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Approach

We introduce an infinitesimal approach to the construction of robust designs for linear models. The resulting designs are robust
against small departures from the assumed linear regression response and/or small departures from the assumption of uncorrelated
errors. Subject to satisfying a robustness constraint, they minimize the determinant of the mean squared error matrix of the least
squares estimator at the ideal model. The robustness constraint is quantified in terms of boundedness of the Gateaux derivative
of this determinant, in the direction of a contaminating response function or autocorrelation structure. Specific examples are
considered. If the aforementioned bounds are sufficiently large, then (permutations of) the classically optimal designs, which
minimize variance alone at the ideal model, meet our robustness criteria. Otherwise, new designs are obtained.
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1. INTRODUCTION

In this article we introduce an infinitesimal approach to
the construction of robust designs for linear models. The
resulting designs are robust against small departures from
the assumed linear regression response and/or small depar-
tures from the assumption of uncorrelated errors. Subject
to satisfying a robustness constraint, they minimize the de-
terminant of the mean squared error (MSE) matrix of the
estimator at the ideal model.

Specifically, suppose that an experimenter iS to ob-
serve a random variable Y at locations xi,...,X, in a
g-dimensional design space S. The response E[Y|x] is
thought to be approximately linear in the elements of a
p-dimensional vector z(x) of regressors and is observed
subject to additive and possibly autocorrelated errors. With
f(x) = E[Y|x] — 2T (x)0, the observations then satisfy

Y; =27 (x:)0 + f(x;) + €., 1=1,...,n. (1)
The ¢, are zero-mean random errors with covariance matrix
o?P for some autocorrelation matrix P. The disturbance
function f is assumed to be constrained in a manner that
ensures that the regression parameters are well defined; see
Section 4.

The experimenter, knowing neither f nor P, intends to
compute the classical least squares estimate 6. He thus will
incur possible errors due to bias, as well as a possible loss
in efficiency. He wishes to use a design for which the sizq,
as measured by the determinant, of the MSE matrix of
remains within reasonable bounds.

Versions of this problem, with respect only to variations
from the fitted response function, have been investigated by,
among others, Box and Draper (1959), Huber (1975), Kiefer
and Wynn (1984), Li and Notz (1982), Liu (1994), Liu
and Wiens (1994), Pesotchinsky (1982), and Wiens (1991,
1992). The second type of model departure—autocorrelated
errors—has been investigated by Bickel and Herzberg

Douglas P. Wiens is Professor and Director, Statistics Centre, Depart-
ment of Mathematical Sciences, University of Alberta, Edmonton, Alberta,
Canada T6G 2G1. Julie Zhou is Assistant Professor, Department of Math-
ematical Sciences, Lakehead University, Thunder Bay, Ontario, Canada
P7B 5E1. The research of both authors is supported by the Natural Sci-
ences and Engineering Research Council of Canada.

(1979), Bischoff (1992, 1993), Constantine (1989), Herzberg
and Huda (1981), Jenkins and Chanmugam (1962), Judickii
(1976), Sacks and Ylvisaker (1966, 1968, 1970), and Wiens
and Zhou (1995, 1996).

A possible approach to these problems is to seek robust-
ness against infinitesimal departures from the model, in the
sense of bounding the maximum Gateaux derivative, eval-
uated at the ideal model (f = 0, P =1I), of the determinant
of the MSE matrix of 6. The derivatives are taken in the
directions of arbitrary contaminating functions f or auto-
correlation matrices P. The boundedness ensures that the
MSE remains close to its value at the ideal model, in suf-
ficiently small neighborhoods. Subject to boundedness, we
choose the design to minimize the MSE at the ideal model,
thus imposing a requirement of efficiency in addition to that
of robustness.

Our designs attain their optimality through the placement
of the design points and through the order in which these
points are implemented. As an example of this latter factor,
in a quality control framework observations at similar ma-
chine settings (x) may be positively (negatively) correlated,
with the correlations decreasing in magnitude over time.
It turns out that for MA(1) errors, an appropriate ordering
of the design points maximizes (minimizes) the number of
sign changes among successive values of z — .

The infinitesimal robustness of an estimator can be stud-
ied by means of the influence function of the estima-
tor and by the change-of-bias function (CBF) and the
change-of-variance function (CVF) (see Hampel, Ronchetti,
Rousseeuw, and Stahel 1986 and Hossjer 1991). The CBF
and CVF quantify the local stability of the bias and vari-
ance. Extensions of these stability notions to design theory
are given in Section 2, where we also introduce correspond-
ing optimality criteria. Explicit optimal designs are given
in Sections 3, 4, and 5. Various designs are compared in
Section 6, and an example from the chemical engineering
literature is discussed in Section 7. Proofs are given in the
Appendix.
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2. DESIGN SENSITIVITY
Let £ be the design measure (i.e., the empirical distribu-
tion function of the design points) and define

bre == > a6xi)f0x)

=1

%Z;:lm z(x;)zT (Xi4m), 0<m<n—1,
B¢(m) =

B{ (-m), —(n—1)<m<0.

