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Abstract
We discuss, and give examples of, methods for randomly implementing some minimax robust designs from the literature.
These have the advantage, over their deterministic counterparts, of having bounded maximum loss in large and very rich
neighbourhoods of the, almost certainly inexact, response model fitted by the experimenter. Their maximum loss rivals that
of the theoretically best possible, but not implementable, minimax designs. The procedures are then extended to more general
robust designs. For two-dimensional designs we sample from contractions of Voronoi tessellations, generated by selected
basis points, which partition the design space. These ideas are then extended to k-dimensional designs for general k.
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1 Introduction and summary

In this article we investigate various methods of implement-
ing experimental designs, robust againstmodel inadequacies.
We beginwith a review of the ‘minimax’ theory of robustness
of design, and of some minimax designs from the literature.
For thiswe initially followAtkinson (1996) andviewadesign
as any probability measure on the design space. It will be
seen that the designs which protect against a large class of
alternative response models are necessarily absolutely con-
tinuous, and so lose their optimality when approximated by
implementable, discrete (deterministic) designs. Two reme-
dies for this and other issues are proposed, suggested bywork
of Waite and Woods (2022), who propose and study random
design strategies.

The first remedy is a random design strategy termed jit-
tering. The designs are obtained by uniform sampling from
small neighbourhoods of an optimal set t∗ = {ti |i = 1, ..., n}
of points, chosen to represent the minimax design density.
Both completely random and stratified random–i.e. random
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within each neighbourhood–are considered. We assess these
designs by looking at the sample distributions of the mean
squared prediction errors incurred; with respect to thesemea-
sures both sampling strategies typically lead to designs very
nearly optimal, with the stratification strategy clearly outper-
forming its completely random counterpart.

We then investigate a strategy leading to cluster designs,
motivated by the observation that robust designs for a partic-
ular responsemodel tend to place theirmass near those points
ti ∈ t∗ at which classically optimal designs, focussed solely
on variance minimization, are replicated–but with their sup-
port points spread out in clusters of nearby points, rather than
being replicated. In clustering the idea is to sample from den-
sities concentrated near the ti . An advantage to this method
over jittering is that there is no need for the minimax design
to already have been derived.

Both these approaches parallel the ‘random translation
design strategy’ of Waite and Woods (2022), who sample
uniformly in small neighbourhoods of a chosen set of points,
but with some significant differences. The choice of t∗ in
jittering allows for designs whose maximum expected loss
rivals that of the minimax, absolutely continuous design. In
clustering, both the support of the non-uniformdensities from
which we sample, and the extent of their concentration near
the ti , are governed by a user-chosen parameter ν, repre-
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senting the bias/variance trade-off desired by a user seeking
robustness against model misspecifications.

Westart by applying these ideas in several one-dimensional
cases for which minimax designs–in continuous or discrete
design spaces–have previously been derived. The frame-
work is that the experimenter will fit a polynomial response,
and our random designs have points assigned at random
but in a structured manner near the t∗. The densities from
which we sample are chosen to capture the salient properties
of the minimax designs (in jittering) or classically optimal
but deterministic designs (in clustering). The structure we
impose–especially that of stratification–is shown, through a
number of examples, to lead to efficient designs approximat-
ing the variance minimizing properties of the deterministic
designs concentrated on the t∗. But the randomness, lead-
ing to the clustering effect–this alone is known to increase
robustness–ensures that the bias is bounded as well, even in
continuous design spaces in which the bias of deterministic
designs can be unbounded.

We then consider two-dimensional clustering applications
in which intervals containing the ti are replaced by less
regular regions formed by shrinking Voronoi tessellations
generated by t∗. We sample from spherical beta densities
centred on the ti , and suggest tuning constants which again
result in both efficiency and robustness. We finish with rec-
ommendations for the construction of k-dimensional designs
for k ≥ 3.

The examples were prepared using matlab; the code is
available on the author’s website.

2 Minimax robustness of design

The theory of robustness of design was largely initiated by
Box and Draper (1959), who investigated the robustness of
some classical experimental designs in the presence of cer-
tain model inadequacies, e.g. designs optimal for a low order
polynomial response when the true response was a polyno-
mial of higher order. Huber (1975) derived minimax designs
for straight line regression; these minimize the maximum
integrated mean squared error, with the maximum taken over
a large class of alternative responses. Wiens (1990, 1992)
extended these results to multiple regression responses and
in a variety of other directions–see Wiens (2015) for a sum-
mary of these and other approaches to robustness of design.
Specifically, the general problem is phrased in terms of an
approximate regression response

E [Y (x)] ≈ f ′ (x) θ, (1)

for p regressors f , each functions of q independent vari-
ables x, and a parameter θ . Since (1) is an approximation the
interpretation of θ is unclear; we define this target parameter

by

θ = argmin
η

∫
X
(
E [Y (x)] − f ′ (x) η

)2
μ (dx) , (2)

where μ (dx) represents either Lebesgue measure or count-
ing measure, depending upon the nature of the design space
X .We then defineψ (x) = E [Y (x)]− f ′ (x) θ . This results
in the class of responses E [Y (x)] = f ′ (x) θ +ψ (x), with–
by virtue of (2)–ψ satisfying the orthogonality requirement

∫
X

f (x) ψ (x) μ (dx) = 0. (3)

Assuming that X is rich enough that the matrix A =∫
X f (x) f ′ (x) μ (dx) is invertible, the parameter defined
by (2) and (3) is unique.

