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ABSTRACT

We construct those distributions minimizing Fisher information for scale in Kolmogorov neigh-
bourhoods K.(G) = {F|sup,|F(x) — G(x)| < €} of d.f’s G satisfying certain mild conditions.
The theory is sufficiently general to include those cases in which G is normal, Laplace, logistic,
Student’s ¢, etc. As well, we consider G(x) = 1 — e, x > 0, and correct some errors in the
literature concerning this case.

RESUME

On construit les lois qui minimisent I’information de Fisher pour I’échelle dans des voisinages
de Kolmogorov X, (G) = {F|sup,|F(x) — G(x)| < €} de fonctions de répartition G, satisfaisant
des conditions peu restrictives. La théorie est assez générale pour permettre a la loi G d’étre,
par exemple, gaussienne, de Laplace, logistique ou ¢ de Student. On considére aussi le cas ou
G(x) =1 —e™, x > 0, et certaines erreurs apparaissant dans la littérature a propos de celui-ci
sont corrigées.

1. INTRODUCTION AND SUMMARY

In the theory of robust, minimax variance estimation as developed by Huber (1964,
1981), a frequently occurring problem is that of determining that member of a certain
class of distributions, representing all “reasonable” departures from a “target” distribution,
which minimizes the Fisher information for the quantity being estimated. Such departures
are often modelled by Kolmogorov neighbourhoods:

K(G) = {F

_Sup |F(x) — G(x)| < e}

in which € and G are known and fixed.

Huber (1964) minimized the information for location in K (®), e < 0.0303. Here,
® is the standard normal d.f. Sacks and Ylvisaker (1972) extended this to the range
0.0303 < € < 0.5. Wiens (1986) considered this problem for general, symmetric G.
Collins and Wiens (1989) extended these results to Lévy neighbourhoods of d.f.’s G
satisfying conditions similar to those imposed in Wiens (1986).
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The problem of minimizing the information for scale in Kolmogorov neighbourhoods
has hitherto not received a systematic treatment in the literature. Note that if ¢ is a
scale parameter for a r.v. X, then log o is a location parameter for log |X|. By this
device, certain results for location estimation may be transferred to the problems of scale
estimation. This approach was taken by Huber (1981) in minimizing the information for
scale in the gross-errors neighbourhood

G(®)={F =(1 —e)®+eH, H arbitrary}.

The log transformation was useful here, since under it the gross-errors structure is
maintained and there already existed a theory of minimum information for location
for G.(G), with G nonsymmetric.

The Kolmogorov neighbourhood structure is maintained under the log transformation.
However, a common requirement in all of the aforementioned papers on minimizing
information for location in X(G) is that G be symmetric. This symmetry is typically
destroyed by taking the logarithms. Thus, the problem of minimizing the information for
scale requires either a direct approach, or the derivation of a location estimation theory
which is valid in X (G) for nonsymmetric G.

Each approach has its merits. The former was used in the Ph.D. thesis of Wu (1990),
upon which the present paper is largely based. For added clarity of presentation we now
adopt the latter approach. This allows us to present some preliminary results as extensions
of location-theory results of Huber (1964, 1981) and Wiens (1986).

We begin with some preliminary definitions and motivating remarks, then outline the
transformation to a location problem and present some general theory. In Section 3
some specific solutions are presented. These are general enough to include the cases
G = ®,G the Laplace d.f., and more generally G = G; with density proportional to
exp (—|x|'/),1 > 0. The logistic and Student’s ¢ distributions are covered as well. We
also consider the case in which G(x) = 1 — e *,x > 0; in so doing we correct some
errors made in Thall (1979).

2. GENERAL THEORY

The proof of Theorem 1 below is completely analogous to that of Theorem 4.4.2 of
Huber (1981), and so is omitted.

DEeFINITION . Fisher information for scale of a distribution F on the real line is

00 2
{/ xx'(x) dF(x)}

I(F; l)—sup
/ x*(x) dF (x)

’

where the sup is taken over all continuously differentiable functions Y with compact
support, satisfying [*° ¥*(x) dF(x) > 0.