Denote the n x p model matrix with rows z7(x;) by Z.
Then the determinant of the MSE matrix of n'/20 is

Z"PZ
n

-1
n p (ZTPZ

Let P and F be convex classes of autocorrelation matrices
P and disturbance functions f, containing Py = I and f; =
0. We define the CVF for ¢ at Py, in the direction P € P,

D(f,€,P) = 0*|B¢(0)|~*

by
CVF(,P) = 4D (fo, i)((lfo—’ ;)1;2 )+ Plo
and the CBF for € at fo, in the direction f € F, by
CBE(, f) = 18:D((1 = t)fo + t£,€, Po)ji=o )

o=2D(fo,&,Po)

The division by D(fo,£,Po) = 02|B¢(0)|"! and
o 2D(fo,€,Py) is for scale and affine invariance. For the
CVF, it corresponds to basing the loss on In D. The use of
the second derivative in (3) is motivated by the observation
that the quantity being differentiated is a linear function
of 2.

The global behavior of the designs with respect to de-
partures in P and F will be quantified partly through the
change-of-variance sensitivity (CVS) and the change-of-
bias sensitivity (CBS), defined to be the suprema of CVF
and CBF over P and F. On representing P; ; as p(|i — j|)
for some autocorrelation function p(-), straightforward cal-

culations give
ZTP-DZ_ _
_(T_)_Bgl(o))} )

CVS(¢,P) = sup {trace (

PeP

PeP

= sup{ Z p(s)trace(BE(s)Bgl(O))} 5
0<|s|<n—1

and

CBS(£,P) = sup{nb%B; (0)by.c}. (©)
feF

For given «, we say that a design £ is V robust if it mini-
mizes D(fo, £, Po); that is, maximizes | B¢ (0)] subject to the
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constraint
CVS(¢,P) < q, (7)

and is most V robust if « is the infimum of the CVS over a
given class of designs. In Section 3 we construct V-robust
and most V-robust designs for two classes P.

For given 3, we say that a design £ is B robust if it max-
imizes |B¢(0)| subject to the constraint

CBS(¢,P) < 8, ®)

and most B robust if (8 is the infimum of the CBS over
a given class of designs. In Section 4 we note that B-
robust designs coincide with the bounded bias designs of
Liu (1994) and Liu and Wiens (1994). Examples are given
for two classes F.

We say that a design is M robust if it maximizes |B¢(0)|
subject to both (7) and (8), and most M robust if it is both
most V robust and most B robust. We consider M-robust
designs in Section 5. It is not known (to us) whether most
M-robust designs exist.

3. V-ROBUST DESIGNS

In this section we obtain V-robust and most V-robust de-
signs for the classes

Pr={Plp(s)=0 for |s|>2 and

co <p(l) <1l with ¢o >0}
and

Py ={P|p(s) =0 for |s|>2 and

-1<p(l) < —c¢; with ¢; > 0}.

These classes correspond to MA(1) processes with positive
and negative lag-1 correlations bounded away from 0. The
V-robust designs presented here do not depend on the val-
ues of ¢ and ¢;. We consider the multiple linear regression
model—that is, z7(x) = (1,xZ, ) in (1)—and restrict to
the class Z,, ; of n-point designs for which B¢(0) is a diag-
onal matrix. The latter point can of course be justified on
practical grounds. Furthermore, because of affine invariance
there is little loss of generality, if S is rotationally invariant.
Then the only additional restriction imposed is the require-
ment that the design points be centered with respect to each
coordinate axis. -
We find, using (5), that

CVS(&,P) = sup 2p(1) (n—g—l + Z Q(x(j))) ;

p(1)

where X;) is the j + 1th column of Z,

O(x) = Z?gll TiZi41 _ XTQX 9)
S xx
and Q is the tridiagonal matrix with (4, j)th element ¢;; =

sI(li =31 =1).

Theorem 1 below shows that if « is sufficiently large
then (7) imposes no restriction. It is stated for ¢ = 1 but the
extensions to ¢ > 1 are rather evident.
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Theorem 1. Let ¢ =1 and S = [—1, 1]. Define

[0, n even
n = { sy, ™ odd
and
—4c, 222, n even
Y2 = { —2012—’{(%5_’}—;1, n odd

a. For a > a3 ,, V-robust designs for P; are
oot — (1,-1,1,-1,...,1,—-1), neven
M= (,-1,1,-1,...,1,—-1,0), n odd,
with CVS({,P]) = Q1.
b. For @ > a ,, V-robust designs for P, are

(1,...,1,-1,...,—-1), mneven
——— N ———
S n/2 n/2
M (1,...,1,0,—1,...,—1), n odd,
N—— N——’
(n—1)/2 (n—1)/2

with CVS(§,P2) = Q2 n.
c. In each case, the design minimizes CVS(¢,P) among
those designs in =, ; that maximize |B¢(0)].