We identify a designwith its designmeasure–a probability
measure ξ (dx) on X . Define

Mξ = ∫
X f (x) f ′ (x) ξ (dx) ,

bψ,ξ = ∫
X f (x) ψ (x) ξ (dx) ,

and assume ξ is such that Mξ is invertible. The covari-

ance matrix of the least squares estimator θ̂ , assuming
homoscedastic errors with variance σ 2

ε , is
(
σ 2

ε /n
)
M−1

ξ , and

the bias is E
[
θ̂ − θ

]
= M−1

ξ bψ,ξ ; together these yield the

mean squared error (mse) matrix

mse
[
θ̂
]

= σ 2
ε

n
M−1

ξ + M−1
ξ bψ,ξ b′

ψ,ξ M
−1
ξ

of theparameter estimates,whence themseof thefittedvalues
Ŷ (x) = f ′ (x) θ̂ is

mse
[
Ŷ (x)

]
= σ 2

ε

n
f ′ (x) M−1

ξ f (x)+
(
f ′ (x) M−1

ξ bψ,ξ

)2
.

A loss function that is commonly employed is the integrated
mse of the predictions:

imse (ξ |ψ) =
∫
X
mse

[
Ŷ (x)

]
dx

= σ 2
ε

n
tr

(
AM−1

ξ

)
+ b′

ψ,ξ M
−1
ξ AM−1

ξ bψ,ξ

+
∫
X

ψ2 (x) μ (dx) . (4)

The dependence on ψ is eliminated by adopting a min-
imax approach, according to which one first maximizes
(4) over a neighbourhood of the assumed response. This
neighbourhood is constrained by (3) and by a bound∫
X ψ2 (x) μ (dx) ≤ τ 2/n, required so that errors due to bias
and to variation remain of the same order, asymptotically.
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Huber (1975) took X to be an interval of the real line
and assumed that the minimax design measure had a density
m (x); Wiens (1992) justified this assumption by proving
that any design whose design spaceX has positive Lebesgue
measure, andwhich places positivemass on a set of Lebesgue
measure zero, necessarily has supψ imse(ξ |ψ) = ∞. Thus in
order that a design on an interval, hypercube, etc. have finite
maximum loss, it must be absolutely continuous. For such a
design maxψ imse(ξ |ψ) is

(
σ 2

ε + τ 2
)
/n times

Iν (ξ) = (1 − ν) tr AM−1
ξ + νchmaxK ξ H

−1
ξ , (5)

where

Hξ = Mξ A−1Mξ , K ξ =
∫
X

f (x) f ′ (x)m2 (x) dx,

chmax denotes the maximum eigenvalue and ν = τ 2
/

(
σ 2

ε + τ 2
) ∈ [0, 1], representing the relative importance, to

the experimenter, of errors due to bias rather than to vari-
ance. Our examples in this article use ν = .5; other values
tell much the same story.

With

Gξ = K ξ − Hξ

=
∫
X

[(
m (x) I p − Mξ A−1

)
f (x)

]
[(

m (x) I p − Mξ A−1
)
f (x)

]′
dx,

rξ (x) = τ√
n
G−1/2

ξ

(
m (x) I p − Mξ A−1

)
f (x) , (6)

the least favourable contaminant is

ψξ (x) = r′
ξ (x) βξ , (7)

where βξ is the unit eigenvector belonging to the maximum

eigenvalue of G1/2
ξ H−1

ξ G1/2
ξ + I p. See Wiens (2015) for

details and further references.

2.1 Random designs

In the following sections we construct distributions 	(x),
with densities φ (x), and propose randomly choosing design
points from 	. An n-point design D = {xi }ni=1 chosen in
this way has design measure δ = n−1 ∑ δxi , where δxi is
point mass at xi ∼ 	. By the preceding any such design has
unbounded imse once it is chosen. Of interest however is the
expected imse against a common alternative ψ ; for this we
take the least favourable contaminant ψ	, given by (6) and
(7) but with ξ replaced by 	. In the Appendix we show that

E	 [imse (δ|ψ	)] =
(
σ 2

ε + τ 2
)

/n × Jν (	) , (8)

where

Jν (	) = E	 [ jν (δ)] , for

jν (δ) = (1 − ν) tr AM−1
δ + νγδ , and

γδ = β ′
	G−1/2

	

(
MφM

−1
δ − M	A−1

)

A
(
M−1

δ Mφ − A−1 M	

)
G−1/2

	 β	 + 1. (9)

Here Mδ
de f= 1

n

∑
xi∈D f (xi ) f ′ (xi ) and Mφ

de f= 1
n

∑
xi∈D

f (xi ) φ (xi ) f ′ (xi ); β	 is the unit eigenvector belonging to
the maximum eigenvalue of G1/2

	 H−1
	 G1/2

	 + I p.
Note that both Mδ and Mφ are random. The expectation

in (9) can be estimated by averaging over a large number of
realizations of δ–we do this in Sects. 4 and 5. In the special
case that φ (x) is constant on its support–as is the case in
§3–M−1

δ Mφ is a constant multiple of I p, γδ is non-random,
and these formulas simplify considerably–see (12).

