0
n, if location/scale families

F 0n.t/D Fn

�
t ��

�

�

belong to Dn .F0/. This is precluded by the requirement that

Qn.p1/DQn.p2/D 0;
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Figure 1. Kolmogorov neighbourhood Dn .F0/ with � D 1, n D 33 and F0 .t/ D L.t/, the logistic link. The neighbourhood is large
enough to include as well the probit link F.t/Dˆ.t/.

for two specified values p1; p2; this restriction ensures that only one of Fn; F 0n will belong. Choosing p1 near 0 and p2
near 1 ensures that this is a very mild restriction on the possible links.

As is typically the case in design problems for nonlinear models, the loss depends on the unknown parameters. This
can be addressed in a number of ways; our treatment of the experiment, which is the subject of this article, is to assume a
‘working parameter’ �0 D .˛0; ˇ0/

T and construct locally optimal designs.
Results of Le Cam [12] on estimation in contiguous models apply, and yield that the asymptotic mean squared error of

the estimate Oxp of xnp is
�p
nˇ0

��2
times

L .�n; FnIp/
def
D
h
Qn.p/C

�
1; x0p

�
R�1�n ı�n;Fn

i2
C
�
1; x0p

�
R�1�n

 
1

x0p

!
;

where x0p D
�
F �10 .p/� ˛0

�
=ˇ0,

R�n D
NX
iD1

ni

n
.f0.ti /w0.ti //jtiD˛0Cˇ0xi

�
1 xi
xi x2i

�

is the information matrix (under F0) and

ı�n;Fn D

NX
iD1

ni

n
� di;n �w0 .˛0C ˇ0xi / �

 
1

xi

!
;

a linear function of the discrepancies di;n D
p
n .Fn .˛0C ˇ0xi /�F0 .˛0C ˇ0xi //. In Li and Wiens [2], we also estab-

lish a representation of the limit of
p
n
�
Oxp � x

n
p

�
as a Gaussian process indexed by p; this allows for the treatment of the

case in which an interval of values of p is of interest to the experimenter. In this case, the loss function is the integral of
L .�n; FnIp/ over the interval of interest.

1.2. Maximising the mean squared error

Note that L .�n; FnIp/ is a quadratic function of the di;n and also of Qn.p/. Its maximisation over the appearance of Fn
in di;n can be handled by quadratic programming. Membership of Fn in Dn .F0/ imposes certain (linear) constraints on
F �1n , and the maximisation over the appearance of F �1n inQn.p/ can then also be handled by quadratic programming. Of
course, these are very different quadratic programming problems. Our approach is to solve the pair of problems iteratively,
until convergence is attained. This typically happens very quickly.
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1.3. Minimising the maximum mean squared error

The maximised loss

R1 .�/Dmax
Fn

L .�; FnIp/ ; (1)

or

R2 .�/Dmax
Fn

Z p02

p01

L .�; FnIp/ dp (2)

if an interval Œp01; p02� is of interest, is now to be minimised over designs � , represented as vectors .�1; : : : ; �N / of relative
frequencies �i D ni=n. This is an integer optimisation problem that evidently has no particular structure that might allow
it to be handled by standard optimisers. We thus use simulated annealing. Briefly, this involves iteratively making small
random changes in � and accepting an improved design with probability 1 and a worse design with positive but small—and
decreasing—probability (see Fang and Wiens [13], Bohachevsky et al. [14] and Haines [15] for background material on
simulated annealing in design theory). The method is computationally very intensive, because each design to be tested
requires the solution of the quadratic programming problems described in Section 1.2.

2. Design construction and comparisons

The Rosenberger and Grill [1] experiment described previously, and the question of how the designs might change in
response to varying link functions, has been discussed in the literature by other investigators. Biedermann et al. [3] (hence-
forth referred to as ‘BDP’) addressed this question by constructing designs intended to be simultaneously efficient with
respect to various choices of link functions and parameter regions. Their work followed upon that of Zhu and Wong [4]
(henceforth referred to as ‘ZW’; see also [16]) who constructed Bayesian optimal designs minimising a certain linear
combination of loss functions. We note that these studies were concerned with efficiency, that is, with minimising the
variance of the estimates, either at the nominal link function or over a small set of possible links. None sought to control
the increase in the bias, hence in the mean squared error, of the estimates arising from link misspecification.