Remark 1. The designs in Theorem 1 were, for n even,
given by Jenkins and Chanmugam (1962) and Constantine
(1989). Jenkins and Chanmugam (1962) minimized the vari-
ance of the slope of the least squares estimator (LSE) over
a subset of the set of all possible designs carried out at
two levels only. The subset consists of all discrete “square
wave” designs in which a run of m experiments at one level
alternates with a run of m experiments at the other. Then
the design problem becomes that of choosing the block size
m. Constantine (1989) attempted to maximize the trace of
the covariance matrix of the best linear unbiased estimator
(BLUE) over Z,, 1. A linear approximation to Z'P~1Z was
used to derive the optimal design.

To get the most V-robust designs for multiple regression,
it is necessary to evaluate the extrema of Z?:l Q(x(;) over
En,q- This is carried out in the Appendix and yields The-
orem 2. The statement of this result requires some defini-
tions.

Define constants and n x 1 vectors (p,,r;),1 < j <mn,
and (vj,s;),1 < j < [(n—1)/2], with the x; and v, ordered
from largest to smallest, by

2 . kjm

py = cos T, (rj)p = el e (10)
and
2(n+1)
vy = cos ¢y, (s))k = m
X cot

n—gl% (1_M>. (11)

cos 511,
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Here ¢; is the solution, in (2j7/(n+1), (25 +1)7/(n+1)),
to the equation

1
tann; ¢—(n+1)tan§:0. (12)
Place the rp; and the s; into a matrix X, and define a cor-

responding sequence {\;} by

an(nfl) = “erSh ry,82,...,
r2[(n_1)/2],8[(n_1)/2], r, (lf n is even)|| (13)
and
{)\J}?z_ll = <,LL2, Vi, g, V2, .0y
Ka[(n—1)/2]> V(n—1)/2]» bn (if n is even)). (14)

Theorem 2. The most V-robust designs in =, , for
Pr,k = 1,2, have model matrices Z = (le(q;k)Dk),
where X .y consist of the last (k = 1) or first (k = 2)q
columns of X and Dy, is a diagonal matrix chosen to have
maximum determinant, subject to the constraint that the
rows of X ,.xyDy belong to S. The corresponding covari-
ance matrices of § at Py = I are 02(ZTZ)"! = o2(n~' @
D;?). The CVS are

2("7—1+zj:1,\n_j), k=1

CVS(&,Py) = e
—2¢1 (% + 251 /\j) , k=2

Remarks. 2. If S is a ¢g-dimensional rectangle [—cy, 1]
X -+ X [—¢q, ¢q), then we find that the maximizing matrix
Dy is given by (Dy);; = cj(maxi<i<n [(X(g))il) ™" for
j=1,...,q. (See Fig. 1 (a)~(d) for examples with ¢ = 1,2.)
If S is a g-dimensional sphere of radius c, then the (Dy),;
are instead chosen to have maximum product, subject to the
constraints 3 1_, (Xgk))7;(Dg)3; < ¢ fori=1,...,n.

3. An attractive consequence of Theorem 2 is that the
projection of the most V-robust design in =, , onto the last
(k=1) or first (k = 2)q’ coordinate axes is most V-robust
m =g g

4. A separate but parallel development shows that if there
is no constant term in the model, then X may be replaced by
the n X n matrix consisting of the rj, and {\;} by {u;}7_,,
all in their natural order.

5. The empirical distribution functions of the design
points of the most V-robust designs in Z,, ; with S = [—1, 1]
converge weakly, as n — oo, to the arcsine distribution
with distribution function .5 + 7~ !arcsin(z) and density
7~1(1 — 2%)~'/2. An asymptotic description of the designs
is then given by this limit together with the order in which
the design points are to be applied. For Py, the points al-
ternate in sign, with the first half of the points increasing
in magnitude and the second half decreasing in magnitude.
For Ps, the first half of the points are positive and the sec-
ond half negative. Within each half, the points increase and
then decrease in magnitude.

It is interesting to note that the arcsine design also arises
in another context—that of optimal polynomial regression
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Figure 1. Most V-, Most B-, and M-Robust Designs, n = 25. (a), (b): Most V-robust designs in [—1, 1] for P; and P2; (c), (d): most V-robust
designs in [—1, 1] X [—1, 1], with the indices of design points plotted for P; and Py; (e), (f): most B-robust designs for Fy, ordered for Py and P»;

(9), (h): M-robust designs for F4, ordered for P; and P>.

design, as the degree of the fitted polynomial tends to infin-
ity. (See Pukelsheim 1993 for a discussion.) This suggests
that the designs might be suitable for polynomial regression
as well.