An efficient design strategy should result in Jν (	) being
close to Iν (	), with the jν (δ) being concentrated near their
expectation.

A referee has pointed out that a more natural measure is
perhaps the maximizer ψ0 of Eδ [imse (δ|ψ)]; this turns out
to be computationally infeasible in all but the simplest sce-
narios. And see §3.1, where we argue that a contaminant less
favourable thanψ	 is difficult to imagine. See also Fig. 4d–f.

3 Jittering

There are obvious issues in implementing an absolutely con-
tinuous design measure within this framework, since any
discrete approximation necessarily suffers from the draw-
back, as above, that the maximum loss is infinite. Noting that
in this case the least favourable contaminating function ψ

is largely concentrated on a set of measure zero–an unlikely
eventuality against which to seek protection–(Wiens 1992,
p. 355) states that “Our attitude is that an approximation to
a design which is robust against more realistic alternatives is
preferable to an exact solution in a neighbourhood which is
unrealistically sparse.” He places one observation at each of
the quantiles

ti = ξ−1
(
i − 1/2

n

)
, i = 1, ..., n, (10)

which is the n-point design closest to ξ in Kolmogorov dis-
tance (Fang andWang 1994; see Xu and Yuen 2011 for other
possibilities).

Despite the disclaimer above, such discrete implementa-
tions have become controversial; see in particular Bischoff
(2010). In this article we investigate a resolution to these dif-
ficulties offered by Waite and Woods (2022), who propose
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randomly sampling the design points from uniform densities
highly concentrated in small neighbourhoods of an optimally
chosen set of deterministic points. In our case we propose
random sampling from a piecewise uniform density

φn (x; c) = 1

2c

n∑
i=1

I
[
ti − c

n
≤ x ≤ ti + c

n

]
, (11)

for chosen c ∈ (0, 1).
We illustrate the method in the context of straight line

regression – X = [−1, 1] and f (x) = (1, x)′–for which
Huber (1975) obtained the minimax density

m (x) = 3
(
x2 − α

)+
/d (α) ,

with α chosen to minimize (5), which in terms of

μ2(α) = ∫ 1
−1 x

2m (x) dx,

κ0(α) = ∫ 1
−1 m

2 (x) dx,

κ2(α) = ∫ 1
−1 x

2m2 (x) dx,

is

Kν(α) = 2 (1 − ν)

(
1 + 1

3μ2

)
+ 2ν max

(
κ0,

κ2

3μ2
2

)
.

Apart from minor modifications resulting from the change
in the support to [−1, 1] from [−1/2, 1/2], the details of the
construction of m are as in Huber (1975). We assume that
max

(
κ0, κ2/3μ2

2

) = κ0 and check this once m is obtained.
We find

d (α) =
{

2 (1 − 3α) , α ≤ 0,

2
(
1 − √

α
)2 (1 + 2

√
α
)
, α ≥ 0,

with α and ν related by

ν−1 =

⎧⎪⎨
⎪⎩

1 + 9(3−5α)2

25(1−3α)3
, α ≤ 0,

1 + 9
(
3+6

√
α+4α+2α3/2

)2
25(1−√

α)
2
(1+2

√
α)

3 , α ≥ 0.

The limiting cases are (i) α → −∞, ν → 1,m (x) → .5 (the
uniform density), (ii) α = 0, ν = 25/106, m (x) = 3x2/2,
and (iii) α → ∞, ν → 0, m (x) → point masses of 1/2 at
±1.

It is a fortuitous consequence of the choice of imse as loss
that for all ν ∈ [0, 1], max

(
κ0, κ2/3μ2

2

) = κ0, the choice
used in the derivation of the minimizing densitym. For other
common choices–D-, A- and E-optimality for instance–the
situation is far more complicated. See Daemi and Wiens
(2013).

3.1 Jittered designs for SLR

In the construction of the sampling density (11) for this exam-
ple we will take α ≤ 0–the case of most interest from a
robustness standpoint–and then for m as above, the symmet-
rically placed points ti are determined by

t3i − 3αti = (1 − 3α)

(
2i − 1 − n

n

)
, i = 1, ..., n.

This equation has an explicit solution furnished byCardano’s
formula:

ti =
(
−s/2 + √

�
)1/3 +

(
−s/2 − √

�
)1/3

,

for

s = − (1 − 3α)

(
2i − 1 − n

n

)
, � = s2/4 − α3 > 0.