THEOREM 1. The following two assertions are equivalent:
(1) I(F; 1) < o0.
(2) F has a density f, absolutely continuous on R \ {0}, satisfying:

@G xf(x)—0 asx— 0, £oo;
(i) %, (=xf () — D*f(x) dx < co.
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In either case, we have

f! ?
I(F; 1)=/(—x7 (x)——l) f(x) dx < oo.

Remark 1. Define Fo(x) = F(x /o) for 6 > 0. Then if I(F; o) is defined as I(F; 1), we
have that the value of this functional is (1 /62)1(F ; 1.

REMARK 2. An M-estimate of scale is defined as S(F,), where F, is the empirical
distribution function based on a sample Xj,...,X, ~ F, and the functional S(F) is

defined implicitly by -
x
- = 2.1
/_00 X(S(F)) dF(x) =0 @D

Under appropriate regularity conditions [see for example Boos and Serfling (1980) and
Serfling (1981)]

Vn{log S(F,) —log S(F)} = N(O, V(. F)), 22)
where o
X
/ a —) dF (x)
v F) = —= (55

00 2°
X x
— ) — dF (x)}
{/_oo v (s#) 5
Now let F be a given convex class of distributions, and suppose that F minimizes
I(F; 1) in F . Define

Xox) = _ffo_o () -1,

corresponding to maximume-likelihood estimation of G if X, ..., X, ~ Fy . Define So(F)
by (2.1), with ¥ = %o. Then So(Fo) = 1. We have

1
VX0, F) < V(xo, Fo) = G 1) SV Fo) (2.3)

foral F € F; = {F € F |So(F) = 1} and all ) such that (2.1) holds for F € #,. The
second inequality in (2.3) is essentially the Cramér-Rao inequality; the first is established
by variational arguments, as in Huber (1964, 1981). If follows from (2.3) that

S;lp V(xo, F) = iI;f S;l_p Vi, F),

so that o yields a minimax variance estimate of scale for F € F.

The question of whether or not the saddle-point property (2.3) extends to all of F is
considered, for ¥ = X (G) and ¥ = G.(G), in Wiens and Wu (1990). We note that this
question was answered, in the affirmative, by Huber (1981) in the class G.(®),e < 0.04.
For X .(G) the answer is negative, for all € > 0. Note that the failure of the saddlepoint
property does not imply that ) fails to yield a minimax estimate of scale for all of F .
To verify the minimax property, however, without the benefit of (2.3), would require one
to perform the, evidently very intractable, task of determining sups V(y, F) for each
fixed y, and to then determine the infimum thereof.
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Suppose that a random variable X has d.f. F € X(G), and that G is symmetric. Let
F_ be the d.f. of —X, and put F= %F + % F_. Then F € X.(G),F is symmetric, and,
since I(F; 1) is a convex functional of F,

I(F; 1) <I(F; 1) = I(F_; 1).

We may thus restrict to symmetric F € K (G). Then if as well I(F; 1) < 00,Y = log |X|
has d.f. and density

F(y)=F(&’) — F(—€") = 2F(e") — 1,
f(y) =2ef(e), —00 <y < 00. 2.4)

We have F € K.(G) iff F € K (G). Furthermorg, Fisher information for scale, of
F, translates into Fisher information for location, of F. By virtue of the location-theory
analogue of Theorem 1, we may define the latter via

00 ' 2
L(F) = f (—f_ ()’)) f)dy  if F has an absolutely

- \ f ) .
continuous density f;
00 otherwise.

Then I,(F) = I(F; 1), and so we seek to minimize I,(F) over K2(G),0 < e < 0.25.
We will assume that 7,(G) < oo; it then follows from Vandelinde (1979) that the finite
information members are weakly dense in %s.(G). As in Huber (1964), we may then
conclude that there exists an information-minimizing Fy.
Necessary and sufficient properties of F, may now be obtained by a straightforward
extension of the theory in Sections 1 and 2 of Wiens (1986). First define

_ N
Yo(y) —fo o),
and note that

Xo(x) = Wo(log |x]). (2.5)
Since I,(F) is convex, I,(Fo) = min L(F) iff, for each F € K (G) with I.(F) < oo,

d - -~
0< 2; I*((l —t)F0+tF1)It=0

= [ CG-Frvor Go-Pwi} . 26)

This condition becomes more useful if an integration by parts is possible. Define an
operator J on the class of absolutely continuous functions on R by

JW©) = 2¥ () — V().