4. B-ROBUST DESIGNS

By virtue of (6), the B-robustness problem is that of con-
structing a design to maximize |B¢(0)|, subject to a bound
onsup e b B; ' (0)by¢. Such designs then coincide with
the bounded bias designs of Liu (1994) and Liu and Wiens
(1997).

Example 4.1. Consider the case of multiple regression.
Let S be a g-dimensional sphere centered at the origin, with
radius r determined by the requirement that S have unit
volume. Recall (1) and take

-7:1={f

/Sz(x)f(x)dx=0,/8f2(x)dx§nz}.

The “true” parameter is defined by 6, argmin
Js(E[Y|x] — 27 (x)8)?dx. Minimax designs for this model
have been considered by Wiens (1992), and by Huber (1975)
when ¢ = 1. Bounded bias designs were constructed by
Liu (1994) when ¢ = 1. Wiens (1992) showed that only
absolutely continuous design measures are admissible for
this problem. Thus, following Sacks and Ylvisaker (1966,
1968), who investigated optimal rates of convergence of
n-point designs to absolutely continuous measures, we pro-
pose approximating the B-robust design as in the following
theorem.

Theorem 3. Let 3 > 0 be given, and put 3’
B/(nn?),v0 = r?/(q + 2). Define a distribution function
Hy(u),0 < u < 7 by its density ho(u) = (qui=!/r%)go(u)
as follows:

1. If0< B’ <4/(q(g +4)), then

g (2 o) (A (v
=1+ (5 0) (57 (55 -9)
where +y is determined from 8’ = q(q + 4)((7/7) — 1)?/4.

2. If p' > 4/(q(g +4)), then

{ [(%)2 - b] /Kq(b)} I(rvVb < u < 7),

where 1¢,(b) = (1 — b) — 2(1 — b9/2%1) /(g + 2) and (b,)
are determined by the equations

Kq 2(b)
Yo - K:(b) )

go(u)

qy — br?
2Ky (b)

~1=¢.

Define a = [279n],b = n — 29a. Put u; = Hy '(i/a),i =
1,...,a and for each i < a let t;1,...,t; 2. be a random
permutation of points equally spaced over the surface of the
unit sphere in R?. Then the empirical distribution function
&n of the points x; ; = t; ju;, together with b 0’s, is an n-
point design that converges weakly to a B-robust design £,
with density £/ (x) = go(||x||). The limiting distribution of
|Ix|| = U is Ho(u), and CBS({eo, F1) = 0.

Remarks. 6. The notion of points equally spaced over the
surface of the unit sphere is to be interpreted in terms of the
angles defined by these points. When g = 1, we are asserting
only that the design is symmetric. When ¢ = 2, one may
take t; ; = (cos v j,sine; ;)T, where 951, v; 2, 3, ¥i 4 i
arandom permutation of {¢;+(j—1)7/2,j = 1,2, 3,4} and
Y1,...,Pn/4) 18 a random permutation of angles equally
spaced over (0,27). Note that &, € E, ,.

7. The minimum value of CBS(¢, ;) is 8 = 0. This is
attained only by the uniform distribution on S, which is
then most B robust.
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Example 4.2. For approximate polynomial regression
zT(z) = (1,z,22,...,2P71) in (1), Liu and Wiens (1997)
constructed bounded bias designs for the class

Fo={flla?f(@)| < p(x)Vz € S =[-1,1]},

where ¢ is a given nonnegative function. Liu (1994) consid-
ered the case p = 2. The designs are similar to the classi-
cally optimal designs that minimize variance alone, in that
they have all mass at p symmetrically placed points. For
p = 3 and ¢(z) = 1, the solution is

%50 + %6:':(25/)1/6 fOr 0 S /BI S
(1 =580+ B'éx1 for

%604‘§6i1

¢ =

where 8’ = 3/n and §, is point mass at a. In this case, then,
the concept “most B robust” leads to the clearly impractical
design 6o.

5. M-ROBUST DESIGNS

Here we outline an approach to the construction of M-
robust designs for multiple regression. Let £* be B robust in
a class of designs. Note that the B robustness is unaffected
by a permutation of the design points. Suppose then that
there is a permutation of the points of support of ¢* for
which the corresponding design £** has CVS(&**,P) < a.
Then £** satisfies both (7) and (8). It maximizes |B¢(0)| in
the class of designs satisfying (8), hence a fortiori in the
smaller class of designs satisfying both (7) and (8). It is
thus M robust.

Theorem 4. Let z”(x) = (1,xL,,). Suppose that £* €
En,q 1S B robust.

a. If « > 2(n — 1)/n and there is a permutation
(x3*,...,x2*) of the support points of £* for which
Q(x(j)) < 0for j =1,...,q, then the corresponding
design £** is M robust for P;.

b. If & > —2¢;(n — 1)/n and there is a permutation
(x1*,...,x3*) for which Q(x(;y) >0forj=1,...,q,

then £** is M robust for Ps.