From (10), and the bowl-shape ofm(x), one infers that the
distances between adjacent ti are smallest near ±1, largest
near 0. Thus the intervals of support of φn will be non-
overlapping, and within [−1, 1], as long as t1 − c/n ≥ −1,
i.e. c ≤ n (1 + t1). Note that the interpretation of c is that it is
the proportion of the design space being randomly sampled.

In Fig. 1a we plot φn (x; c), when placing equal weight on
protection against bias versus variance (ν = .5), 50% of the
design space to be sampled from 	 (c = .5) and n = 10.
The ti are the quantiles arising from m(x) ∝ (

x2 + .325
)
.

A comparison of the maximum loss (5) of ξ versus that of
the design measure 	 corresponding to φ is obtained from

Iν (ξ) = 2 (1 − ν)

(
1 + 1

3μ2(α)

)

+ ν

(
1 + 5

4
(3μ2(α) − 1)2

)
,

Iν (	) = 2 (1 − ν)

(
1 + 1

3λ2(c)

)
+ ν

c
max

(
1,

1

3λ2(c)

)
,

where

μ2(α) = 3 − 5α

5 (1 − 3α)
, and

λ2(c) =
∫ 1

−1
x2φn (x; c) dx = 1

n

n∑
i=1

t2i + c2

3n2
.

As noted in §2.1, E	 [ imse (δ|ψ	)] simplifies considerably
for these jittered designs and then Jν (	) is very similar to
Iν (	), plotted in Fig. 1c. We show in the Appendix that in
this case (9) becomes

Jν (	) = (1 − ν) E	

[
tr AM−1

δ

]
+ νγ0,where
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Fig. 1 a Jittered design density
φn (x; c) for an approximately
linear univariate response using
ν = .5, c = .5, n = 10. b√
nψ	 (x; c) /τ . c Iν (	) vs. c;

horizontal line at Iν (ξ) = 2.31

γ0 = 1

c
max

(
1,

1

3λ2 (c)

)
, (12)

and that, with IS (x; c) = I (φn (x; c) > 0), the least
favourable contaminant for 	 is

ψ	 (x; c) = τ√
n

⎛
⎜⎜⎝

IS (x; c) − 1
γ0√

2c
(
1 − 1

γ0

)

⎞
⎟⎟⎠ ·

(
x√
λ2

)I (λ2(c)<1/3)

.(13)

In Fig. 1b we plot a scaled version of ψ	 (x; c). The con-
taminant ψ	 has the effect of changing the uncontaminated
response E [Y (x)] = θ0 + θ1x to (θ0 − k) + θ1x +
2k I (φn (x; c) > 0) for (when c = .5) k = τ/

√
2n. Thus it

biases the intercept and then places contamination uniformly
on the support of φn . In the parlance of game theory, it is dif-
ficult to see how Nature, knowing 	 but not δ and assumed
malevolent, could respond less favourably than this.

For ease in the estimation of Jν (	) we note that

E	

[
tr AM−1

δ

]
= 2

{
1 + E	

[(
μ2

δ + 1/3
)
/σ 2

δ

]}
, where μδ

and σ 2
δ are the mean and variance of the design. See Fig. 2 for

comparative values illustrating the close agreement between
Jν (	) and Iν (	).

The plots reveal that the loss associated with the design	

decreases with c, i.e. as the design becomes closer to the uni-
form design on all ofχ , for which the bias vanishes. This is in
line with the remark of Box and Draper (1959): “The optimal
design in typical situations in which both variance and bias
occur is very nearly the same as would be obtained if vari-
ance were ignored completely and the experiment designed
so as to minimize bias alone.”

3.1.1 Sampling methods

We constructed 1000 completely random and stratified
random designs, in order to assess their performance. A com-
pletely random design δ consisted of n = 10 points chosen
from φn (x; c). The resulting values of jν (δ) are plotted in
Fig. 2a, c. Stratification consisted of choosing one design
point at random from each bin–Fig. 2b, d. The sample aver-

ages of the losses from the randomized designs were smaller
and closer to Iν (	) under the stratified sampling scheme,
andmore concentrated around their expectation of Jν (	), as
exhibited by the much shorter tail in (b). In a further simula-
tion, for which the output is not displayed here, we estimated
Jν (ξ), as at (9), by drawing 1000 samples from the mini-
max densitym (x) and averaging their imse. The values { jν}
showed more variation than those plotted in Fig. 2a, and with
an average of 2.72–significantly larger than the target value
Iν (ξ) = 2.31. From thiswe infer that jittering combinedwith
stratification gives an efficient, structured implementation of
the minimax solution.

Simulations using other inputs also resulted in these same
conclusions-that our random design strategies typically yield
designs very close to optimal with respect to our robustness
and efficiency requirements, and that do not suffer from the
drawback of deterministic designs of having infinite maxi-
mum loss.