Extend J by left continuity where W is discontinuous. Note that, if we may integrate by
parts,

f J (o) dFy = L(Fy). 2.7)
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LemMa 2. If Fy is such that \y is absolutely continuous and bounded, then in order that
Fo minimize I(F) in %.(G) it is necessary and sufficient that

(1) Fy € %K(G); o N . "
(2) 0< 22 J(Wo)x) d(Fy — Fo)(x) for all Fy € K3:(G) with I,(Fy) < oo.

Proof. Integrate by parts in (2.6), using condition (2)(i) of Theorem 1. Q.E.D.

Motivated by the preceding discussion, we may now formally state the assumptions
on G:

(G1) G is symmetric and strictly increasing on (—00, 00).

(G2) 0<I(G; 1)< 00.

(G3) The function E(y) = —g'(y)/&(y), defined throughout R by virtue of (G1) and
(G2), is twice continuously differentiable.

(G4) There is a point M such that J(§)(y) is strictly increasing for y < M, it is strictly
decreasing for y > M, and J(§)(M) > 0.

ReMARk 3. Assumptions (G1)—(G4) hold for the logistic distribution, all Student’s #-
distributions, and those G; defined in Section 1, for [ > 0.

The proof of the following lemma is very similar to that of Lemma 1 of Wiens (1986),
and so is omitted.

LeEMMA 3. Under assumptions (Gl)—(G4),E(y) is strictly increasing on R.

In Section 3 below we exhibit the minimum-information members Fy of K>.(G) for a
variety of distributions G satisfying (G1)—(G4). In each case, that these Fy do minimize
L(F) following from the following theorem.

THeoREM 4. If Fy possesses the follmging properties, then it is the unique member of
K 2:(G) minimizing I,(F) over X .(G):

(S1) Fy € K 2(G).

(S2) vy is absolutely continuous.

(S3) There exists a sequence —00 = ay <by <a; <bp < ---<a,1<b,_; <a,<
b, = 00, and constants My, ..., A, with Aj, A, <O, such that:

. _ ).,-,~ a;<y<b,i=1,...,n,
@ Jwo)o) = {J(&)(y), bi<y<aim,i=1,...,n—1.
(i) With By := {y|Fo(y) = G(y) — 2¢} and By := {y | Fo(y) = G(y) + 2¢},

n—1

ByUB, = U [bi, ain].

i=1

Furthermore, each [b;, a;.1] is contained in exactly one of B, By.

(i) If a; € By [By] then J(yo)(a}) = i < [21J(Wo)(a;). If b; € BL[By] then
J(Wo)(b;) = hi = [S1J(wo)(b}).

@iv) If (b, aiyy) is nonempty and contained in By [By ), then J (fj,) is weakly decreas-
ing [increasing] there.

Proof. The possible solutions to the equation J(yo)(y) = constant are given in Remark 4
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below. By (S3)(i) we may infer that

Vo) = —1/|IMl, o) xe VL for y<b,
Yo) = 1/ |Aal, fo)xe VMl for y>a,.

This is because the fy’s corresponding to the “tanh” or “coth” forms of yq are not
integrable on half-infinite intervals.

In particular, yy is bounded. Conditions (S1) and (S2) now allow us to apply Lemma
2, and to satisfy condition (1) of the lemma. Condition (S3) guarantees that condition (2)
of Lemma 2 is satisfied. To see this, split the range of integration up into intervals and
then integrate by parts over those nonempty intervals (b;, aiy;), using (G3). The integral
can then be rearranged as a sum of nonnegative terms, using (iii) and (iv) of (S3).

The uniqueness of Fy now follows from Proposition 4.4.5 of Huber (1981), if

@ fo(x) >0, x € (~00,00); _
(i) 0 < L(Fo) = [ w3(x) dFy(x).

These follow from (G1), (S2), and~the observation that no solution to the equation J () =
constant can remain bounded as fy(x) — 0. Q.E.D.

ReMARK 4. The possible solutions to the equation J(yo)(y) = constant are given by:

(i) J(wo)y) = A%:
A = 2 (A
Yo(y) = A tan (5 (y—W)), Jo(») ox cos (-2- (y—W)) ;
(D) J(wo)») = A%
A A
Yo(y) = A, A tanh (—5 - w)) , or A coth (—5 - w)) ;
correspondingly
fo) e, cosh? (—% o- w)) , or sinh? (—% - w)) .