Example 5.1. Let F;,S and & be as in Example 4.1,
with ¢ = 2 and n a multiple of 4. Obtain the t; ; by the
method described in Remark 6. Then &, € =, o. Now apply
the design points by alternating between quadrants I and
III for the first n/2 points, and then between quadrants II
and IV for the remaining n/2 points. It is readily checked
that Q(x(;)) < 0 for j = 1,2. The conditions of Theorem
4 are then met asymptotically, so that &, is “asymptotically
M robust” for {F;,P;}. Similarly, if the design points are
applied quadrant by quadrant, with the first n/4 from quad-
rant I, the next n/4 from quadrant II, and so on, then the
design is asymptotically M robust for {F;, P>}

6. COMPARISONS

In this section we compare the relative performance of
various designs, with respect to straight line regression over
S = [-1,1]. To check design robustness, we use several
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other loss functions and autocorrelation structures besides
those used in the derivations. The true model is given by (1)
with n = 25, f(z) = 7(45/8)"/?(z? — 1/3) (so that f € F
and f_ll f2(z)dz = n?), and € = goP/?w, where w is a
vector of white noise with variance o2, P is an autocor-
relation matrix to be specified, and 0 = var(e;/o,,). The
choice of f may be motivated by noting that: (a) this f
is least favorable, in a minimax sense, for straight line re-
gression (see Huber 1975) and (b) a quadratic disturbance
represents the most common and worrisome departure from
linearity in most applications.

Denoting o2 times the MSE matrix of n'/ 20 by C, we
find that

1 0 ZTPZ /1 0
_ 2
C_OO<0 7'2_1) n (0 72_1)
_ 1
P61
T2 7—2

where Z = (1 : x) is the model matrix, 7, = X7, zF/n is
the kth moment of the design, and v = nn?/ ofu. The value
of v may be viewed as reflecting the relative importance of
bias versus variance in the mind of the experimenter.

We consider the cases v = 0, for which the fitted model is
exactly correct, and v = 1, in which case ([ £2)!/2 is of the
same magnitude as a standard error. We take P = P;(p) to
be the autocorrelation matrix of one of the following error
processes {¢;} with lag-one autocorrelation p: (a) j = 1
MAC(1) with p > 0; (b) 5 = 2: MA(1) with p < 0; (¢c) j = 3
AR(1) with p > 0; or (d) j = 4: AR(1) with p < 0. For
j = 1,2 we have 02 = 1+ 62, where 0 € [—1,1] satisfies
p=—0/(1+62). For j = 3,4, we have o = (1 — p?)~".

The following designs are considered:

* vrob.pos, vrob.neg: the V-robust designs of Theorem 1,
for P; and P-.

 mostvrob.pos, mostvrob.neg: the most V-robust designs
of Theorem 2, for P; and P, (see Fig. 1a and 1b).

 mostbrob.pos, mostbrob.neg: the most B-robust designs
for F;, approximated as in Theorem 3 and then or-
dered so as to be robust for P; and P,. Thus the un-
ordered design points are equally spaced: +i/[n/2],i =
1,...,[n/2], and O if n is odd. These points are then
ordered in the same manner as those in mostvrob.pos
and mostvrob.neg (see Fig. le and 1f). Note that these
designs are also M robust for (P, F1),k = 1,2, for
sufficiently large a.

» uniform: n monotonically increasing points equally
spaced over [—1,1]. Apart from the ordering, this de-
sign then coincides with the two mostbrob designs. It
is included primarily to illustrate the gains to be re-
alized by an ordering that is appropriate for the sign
of p.

+ mrob.pos, mrob.neg: M-robust designs as in Section
5, ordered so as to be robust for P; and P.. The
unordered design points are obtained as in Theorem
3, with @ = 4/5, the boundary between the two
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cases. The calculations then give that these points are
+(i/[n/2))*/3,i = 1,...,[n/2], and O if n is odd (see
Fig. 1g and 1h).

For each P;,j = 1,...,4 we have computed (a) det =
|C| evaluated at P(p); (b) trace = trace(C) evaluated at
P(p); and (c) IMSE = trace(CA) evaluated at P(p), where
A= fil(l,x)T(l,x)da: = diag(2, 2/3). Apart from an ad-
ditive term 2, IMSE is the integrated mean squared error
S, E(i(x) ~ E[Y|a])dz.

Figure 2 provides representative plots of the loss against
p for each design, appropriate for the sign of p. We have
omitted the plots for the uniform design, because for it the
loss for p > 0 becomes so great as to obscure the differences
between the more robust designs. The poor performance of
the uniform design derives largely from the large variance
of the slope estimate (see Table 1) and, when p > 0, the
inappropriate ordering of the design points.