4 Cluster designs in one dimension

Working in discrete design spaces, Wiens (2018) obtained
minimax robust designs for a variety of approximate
responses. Those shown in Fig. 3 are for cubic regression.
The classically I-optimal design (ν = 0) minimizing inte-
grated variance alone was derived by Studden (1977) and
places masses of .1545 and .3455 at ±1 and ±.4472. The
robust designs can thus be described as taking the repli-
cates of the classical design and spreading their mass out
(‘clustering’) over nearby regions. This same phenomenon
has frequently been noticed in other situations (Fang and
Wiens 2000; Heo et al. 2001 for instance).

In this section we aim to formalize this notion in order to
obtain designs competingwith theminimax designs, but with
finite maximum loss even in continuous design spaces, and
having the advantage of being much more easily derived–
there is no need for the minimax designs to be known. We
consider only one-dimensional designs in this section, and
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Fig. 2 Values of jν (δ) and their
averages, estimating Jν (	),
from 1000 jittered designs δ

using ν = .5. Top: c = .5;
bottom: c = .1. a, c: Completely
random sampling. b, d:
Stratified random sampling

Fig. 3 Minimax designs for
approximate cubic regression

will illustrate the methods in polynomial response models of
degrees p − 1 = 1, 2, 3.

Suppose that a given static design has p support points
t1 < · · · < tp in [−1, 1]. Define midpoints si =
(ti + ti+1) /2, i = 1, ..., p − 1. Put s0 = min (−1, t1) and
sp = max

(
1, tp

)
. Then the p intervals Ii = {[

si−1, si
]
,

i = 1, ..., p} cover [−1, 1] and have the properties that
ti ∈ Ii and that any point in Ii is closer to ti than to any
t j , j 
= i . This is then a trivial example of a Voronoi tessel-
lation, to be considered when we pass to higher dimensions.

We propose designs consisting of points sampled from
Beta densities on subintervals of the Ii . Specifically, for i =
1, ..., p let c = c (ν) ∈ [0, 1] satisfy c (0) = 0 and c (1) = 1.
Put Ji (c) = [

ti − c (ti − si−1) , ti + c (si − ti )
] ≡ [ki , li ],

with length |Ji | = (li − ki ) = c (si − si−1) = c × |Ii |. Let
βa,b (x) be the Beta(a, b) density on [0, 1]. Then

1

|Ji |βa,b

(
x − ki
|Ji |

)
, x ∈ Ji (c) (14)
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is this density, translated and scaled to Ji (c). The interpre-
tation of ‘c’ is as before–it is the fraction of the design space
to be sampled. Here and in the following examples we use
c = νk where k is the dimension of x, so that c varies at the
same rate as the volume of χ as the dimensionality changes.

The parameters (ai , bi ) are chosen so that the mode of
(14) is at ti ∈ Ji (c), hence the mode δi ∈ [0, 1] of βa,b (x)
is given by

δi ≡ ti − ki
li − ki

=
⎧⎨
⎩

ai−1
ai−1+bi−1 , ai , bi > 1,

0, ai ≤ 1 < bi ,
1, bi ≤ 1 < ai .

Then

(ai − 1) (1 − δi ) = (bi − 1) δi . (15)

If δi 
= 0, 1 we determine one of (ai , bi ) in terms of the other
through (15). We define ai in terms of bi for δi < .5 and
bi in terms of ai for δi > .5; this ensures that (16) below is
symmetric. If t1 = −1 then δ1 = 0 andwe set a1 = 1. If tp =
1 then δp = 1 and we set bp = 1. In each case the remaining
parameter is set equal to 1/c, so that the density tends to a
point mass at ti as ν → 0 and to uniformity as ν → 1.

The final density φ (·) from which the design points are
to be sampled is a weighted average of those at (14), with
weights proportional to the lengths |Ii | of the Ii . Since |Ji | =
c |Ii | we obtain

φ (x; ν) = 1

2c

p∑
i=1

βai ,bi

(
x − ki
|Ji |

)
I (x ∈ Ji ) . (16)

Motivated by the designs of §3.1 we recommend stratified
sampling, by which the sample consists of ≈ n |Ii | /2 points
drawn from (14), subject to an appropriate rounding proce-
dure.

4.1 Polynomial regression

We illustrate these proposals in the context of approximate
polynomial responses of degrees p − 1 = 1, 2, 3. As also
suggested in ‘Heuristic 5.1’ of (Waite and Woods 2022, p.
1462), t∗ will consist of the support points of the classical
I-optimal designs. These I-optimal designs ξ∗are obtained
from Lemma 3.2 of Studden (1977), and are as follows.

p = 2: ξ∗ (±1) = .5,
p = 3: ξ∗ (±1) = .25, ξ∗ (0) = .5,

p = 4: ξ∗ (±1) = 1

2
(
1+√

5
) ≈ .1545, ξ∗

(
± 1√

5
≈

±.4472) =
√
5

2
(
1+√

5
) ≈ .3455.