ReMark 5. Condition (S1) forces the additional conditions

(S4)() fo») = g(),y € BLUBy;
(S4)(ii) wo(y) —E(y) <0 on BL(> 0 on By).

Condition S4(ii)_fails to follow, with equality, f£om S4(i) only when [b;, a;,1] is a single
point, at which Fy is on one of the boundaries G =% 2¢. In this case (S4)(ii) follows from
the identity

- d
(Wo— &) = 7, log = .

g
ly " fo
3. SOME CLASSES OF SOLUTIONS

The conditions of Section 2 fall short of determining F completely. The solutions pre-
sented in this section, under assumptions (G1)-(G4), were obtained largely by enlightened
guesswork. Some relevant considerations are as follows.
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(i) As in Wiens (1986), a general principle appears to be that for sufficiently small
€, Wo should differ from & only near the local extrema of J (8), and that here we should
have J(yo) = constant, with the constant being less extreme than that attained by J (Z:,)
In line with condition (2) of Lemma 2 we should have fy > g, Fy — G increasing from
—2¢ to 2¢, near the local minima of J (E_,), and fy < g, Fy — G decreasing from 2¢ to —2e,
near the local maxima. As e increases, the regions of constancy of J(yo) coalesce.

(ii))Under conditions analogous to (G1)—(G4), solutions for symmetric G were obtained
by Wiens (1986). In particular, J(&) was assumed symmetric and unimodal. The solutions
obtained there have two forms — form 1, valid for “small” €, and form 2, for “large” ¢
In the present case, suppose that the two halves of J(£) — to the right and left of M —
are considered separately, and each is extended to all of R by symmetry around M. Each
then generates a solution which is symmetric around M, and it seems plausible that we
should be able to piece together these two solutions. This does indeed turn out to be the
case, although the piecing together is not necessarily done at M. For small values of ¢
we piece together two form-1 solutions, for medium e a form-1 with a form-2, and for
large € we piece together two form-2 solutions.

It is of course still necessary to verify the conditions of Theorem 4. Some of these
verifications are presented below; for the remainder the ~reader is referred to Wu (1990).
In each case, ¥o and fy may be recovered from o and fy through (2.4) and (2.5).

Case 1 (Small €). There exists €y(G) such that for 0 < € < €o(G), the Fisher information
for scale is minimized by that Fy with

(%(bl), —o00<y < by,
£, bisysa
Yo(y) = ¢ dtan (g(y—w)), @ <y <b,
g(y), by <y<as,
| E(as), a3 <y <09,
[ §(by)e¥onbi—y), —o00<y < by,
g(y), b] S y S a,
N g(a) cos?{(8/2)(y — w)}
.y <y<
fb(y) COSZ{(S/Z)(az _ W)} s a=y=> b2y
g(y), b2 S y S as,
L g(a3)e"’°("3)(y_a3), a3 <y <o,

The constants by < a; < by < a3, d and w are determined by

(a) continuity of Yo at a2~and by, and of fo at by,
(b) Fo(b1) = G(b1) +2¢, Fo(by) = G(b2) — 2¢, Fo(00) = 1,

and satisfy as well

(c) a2<M<b2,~ -
(d) & = max (J(E)a2),J €)(B2)).

Then By = [by,a;],BL = [by,a3].

Note that if (a) is satisfied, then fo and yp are (absolutely) continuous, so that (S2)
of Theorem 4 is satisfied. Condition (S3)(iv) follows from (c) above. In the notation of
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(S3) we have
n=3, M=-E®) M=% A=-8a).

The requirements _ .
A <JE)ay), M < JE)b)

of (S3)(iii) are then immediate consequences of Lemma 3. To satisfy (S1) and the
remaining parts of (S3)(iii), it suffices if (d) holds, and if

) =8B, ¥y € (-0, bi)U(a3, oo); (3.1)
) <EO), y € (@ b). (3.2)

The requirement (3.1) follows from the equality of fy and g at by and a3, together with
the inequalities

vo) > &0, y<bi;  woO) <& y>a,

and the identity at the end of Remark 5 above. B

For (3.2) note that if (d) holds, then yj exceeds &’ at a, and b, at which point g
equals E There is then a point My € (az, b2) at which Yo(Mp) = E(Mo). Conditions (c),
(d) together imply that Wy — & is decreasing at any zero in (az, by) — see Wu (1990) for
details. The point My is thus unique, with Wy > & on (a2, My), W < & on (Mp, by). Now
(3.2) follows in the same manner as (3.1).