Following Rosenberger and Grill [1], we took nD 71 possible levels of the stimuli, coded 1; : : : ; 71 as in the studies to
which we make our comparisons. We also took n D 33. Following BDP and ZW, we took �0 D .�10:89; 0:33/

T . Recall
(1) and (2). The loss R1 .�/, with p D 0:5, is appropriate when the experimenter is solely concerned with estimating the
median of the stimulus response curve. If the concern is also on estimation of the quartiles, we minimise instead R2 .�/,
with p01 D 0:25; p02 D 0:75.

The designs of BDP and ZW were required to be symmetric around x D 33, and so for purposes of comparison, we
will, in Section 2.2, restrict to symmetric robust designs. We first exhibit designs without this restriction and consider both
the case � D 0—appropriate only if one is entirely confident in the appropriateness of the logistic link—and � D 1, a value
large enough that Dn .F0/ includes the probit link (Figure 1).

2.1. Designs constructed without symmetry restrictions

Using the methods described in Sections 1.1 and 1.2, we constructed designs

LW1: Optimal for loss R1 when � D 0;
LW2: Optimal for loss R2 when � D 0;
LW3: Optimal for loss R1 when � D 1;
LW4: Optimal for loss R2 when � D 1.

The designs LW1 and LW3 turn out to be identical and symmetric; thus, they are also minimax under the restriction of
symmetry and are discussed in Section 2.2. Designs LW2 and LW4 have dose levels and design weights

LW2D

�
29 30 36

0:15 0:33 0:52

�
;

LW4D

�
30 31 32 33 35 36 40 41

0:03 0:39 0:03 0:09 0:12 0:15 0:09 0:09

�
;
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respectively (Figure 2). As they must, LW2 and LW4 minimise R2 among all designs considered (Table I) although
the best of the symmetric designs are close competitors.

2.2. Symmetric designs

The construction of symmetric designs was carried out by slightly modifying our MATLAB code (available from the
authors) at the annealing stage—each trial design was symmetrised by averaging it with its reflection across x D 33 before
being assessed. This resulted in the designs LW1 and LW3, optimal for R1, as in Section 2.1. We constructed as well
designs

LW5: Optimal among symmetric designs for loss R2 when � D 0;
LW6: Optimal among symmetric designs for loss R2 when � D 1.

The designs are illustrated in Figure 3 and have support points and weights

LW1D LW3D

�
32 33 34

0:03 0:94 0:03

�
;

LW5D

�
29 30 36 37

0:07 0:43 0:43 0:07

�
;

LW6D

�
25 26 30 31 32 34 35 36 40 41

0:03 0:03 0:06 0:29 0:08 0:08 0:29 0:06 0:03 0:03

�
:

24 27 30 33 36 39 42
0

0.2

0.4

0.6

(a) LW2

24 27 30 33 36 39 42
0

0.2

0.4

0.6

(b) LW4

Figure 2. Designs LW2 and LW4, minimising R2 when � D 0 and � D 1, respectively, without symmetry restrictions.

Table I. Comparative losses of the designs.

Design R1 .�/ R2 .�/

� D 01 � D 1 � D 01 � D 1

ZW1 6.51 46.32 [3.86] [28.33]
ZW2 [9.01] [57.32] 5.08 49.91
BDP1 6.15 41.81 [3.74] [26.04]
BDP2 [8.83] [18.99] 5.12 27.85
LW1 4.01 4.03 [117.87] [129.06]
LW2 [5.19] [92.85] 3.49 24.83
LW3 4.01 4.03 [117.87] [129.06]
LW4 [5.16] [5.80] 3.71 4.06
LW5 [5.18] [92.74] 3.49 25.06
LW6 [4.89] [5.75] 3.75 4.37

1When � D 0, the loss is due solely to variation.
Square brackets denote estimation situations in which the indicated design is not intended to be appropriate. Figures in bold
correspond to situations in which the LW designs are intended to be optimal (among symmetric designs, for LW5 and LW6).
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Figure 3. Symmetric designs compared in Section 2.2.

We compare these with the symmetric designs of ZW and BDP:

ZW1D

�
28 33 38

0:42 0:16 0:42

�
;

ZW2D

�
25 33 41

0:37 0:26 0:37

�
;

BDP1D

�
28 33 38

0:38 0:24 0:38

�
;

BDP2D

�
14 26 31 35 40 52

0:09 0:25 0:16 0:16 0:25 0:09

�
:

Designs ZW1 and ZW2 are the Bayesian designs of ZW, optimal for estimating the median (ZW1) or the quartiles (ZW2)
of the stimulus response curve. Designs BDP1 and BDP2 are the correspondingly optimal ‘maximin efficient’ designs of
BDP. We note that ZW and BDP constructed continuous designs, and so some rounding of the levels has been carried out
for the purpose of comparison with our designs. From the performance measures in Table I, we see that the symmetric
designs LW1 and LW5 constructed for optimality against variation alone (� D 0) are indeed the most efficient of those
studied here. The symmetric designs LW3 and LW6, constructed for robustness as well as efficiency, perform better than
the corresponding ZW and BDP designs and at least almost as well as their non-symmetric competitors.