Figure4 gives the sampling densities (16), together with
the subsample sizes when n = 10. Figure4a gives output for

the approximate linear model, with a maximum imse, as at
(5), of Iν (	) = 2.804. This compares very favourably with
the design of Fig. 1, especially given that its construction does
not require the minimax design to be given. This latter point
is especially germane for the design of Fig. 4b, since it is the
analogue of the absolutely continuous minimax designs for
approximate quadratic regression derived–with substantial
theoretical and computational difficulty–by Shi et al. (2003)
using methods of non-smooth optimization and by Daemi
and Wiens (2013) using completely different methods.

Figure5 gives values of jν (δ) from 1000 random designs,
together with their average, estimating Jν (	). On average
the random designs perform almost as well against ψ	–
plotted in Fig. 4d–f–as the continuous design 	.

It is interesting to note–especially for the designofFig. 4c–
the close agreement between the I-optimal design weights
above, and the weights used in the computation of φ and
detailed in the caption.

See Table 1, where the variance and maximum squared
bias components of Iν are presented for the designs of Fig. 4
(ν = .5) and for the corresponding designs with ν = .04,
very closely approximating the I-optimal design (ν = 0)with
maximum loss I0 = ∞. That the robustness of the cluster
designs is achieved for such a modest premium in terms of
increased variance is both startling and encouraging.

5 Multidimensional cluster designs

See Fig. 6, where a robust design, derived for fitting a full
second order bivariate model–intercept, linear, quadratic and
interaction terms–is depicted. It is a discrete implementation
of a design density, optimally robust against model misspec-
ifications in a certain parametric class of densities - see Heo
et al. (2001) for details. This design can roughly be described
as an inscribed Central Composite Design (CCD) with ‘clus-
tering’ in place of replication. It serves as motivation for the
ideas of this section, which we illustrate in the context of
k-dimensional, spherical CCD designs as are often used to
fit second order models. Such designs utilize 2k + 2k + 1
points {t i } consisting of 2k corner points with t i, j = ±1

( j = 1, ..., k), 2k axial points t i =
(
0, ...,±√

k, ..., 0
)
and

a centre point t i = (0, ..., 0, ..., 0).
In this and other multidimensional cases we propose

choosing design points from spherical densities concentrated
on neighbourhoods of the t i . A spherical density on a k-
dimensional hypersphere

S(k) (t, R) = {x |‖x − t‖ ≤ R }
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Fig. 4 Top: Cluster design
densities φn (x; ν = .5); typical
stratified samples using weights
a {.5, .5}, b {.25, .5, .25}, c
{.14, .36, .36, .14}. Bottom:
Scaled least favourable
contaminants

√
nψ	 (x) /τ

Fig. 5 Values of jν (δ) from
1000 cluster designs for
polynomial regression (ν = .5,
n = 10) and their averages,
estimating Jν (	)

2.5 3 3.5
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with centre t and radius R, in which the scaled norm
‖x − t‖ /R has a Beta (k, b) density, is given by

f (k) (x; t, R, b) = �
( k
2

)
2πk/2Rkβ (k, b)

·
(
1 − ‖x − t‖

R

)b−1

·

I
(
x ∈ S(k) (t, R)

)
.

Such a density has mode t and approaches a point mass at t
as b → ∞, and uniformity as b → 1. The choice of k as the
first parameter of the beta density ensures that f is decreasing
in ‖x − t‖ and square integrable (required for the evaluation
of the matrix K	 as at (5)).

Table 1 Performance measures for the designs of Fig. 4

Variance Max sqd. bias Iν

ν = .5 ν = .04 ν = .5 ν = .04 ν = .5 ν = .04

p = 2 2.94 2.67 2.67 319 2.80 15.3

p = 3 4.65 4.27 2.62 213 3.64 12.6

p = 4 6.49 6.02 2.54 193 4.51 13.5

A sample value x from f (k) (x; t, R, b) is x = t + R y,
where y ∼ f (k) (·; 0, 1, b) obtained by drawing a value of
ρ = ‖ y‖ ∼ Beta(k, b) and, independently, drawing angles
θi , −π/2 < θi ≤ π/2 (i = 1, ..., k − 2) with densi-
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Fig. 6 Design for fitting a full second order model; n = 48

tiesψi (θ) = cosk−i−1 θ
/
β (1/2, (k − i) /2)—equivalently,

cos2 θi ∼ Beta( 12 ,
k−i
2 )—and θk−1 ∼ Uni f (−π, π).

Then

y1 = ρ sin θ1,

y2 = ρ cos θ1 sin θ2,

y3 = ρ cos θ1 cos θ2 sin θ3,

· ··
yk−1 = ρ cos θ1 cos θ2 · · · cos θk−2 sin θk−1,

yk = ρ cos θ1 cos θ2 · · · cos θk−2 cos θk−1.

To sample θi for i < k − 1 we draw z ∼ Beta( 12 ,
k−i
2 ) and

set θi = ± arccos
√
z, each with probability 1/2.