For the verification that there exist constants satisfying (a)—(d) above, see Wu (1990).

For “medium €” there are two possibilities, according to whether the form-1 solution
is placed to the right or ta. the left of the form-2 solution.

Case 2 (Medium €). For a range €o(G) < € < €,(G), the Fisher information for scale is
minimized either by that fy(y) with density fo(y) and score function Yo(y) as given below,
or by 1—Fo(—y), with density fo(—y) and score function —VYo(—y). If one form minimizes
the information in a neighbourhood of G(y), then the other minimizes the information in
a neighbourhood of 1 — G(—y):

(&), —o0 <y < by,
&), b <y<a,
Yo(y) = J d tan (g (6% —W)) , a <y<as, (3.3)

d tan (g(aa—w)), a3 <y <00,

r g(bl)e‘llo(bl)(bl—)’), —00<y < b,
i Jgr(v), i by <y <a,
o) = { §(a) cos?{(3/2)(y — w)} G4
oS {®) D@ —w)} ay <y<as,
L §(az)eVo@)0—a), a3 <y <oo.

The constants by < ay < a3, d, and w are determined by

(a) continuity of Wo at a; and fy at a3,
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(b) Fo(b1) = G(by) + 2¢, Fo(az) = G(az) — 2¢, Fo(o0) = 1,
and satisfy as well

©) ay <M, wo(as) < &(as),
@) & > JE)a).

Then By = [by,a,], B = {a3}.

Given the existence of constants satisfying (a)—(d), the verification of the conditions
of Theorem 4 is very similar to that in Case 1. Note that in Case 1, it was required by
(S3)(iv) that M be less than b,. In Case 2, b, = a3, and this requirement is replaced by
(S4)(ii) in condition (c) above.

Case 3 (Large ¢). For €)(G) < € <0.25, the Fisher information for scale is minimized
by that Fy with

:

d tan (g(bl—w)), —00<y < by,
)

‘I’O()’)=4 d tan (E(y—w))’ by <y<as,

d tan (g—(as—w)), a3 <y<oo,

r g(b;)e%(b’)(b'_”, —c0<y < b;,
= ) 8a)cos*{(§/2)y —w)}
fO(.Y) - 4 COS2{(8/2)(bl _ W)} ) bl S y S a39
L g(a3)e—‘!'o(ﬂa)(y—ﬂ3)’ a3 <y <oo.

The constants by < a3,d, and w are determined by

(a) c~0ntinuity ~of f~o at as, _ 3 3
(b) Fo(by) = G(b1) +2¢, Fo(as) = G(az) — 2¢, Fo(00) = 1,

and satisfy as well
(c) Wolb1) > &), wo(as) < E(as).
Then By = {b1},BL = {a3}.

ExampLE 1. In the following three cases, the preceding theory applies and the “medium-¢”
solution is as in (3.3), (3.4):

G =, gix) = @my~ el o) =e¥ - 1;
G, = Logistic, g>(x) = 1 sech’(x/2), E2(y) = ¢ tanh (¢¥/2) — 1;
G = Laplace, g3(x) =3 e ™M, Exp)=e' — 1.

We find that eo(®) = 0.00205, ¢;(P) = 0.0267. See Table 1 for other numerical values
if G = ®, and Figures 1-3 for graphs of y(x) in this case, For G3, see Table 2.

Note that for very small values of ¢,y differs significantly from & only in the tails.
For larger e, it evidently becomes more important to guard against inliers in the data.

ExaMmPLE 2. An Associate Editor has pointed out that if G(x) is the Cauchy distribution,
then G(y) is the hyperbolic-secant distribution, which is itself symmetric, with J(§) a
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TABLE 1: Numerical values for Kze(G), G=9o.