We have included only the plots for ¥ = 1 and loss = det
or trace, because those in the excepted cases tell much the
same story. The ranking of the designs turns out to be inde-
pendent of the loss function used and largely independent
of |p|. When v = 0, the V-robust designs are of course most
efficient, followed by the M-robust designs. Note, however,
that the V-robust designs with mass concentrated at +1 al-
low little opportunity to test the appropriateness of the lin-
ear model, and then only when n is odd. When v = 1, the
three loss functions are each minimized by either the most
V-robust or the M-robust designs. The performances of the
most V-robust versus the M-robust designs are almost in-
distinguishable, as are their shapes (see Fig. 1).

Figure 2. Comparative Losses; v = 1. Autocorrelation models and
loss functions are (a) MA(1), det; (b) MA(1), trace; (c) AR(1), det; (d)
AR(1), trace. ———mrob; ------ mostbrob; —— mostvrob; - - - vrob.
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Table 1. Bias, Variance, and Power Measures
Assuming Uncorrelated Errors
Design T2 — 1/3 1/12 Signal-to-noise ratio Power
vrob .627 1.042 .216 136
mostvrob .188 1.917 .680 .213
mostbrob .028 2.769 .584 197
mrob .281 1.629 422 A71

NOTE: For the uniform design, all values coincide with those for the mostbrob designs when
the errors are uncorrelated.

At first glance, the shapes of the loss functions in Fig-
ure 2a—decreasing in |p|—and the similar (though less ex-
treme) behaviors exhibited in the other three plots may seem
counterintuitive. That these are in fact features of appro-
priate orderings of the design points is made plausible by
analyzing the dominant term in C. For MA(1) errors and
any symmetric design, this is

,ZTPZ
[ —2 ) (diag(1 + 2p, (14 20)7s — po)
1+ /———1_4p2 g P P)T2 1Y
+0(n™1)),

where 6 = Z;:ll (z; — xi4+1)?/n. From this, one obtains
that the determinant of this matrix tends to 0 as |p| — 1/2,
as do the trace and IMSE as p — —1/2, if § = 47, when
p > 0and § = 0 when p < 0. In each case we ignore the
O(n~1) terms. These equalities are not quite attainable, but
they are upper and lower bounds. The robust designs con-
sidered here order the design points in such a way as to
maximize or minimize ¢ for fixed 7, subject to the other
constraints placed on them, according to whether p is pos-
itive or negative.

Table 1 gives values, for each design pair (.pos, .neg), of
the following:

a. 7o — 1/3, the dominant term in the bias when v # 0

b. 1/72, determining the variance of the slope estimate

c. The signal-to-noise ratio A2 = (45/8)v(r4 — 74) eval-
uated at v = 1. As used by Huber (1975), this is
E[Z)?/var[Z], where Z = Y7 Yi(f(x:) — fo) (with
fo == X1, f(z;)/n) is the test statistic of the most
powerful (Neyman—Pearson) test, assuming iid normal
errors, of the null hypothesis that E[Y'|z] is linear, ver-
sus the alternative f(x) given earlier.

d. The power of the level o = .1 Neyman—Pearson test,
when v = 1. For purposes of comparison, note that
the best design for such a test (when the errors are
iid), placing one-half of the observations at z = 0 and
one-quarter at each of x = 1, has A2 = 1.41 and a
power of .325. However, this design has a power of
0 against a response function linear at —1,0, and 1,
regardless of the behavior at other points.

The “Power” column of Table 1 indicates that the non-
linear disturbance f(x) is so slight as to be very difficult
to detect; nonetheless, of the designs considered here, the
most powerful are the most V-robust designs.
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Table 2. Simulated Size and Power of One-Sided 5% Durbin—Watson Tests

Design

Response/error structure vrob mostvrob mostbrob mrob uniform
Independent .051 (2) .052 (2) .051 (2) .051 (2) 018 (1)
v=0MA(1), p=.2 .206 (4) .209 (4) .208 (4) .208 (4) 106 (3)
MA(1), p = —.2 .203 (4) .205 (4) .203 (4) .204 (4) 204 (4)
Independent .052 (2) 071 (2) .068 (2) .062 (2) 028 (2)
v=1MA(1),p=.2 210 (4) .248 (4) 241 (4) .232 (4) 130 (3)
MA(1), p = —.2 .201 (4) 171 (3) 175 (3) 183 (4) 172 (3)

NOTE: The size and power refer to the proportion of “conclusive” rejections only. Standard errors in the third decimal place are in parentheses. The AR(1) values were very similar to those for

MA(1) models and have been omitted.

Table 2 gives simulated values of the power of the one-
sided Durbin—Watson test for serial correlation, with a nom-
inal level of 5%. Here 12,000 sets of residuals were sim-
ulated for v = 0 and v = 1 and each of five correla-
tion structures represented by their autocorrelation matrices
I,P(.2),Py(—.2),P3(.2) and P4(—.2). The hypotheses and
designs used were those appropriate for the sign of p.