One might ask if the robustness is achieved at too great a loss in efficiency. Of course both R1 and R2 measure effi-
ciency when � D 0; from Table I, we see that, with the exception of LW1 (LW3) when used—inappropriately—for quartile
estimation, the LW designs are quite efficient. To further answer this question, we computed the root of the total variance,

that is,
	
det

�
R�
�
�1=2

, for all designs under consideration. With respect to this measure, the design LW1 D LW3 fares
poorly. Designs LW2, LW4, LW5 and LW6 for R2 are at least almost as efficient as, and in some cases more efficient
than, the competing designs of ZW and BDP constructed for efficiency alone:
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Design ZW1 ZW2 BDP1 BDP2 LW1 LW2 LW3 LW4 LW5 LW6ˇ̌
R�
ˇ̌�1=2

1:51 1:75 1:55 1.91 16.48 1.65 16.48 1.84 1.65 1.93.

The design LW1 performs very well with respect to R1 .�/, yet poorly with respect to total variance. This illustrates
the differing emphasis of these loss functions—when � D 0 and p D 0:5, R1 .�/ D .1; 33/R�1

�n

�
1
33

�
is the variance of

the linear estimate Ǫ C 33 Ǒ at the particular dose level x D 33 and can be expected to be minimised by a design such
as LW1 with most mass at this level. In contrast, the total variance measures the quality of the parameter estimates and
typically calls for a design with greater spread. We also note that Yang and Stufken [17] have shown the optimality of
three-point (possibly two-point) designs, when the loss depends on variance alone and the design space is an asymmetric
(but continuous) interval. Our designs LW1 and LW2 for � D 0 are in line with these results, whereas LW5 appears to be
an approximation, in our discrete design space, of a two-point design.

3. Post-design link discrimination

Having constructed a design and gathered the data, the experimenter is able to test if his or her assumed link F0 is appro-
priate. In the context of the experiment described in this article, this is best accomplished by the Neyman–Pearson test:
one tests

H0 W F D F0; H1 W F D F1; (3)

with each link evaluated at zT � for � fixed, for example, at .�10:89; 0:33/T in our example. The pair F0; F1 might be
plausible competitors with F1 2 Dn .F0/, for example, F0 logistic and F1 probit. Or—and we shall also investigate this
case here—F1 could be on the boundary of Dn .F0/ W F1 D Fbdry with

Fbdry.t/D

�
min

�
F0.t/C �=

p
n; 1

�
; t > 0;

max
�
F0.t/� �=

p
n; 0

�
; t < 0:

In this case, a failure to reject H0 asserts that F0 does ‘well enough’ relative to the closest competitor, which is (almost)
not in Dn .F0/—a kind of goodness-of-fit criterion.

Given data
˚
xi ; yij

�
, where yij 2 f0; 1g denotes the response in the j th replicate at dose xi , the likelihood function

under Hk .k D 0; 1/ is
Y
i;j

PHk

�
Y D yij jzi

�
, with

PHk .Y D yjz/D
	
Fk
�
zT �

�
y 	 NFk �zT ��
1�y :
We use the notation NF D 1�F . The Neyman–Pearson test of (3) rejects for large values of

RD 2
X
i;j

log
PH1

�
Y D yij jzi

�
PH0

�
Y D yij jzi

� D 2X
i;j

	
Yij �i C

�
1� Yij

�
N�i


;

where

�i D log
F1
�
zTi �

�
F0
�
zTi �

� ; N�i D log
NF1
�
zTi �

�
NF0
�
zTi �

� :
In Appendix A, we prove Theorem 1, which gives the asymptotic properties of this test.