5.1 Two dimensional cluster designs on tessellations

In Fig. 7a, the nine points {t i } which are displayed consist
of four corner points (−1,±1), (1,±1), four axial points(
±√

2, 0
)
,
(
0,±√

2
)
and the centre point (0, 0). These are

the generators of the Voronoi tessellation pictured - a tiling
with the property that, within the tile Ti containing t i , all
points are closer to t i than to any t j , j 
= i . Figure7b gives
a more detailed depiction of the tessellation, restricted to the
design space χ = [−2, 2] × [−2, 2]. Within each tile Ti ,
of area |Ti |, we have also plotted a subtile Ji (c) which is a
contraction of Ti with fixed point t i and area |Ji (c)| = c |Ti |.
These are then the analogues of the subintervals Ji (c) ⊆ Ii
from §4, and ‘c’ has the same interpretation–the fraction of
the design space to be sampled. Surrounding each Ji (c) is
the smallest enclosing circle S(2) (t i , Ri (c)).

We sample design points from S(2) (t i , Ri (c)), accepting
only those points which lie in Ji (c). We specify b = 1/c and
c = ν2, then f (2) (x; t i , Ri (c) , b) approaches a point mass
at t i as ν → 0, and uniformity on S(2) (t i , Ri (c)) ⊇ Ti as

ν → 1. With

qi (ν) =
∫
Ji (c)

f (2) (x; t i , Ri (c) , b) μ (dx) ,

the density of those points accepted into the design upon
being drawn from S(2) (t i , Ri (c)) is

f (2) (x; t i , Ri (c) , b)

qi (ν)
I (x ∈ Ji (c)) .

We again do stratified sampling, with weights ωi =
|Ti |

/∑ |Ti | proportional to the area |Ti |, whence the density
of the design on χ is

φ (x; ν) =
9∑

i=1

ωi

qi (ν)
f (2) (x; t i , Ri (c) , b) I (x ∈ Ji (c)) .

See Fig. 8. Although we evaluate qi (ν) by numerical inte-
gration, an estimate can be computed after the sampling is
done; it is the proportion of those points which were drawn
fromS(2) (t i , Ri (c)) and then accepted into the sample. This
estimate turns out to be quite accurate if an artificially large
sample is simulated.

Figure9 illustrates the results of applying the methods of
the preceding discussion. We chose a total sample size of
n = 50, ν = .5, and obtained subsample sizes ni = nωi ,
rounded to {7, 7, 7, 7, 5, 5, 5, 5, 2} with each corner point
being allocated 7, each axial point being allocated 5, and
the remaining 2 in the centre. The entire sample is shown in
Fig. 9a, with b illustrating the details for Tile 8. The required
5 points were found after 7 points were drawn fromS8. In all,
13 points were rejected as not belonging to the appropriate
subtile.

We repeated this with a total sample size of n = 100.
See Fig. 10. With the larger sample size the random designs
seem tomore accurately duplicate the behaviour of the parent
design 	–a phenomenon noticed as well in the one dimen-
sional cluster designs of the previous section.

5.2 Extensions to k > 2

Although the theory of §5.1 extends easily to higher dimen-
sions, the lack of appropriate software for constructing
and manipulating Voronoi tessellations becomes a severe
drawback. But the general idea of sampling from spherical
distributions centred on small neighbourhoods of the {t i } can
still be applied, albeit in a less structured manner. Let {t i }qi=1
be the q = 2k + 2k + 1 support points of a spherical CCD
in variables x = (x1, ..., xk)′, as described at the beginning
of this section. The minimum distance between these points

is min
(
2,

√
k
)
, and so hyperspheres S (t i , r0) centred at the
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Fig. 7 a Voronoi tessellation
generated by the points {t i }. b
Tessellation restricted to
χ = [−2, 2]2 with subtiles
{Ji (.25)} and enclosing circles{S(2) (t i , Ri )

}

Fig. 8 Sampling density
φ (x; ν = .5) constructed for a
robust, clustered CCD in two
dimensions

Fig. 9 a A typical random CCD
of size 50; ν = .5. b Details of
the subsample of 5 points (‘o’)
drawn from J8 (.25). Rejected
points are marked as ‘x’
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Fig. 10 Values of jν (δ) from
1000 stratified, clustered CCDs
(ν = .5) and their averages,
estimating Jν (	). a n = 50, b
n = 100

Fig. 11 a Spheres S(3) (t i , r0ν),
i = 1, ..., 15 for a three
dimensional spherical CCD and
ν = .5. b Centre sphere
S(3) (0, r0ν) with sampled
points

t i and with radius r0 = min
(
1,

√
k/2

)
are disjoint. Define

subspheres

Ji (c) = S(k)
(
t i , r0c1/k

)
, 0 < c ≤ 1.

Then
∫
I (x ∈ Ji (c)) dx = |Ji (c)| = c |S (t i , r0)|. The

density of x on Ji (c) is f (k)
(·; t i , r0c1/k, b).We again spec-

ify b = 1/c and c = νk . Then for user chosen weights {ωi }
the sampling density is

φ (x; ν) =
q∑

i=1

ωi f
(k) (x; t i , r0ν, 1/ν) I

(
x∈S(k) (t i , r0ν)

)
.