€ b, a, b, as 3 ® I(Fo; 1) = 1(Fo)
0.0001 -2.63109 0.27763  0.76640 1.18743  2.7100 0.08103 1.9710
0.0005 —2.09720 0.15529  0.83898 1.06022  2.6100 0.04897 1.9050
0.0008 —1.94212 0.10796  0.86416 1.01523  2.5680 0.03505 1.8670
0.0010 —1.86821 0.08618  0.87505  0.99399  2.5490 0.02840 1.8450
0.0018 —1.67611 0.00896 091188  0.93452  2.4780 0.00315 1.7690
0.00205 —1.63373 0.00894  0.92068  0.92068  2.4610 —0.00309 1.7480
0.004 —-1.41717 —0.18252 0.87383  2.3410 —0.04605 1.6090
0.010 —1.12701 —0.38287 0.82154  2.0710 —0.13868 1.3180
0.020 —0.91554 —0.67276 0.78709 1.7870 —0.23358 1.0090
0.025 —0.84957 —0.79208 0.77932 1.6830 —0.26750 0.8947
0.0267 —0.83034 —0.83034 0.77749  1.6510 -0.27777 0.8600
0.030 —0.87731 0.77473 1.5930 —0.29642 0.7927
0.040 —1.00923 0.77288 1.4410  —0.34559 0.6387
0.100 —1.64351 0.83508  0.8567 —0.56169 0.1721
0.200 —3.08347 1.05883  0.2847 —1.07762 0.0067
0.230 —4.18646 1.18723  0.1384 —1.52746 0.0007

TaBLE 2: Numerical values for K,.(G;) and K,(G,); G; = Laplace, G, = Negative Exponential.

€ bl a b2 as 3 w l*(io)
0.00005 —4.26158 0.33002 1.00393 1.99606 1.6900 0.06154 0.9940
0.00050 —3.12357 0.09531 1.16814 1.69028 1.6290 0.01842 0.9631
0.00150 —2.58495 —0.09310 1.27256 1.51381 1.5770 —0.02169 0.9227
0.00250 —2.33718 —0.19760 1.32840 1.42335 1.5450 —0.04790 0.8896
0.00300 —2.24999 —0.23889 1.34963 1.38954 1.5320 —0.05875 0.8746
0.00325 —2.21092 —0.25812 1.35918 1.37447 1.5250 —0.06426 0.8662
0.00400 —2.11196 —0.31047 1.34859 1.5090 —0.07833 0.8323
0.00500 —2.00619 —0.37571 1.32522 1.4860 —0.09623 0.7983
0.01000 —1.68201 —0.63885 1.25390 1.3890 —0.16746 0.7301
0.02500 —1.27047 —1.16603 1.17927 1.1910 —0.28598 0.5131
0.02730 —1.21200 —1.23100 1.17465 1.1680 —0.29726 0.4893
0.05000 —1.50824 1.16938 0.9742 —0.38390 0.3092
0.10000 —2.01741 1.26271 0.6648 —0.52768 0.1090
0.15000 —2.58893 1.41658 0.4315 —0.69293 0.0309
0.20000 —3.46734 1.63803 0.2341 —0.97480 0.0016
0.22500 —4.29769 1.81271 0.1374 —1.27656 0.0008
0.24500 —6.16582 2.11251 0.0456 —2.03070 0.0002

strictly decreasing function of |y|. The theory of Wiens (1986) thus applies directly
to this case. The least favourable Fy is symmetric, and €o(G) = €;(G) — there is no
“medium-¢” form to the solution.

ExampLE 3. If G(x) = G4(x) = 1 — e™*,x > 0, then the distribution G4(y) of log X is the
same as G3(y) of Example 1. Solutions Fy(y) in neighbourhoods %>.(G;) are then the
same as in neighbourhoods %>.(G3), detailed in Table 2. In the original units, the least
favourable density in K>.(G4) is recovered from

foo) =x"'folog ), x>0,
rather than through (2.4).
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Thall (1979) presents a different solution to the problem of minimizing information for
scale in X.(G4). He presents a solution similar to 1 — Fy(—y) in our Case 2, and claims
that it is valid for all ¢ < 0.0095. Unfortunately, his solution fails to satisfy (S4)(ii). The
Fy constructed by Thall has fy <  at the single point at which Fy = G4 + €. Thus, this
Fy exceeds G4 + € to the left of this point, and so fails to belong to K.(Gs).
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