Theorem 1
For F1 2Dn .F0/, define

�D

Z ˚
F1
�
zT �

�
�F0

�
zT �

��2
2F0

�
zT �

�
NF0
�
zT �

� d�n:
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Then � is O
�
n�1

�
as n!1. Under H0, the mean of R is �0 D�2n�C o.1/; under H1, it is �1 D 2n�C o.1/. Under

either hypothesis, the variance is �2R D 8n�C o.1/. The test statistic is asymptotically normal under each hypothesis:
under H0,

RC 2n�
p
8n�

L
!N.0; 1/;

whereas under H1,

R� 2n	
p
8n	

L
!N.0; 1/:

Thus, a test with asymptotic size ˛ rejects for R > ´˛
p
8n�� 2n� and has asymptotic power

ˇ Dˆ.
p
2n�� ´˛/:

We note that � is similar to the Anderson–Darling statistic, which weights by F0 rather than by the design measure �n
and measures the discrepancy of F1 from F0.

We have obtained the asymptotic powers, of the designs presented in Section 2, for the two hypothesis testing situations
discussed previously. For testing a logistic null against a probit alternative, these are given in Table II (for the ‘boundary’
alternative, see Table III). In each case, the most powerful tests result from designs ZW1, BDP1, LW2 and LW5, with the
first two of these outperforming the second two. The robust designs LW3 and LW4 have lower power than the others—
something that is perhaps to be expected, because they are constructed to accommodate competing links, rather than to
discriminate between them. In each case, we computed as well the power that would result if the experimenter, dissatisfied
with the current power, were to take two more observations at each of two points, chosen to maximise the integrand in the
definition of �. For both alternatives (Figure 4), these are the points x D 28 and x D 38. Not surprisingly, the increase in
the power is less for those designs that already place some mass at these points.

Table II. Comparative powers of the designs in a size ˛ D 0:05 test of
H0W F D L versus H1W F Dˆ.

Design nD 33 Augmented1

ZW1 0.482 0.526
ZW2 0.342 0.395
BDP1 0.451 0.497
BDP2 0.358 0.410
LW1 0.066 0.153
LW2 0.426 0.474
LW3 0.066 0.153
LW4 0.304 0.360
LW5 0.425 0.473
LW6 0.298 0.353

1Two points added at each of x D 28 and x D 38.

Table III. Comparative powers of the designs in a size ˛ D 0:05 test of
H0W F D L versus H1W F D bdry.

Design nD 33 Augmented1

ZW1 0.787 0.829
ZW2 0.509 0.595
BDP1 0.776 0.819
BDP2 0.543 0.624
LW1 0.639 0.706
LW2 0.738 0.788
LW3 0.639 0.706
LW4 0.652 0.716
LW5 0.738 0.788
LW6 0.663 0.725

1Two points added at each of x D 28 and x D 38.
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Figure 4. Integrand of � versus x; probit alternative (left) and boundary alternative (right).

APPENDIX A.

Proof of Theorem 1
Under Hk , Yij has mean Fk

�
zTi �

�
, and so the mean of R is

�k D 2
X
i;j

	
Fk
�
zTi �

�
�i C NFk

�
zTi �

�
N�i


D 2nDk;n;

for

Dk;n D

Z "
Fk
�
zT �

�
log

F1
�
zT �

�
F0
�
zT �

� C NFk �zT �� log
NF1
�
zT �

�
NF0
�
zT �

�
#
d�n:

The variance under Hk is

�2k D 4
X
i;j

Fk
�
zTi �

�
NFk
�
zTi �

�
.�i � N�i /

2 D 4nVk;n;

for

Vk;n D

Z
Fk
�
zT �

�
NFk
�
zT �

�
log2

 
F1

F0

�
zT �

�, NF1
NF0

�
zT �

�!
d�n:

We apply the expansions

tn log

�
tn

t0

�
C .1� tn/ log

�
1� tn

1� t0

�
D
1

2

.tn � t0/
2

t0.1� t0/
C of.tn � t0/

2g;

t0 log

�
tn

t0

�
C .1� t0/ log

�
1� tn

1� t0

�
D�

1

2

.tn � t0/
2

t0.1� t0/
C of.tn � t0/

2g

to D1;n and D0;n, respectively, to obtain

D1;n D�C o.n
�1/;

D0;n D��C o.n
�1/:

We then apply the expansions

tn.1� tn/ log2
�
tn

t0

�
1� tn

1� t0

�
D
.tn � t0/

2

t0.1� t0/
C o.n�1/;

t0.1� t0/ log2
�
tn

t0

�
1� tn

1� t0

�
D
.tn � t0/

2

t0.1� t0/
C o.n�1/
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to V1;n and V0;n, respectively, to obtain

Vk;n D 2�C o
�
n�1

�
:

This gives the asymptotic means and variances stated in the theorem. The asymptotic normality is a consequence of
Liapounov’s central limit theorem. �
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