See Fig. 11 for an example with k = 3. We sampled a
design of size n = 80 with subsamples sizes ni = 5 (i < 15)
and n15 = 10.

Appendix

A.1 Derivations for §2.1

For an n-point design D = {xi }ni=1 with design measure
δ = n−1 ∑ δxi define

F = ( f (x1) , · · ·, f (xn))′ ,
ψ	 = (ψ	 (x1) , ..., ψ	 (xn))′ ,
Dφ = diag (φ (x1) , ..., φ (xn)) .

Then Mφ = 1
n F

′DφF. Define as well

Mδ =
∫

χ

f (x) f ′ (x) δ (dx)

= 1

n

∑
xi∈D

f (xi ) f ′ (xi ) = 1

n
F′F,

bψ	,δ =
∫

χ

f (x) ψ	 (x) δ (dx)

= 1

n

∑
xi∈D

f (xi ) ψ	 (xi ) = 1

n
F′ψ	.
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Using (7),

ψ	 (xi ) = r′
	 (xi ) β	

= τ√
n

(
φ (xi ) f ′ (xi ) − f ′ (xi ) A−1M	

)
G−1/2

	 β	,

(A.1)

so that

ψ	 = τ√
n

(
DφF−FA−1M	

)
G−1/2

	 β	, (A.2)

bψ	,δ = τ√
n

(
Mφ − Mδ A−1M	

)
G−1/2

	 β	. (A.3)

From (4),

imse (δ|ψ	) = σ 2
ε

n
tr

(
AM−1

δ

)
+ b′

ψ	,δM
−1
δ AM−1

δ bψ	,δ

+
∫

χ

ψ2
	 (x) μ (dx) ;

substituting (A.2) and (A.3) gives

imse (δ|ψ	) = σ 2
ε

n
tr

(
AM−1

δ

)
+ τ 2

n
γδ, for

γδ = β ′
	G−1/2

	

(
MφM

−1
δ − M	A−1

)

A
(
M−1

δ Mφ − A−1 M	

)
G−1/2

	 β	 + 1.

Now (8) and (9) are immediate.

A.2 Derivations of (12) and (13)

To evaluate (9) and establish (12) we first note that since
φ (xi ) ≡ (2c)−1 on its support, we have that MφM

−1
δ =

(2c)−1 I2, and then (since β ′
	β	 = 1)

γδ = β ′
	G−1/2

	

(
1

2c
I2 − M	A−1

)

A
(

1

2c
I2 − A−1M	

)
G−1/2

	 β	 + 1

= β ′
	G−1/2

	

(
1

4c2
A − 1

c
M	 + M	A−1M	

)

G−1/2
	 β	 + 1

= β ′
	G−1/2

	

(
1

4c2
A − 1

c
M	 + H	 + G	

)
G−1/2

	 β	.

(A.4)

A calculation gives

G1/2
	 H−1

	 G1/2
	 + I2 = 1

c
diag

(
1,

1

3λ2 (c)

)
, (A.5)

so that the maximum eigenvalue is γ0 and

β	 =
{

(1, 0)′ , if λ2 (c) ≥ 1/3,
(0, 1)′ , if λ2 (c) < 1/3.

The choice ofβ	 is somewhat arbitrary ifλ2 (c) = 1/3, since
then (A.5) is a multiple of I2. We claim that

γδ ≡ γ0, (A.6)

from which (12) follows, since then γδ does not depend on
the design and so is non-random.

To establish (A.6), use A = M	H−1
	 M	 = 4c2K	H−1

	

K	 and M	 = 2cK	 in (A.4) to obtain

γδ = β ′
	

[
G−1/2

	

(
K	H−1

	 K	 − K	

)
G−1/2

	

]
β	.

Substituting K	 = G	 + H	, this becomes

γδ = β ′
	

[
G1/2

	 H−1
	 G1/2

	 + I2
]
β	 = γ0,

as required.
An evaluation of (A.1), using

A = diag (2, 2/3) , M	 = diag (1, λ2 (c)) , and

G	 = 1

2c
diag ((1 − c) , λ2 (c) (1 − 3cλ2 (c))) ,

gives

ψ	 (x; c) = τ√
n

(
2cφn (x; c) − c√

2c (1 − c)
,

x
2cφn (x; c) − 3cλ2 (c)√
2cλ2 (c) (1 − 3cλ2 (c))

)
β	.

Using 2cφn (x; c) = IS (x; c), and
c

γ0
=

{
c, if λ2 (c) ≥ 1/3,

3cλ2 (c) if λ2 (c) < 1/3,

this becomes

ψ	 (x; c) = τ√
n

·

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

IS(x;c)− 1
γ0√

2c
(
1− 1

γ0

) , if λ2 (c) ≥ 1/3,

x√
λ2

IS(x;c)− 1
γ0√

2c
(
1− 1

γ0

) if λ2 (c) < 1/3,
,

which is (13).
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