The simulations indicate that the uniform design fares
exceedingly poorly against positive autocorrelation. Among
the more robust designs, when v = 0, the size and power of
the test do not depend on the choice of design. When v = 1,
there is essentially no change in the performance of the V-
robust design. However, the power under the most V-robust,
most B-robust, and M-robust designs then tends to be larger
at |p| than at —|p|. To a lesser extent, the frequency of type
I errors increases when v = 1, for all but the V-robust
designs.

In general, the powers of the tests considered here are
rather low in all cases, illustrating (once again) the point
that barely detectable departures from the assumed model
can have severe effects on the precision and accuracy of
estimates. We are concerned here solely with the ameliora-
tion of such effects through the use of an appropriate design.
(For further discussion of the effects of dependence and of
the attainment of robustness against such effects through
suitable estimation procedures, see Field and Wiens 1994,
Hampel et al. 1986, chap. 8, and Samarov 1987, and refer-
ences cited therein.)

7. EXAMPLE

Werther, Hartge, and Rensner (1990) reviewed measure-
ments of fluid-dynamic properties for gas-solid beds. They
discussed several techniques for the determination of solids
concentrations, velocities, and mass flows in various gas-
solid fluidized beds—Ilow-velocity bubbling fluidized beds,
turbulent beds, circulating fluidized beds, and so on. One
technique for determining the integral concentration C,, of
solids in a low-velocity bubbling fluidized bed is pressure-
drop measurements. Because the solid particles are held in
a state of suspension by the upward-flowing gas, the pres-
sure drop of the gas through the bed is equal to the weight
of the solids per unit area of the bed. If p = p(h) is the
pressure over the height & of the fluidized bed, then the re-
lationship between the pressure change Ap and the height
change Ah is approximately linear within the bed; that is,

Ap ~ Ah, where 0 = p,C,g for known constants p, (the
density of the solid) and g (the acceleration due to gravity).

Werther et al. (1990) discussed the estimation of C,
through fitting the aforementioned relationship, with addi-
tive error, after making a small number of measurements
(pi, hi). With Ap; = p; — piy1 and x, = hjp1 — hy, the
statistical model is

Ap; = 0x; + ¢, co,n—1. (15)

If the errors in the measurement of p, can be assumed
to be stationary and uncorrelated, then {¢;} in (15) is an
MA(1) process with negative correlation p(1) = —.5. Other
sources of variation—in particular the reported carry-over
effect between periodic flushings of the pressure gauge—
render this model somewhat approximate. It seems quite
safe, however, to assume that p(1) is negative. The simula-
tion studies in Section 6 have shown that the most V-robust
designs are quite robust against misspecifications of the er-
ror structure. We thus take {z;} to be the most V-robust
design for P and straight-line regression through the ori-
gin; that is, z; o sin(iw/n) (see Remark 4 of Sec. 3). Then
with h; = h and h,, = H, we obtain, for i =1,...,n— 1,

% n—1
hoyr = h+ (H=h)-Y 2,/ > a;
J=1 1=1

sin sin
= h+(H—-h) 2
sin

We have simulated data from this model for a low-
velocity bubbling fluidized bed, using input values obtained
in collaboration with I. Nirdosh, Department of Chemical
Engineering, Lakehead University. The solids are sand par-
ticles with p, = 2,200 kg/m?3, and the height of the bed is .4
m. We used 60,000 sets of MA(2) errors, with p(1) = —.36,
p(2) = —.08, with each of two designs: the most V-robust,
with {h,} = {.020,.068,.152,.248,.332, .380}, and the uni-
form, with {h,} = {.020,.092,.164,.236,.308, .380}. The
resulting estimates of the bias and standard error of 6 are
(—.002, 3.63) for the V-robust design and (—.010,4.04) for
the uniform design. We obtained similar values with other
MA(2) models.

8. CONCLUSIONS

A fruitful approach to designing for correlated errors has
been to seek an ordering of the support points, of a design
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optimal for uncorrelated errors, that minimizes the variance
under the model of correlation. This approach was taken by
Jenkins and Chanmugan (1962), resulting in the designs of
Theorem 1, found to be V robust. As in Table 1, these de-
signs tend to result in small variability of the regression
estimates when the fitted model is exactly correct, but large
biases otherwise. Another tack has been to control the bias
under departures from linearity (Box and Draper 1959, Hu-
ber 1975, Wiens 1991), resulting in the uniform designs
found by us to be most B robust (see Table 1). Sacks and
Ylvisaker (1968) also noted optimality properties of uni-
form designs for correlated errors.

The present work shows that under departures from lin-
earity that are almost undetectable, especially also in the
presence of departures from independence, the most V-
robust and M-robust designs used here yield estimates with
significantly smaller MSE than those resulting from the
competing designs. The favorable properties of these de-
signs appear to be quite insensitive to the loss function used
and also to the underlying autocorrelation model. The most
V-robust designs have surprisingly high power with respect
to tests for model departures in the direction of nonlinear
response functions.

Given that statisticians routinely fit linear models by or-
dinary least squares in the hope that the departures from
linearity/independence are sufficiently small that these as-
sumptions will not lead them seriously astray, we recom-
mend the use of most V-robust or M-robust designs. They
are simple to compute and afford the necessary protection
in such situations.

APPENDIX: PROOFS

Proof of Theorem 1

It is easily verified that each of the four designs maximizes
|Be¢(0)] = ||x||*/n in Z,, unconditionally, and has the stated
value of CVS(&,P), and hence is V robust. For part c, it must
be verified that CVS(£,Px) > k., for each k, if ||x||? is a max-
imum. This is straightforward on noting that (a) maximality of
Ix||*> forces x to have the (unordered) elements in the statement
of the theorem, and (b) for such x, the denominator of Q(x) is
fixed and the numerator is minimized (for ;) or maximized (for
‘P.) by the indicated orderings.

The proof of Theorem 2 requires some preliminary results.

Lemma Al. The matrix Q has characteristic roots (ch.roots)
u; and corresponding orthonormal characteristic vectors (ch.vecs)
r;, given by (10). The ch.vecs r; are orthogonal to 1 = (1,...,1)T
iff j is even.

Proof. Both statements may be verified by direct calculations.
The first was derived by Grenander and Szego (1958, pp. 67-68).

Lemma A2. With definitions as at (9)—(14), we have that
XTX =1,_; and

mlnz 9 x(]

Sn,q

q q a
- Zz\n—j, r:naxz Qx(y) = ZA].
j=1 =1 J=1

These extrema are attained at arbitrary nonzero multiples of the
first ¢ and last ¢ columns of X.

Proof. Note that
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max{trace QXX"|X"X =1,,X"1 = 0},

q
max y © Q(x(;)) =
j=1

where X has columns {x ,ISJ)}Z 1 If Jnxn—1 satisfies J7J = Tn_y
and JJ7 = I,,—(1/n)117, then the conditions on X are equivalent
to “X = JH for some Hn 1xq with HTH = I,”. With R =
J TQJ, the desired maximum is thus max{trace RHHT|HTH =

I,}. Theorem 1.10.2 of Srivastava and Khatri (1979) states that this
maximum is } 3%, A;, and similarly the minimum is Z An—j»
where A\; > --- > An—1 are the ch.roots of R. These extrema
are attained if H consists of the g corresponding orthonormalized
ch.vecs of R, and then x(,) is (any nonzero multiple of) Jh,).

The ch.vecs of R with roots A # 0 are of the form h = J7z,
where z is a ch.vec of R := JJTQ with root \. There is an
extraneous ch.vec of R with root 0, which is useless to us. If n is
odd, then Q has a ch.vec r(n41),2 With root A = 0; this provides
an additional ch.vec of R.

The equations Rz = Az may be written as

c=17Qz/n.

Premultiplying by 17 gives A17z = 0, so that if A\ # 0, we
have z = JJ7z = Jh. Thus the set X of unordered vectors x,
consists of the ch.vecs z of R corresponding to nonzero ch.roots,
plus possibly a vector arising from r(,;1) 2.

Case 1. If ¢ = 0 in (A.1), then z is a ch.vec of Q. By Lemma
Al, there are [n/2] such vectors that are orthogonal to 1. These
include r(n41)/2 iff n 4+ 1 is odd and (n + 1)/2 is even. Thus
this case contributes the vectors rz;,j = 1,...,[n/2] to X, with
corresponding roots ps;.

Case 2. Let ¢ # 0, A # 0 and assume that )\ is not a ch.root of
Q. Then the first equation in (A.1) gives z = ¢(Q — AI)"'1, and
the second yields

(Q - M)z = cl, (A1)

17(Q- A1) '1=0. (A2)
Writing (A.2) as Zg(::—l)/zl(].Trgj_l)z/(/.l,zj_] — ) = 0 shows
that there are [(n — 1)/2] solutions A = v; which when ordered
satisfy p2j—1 > v; > pa2;+1. The remaining elements of X' are
then (multiples of) the vectors s; = (Q — v;I)7'1.

Of the n equations given by (Q — AI)s = 1,n — 2 are of the
form

1 1
(v’“+1'1—,\):2’\<”’“_1—,\>
1
- ('Uk—l—m>9

This recursion, when solved and combined with the remaining two
equations and with (A.2), yields

os (k — ~tl
Vg = 1_%? 2sin2?,
cos =¢ 2

where ¢ = cos™! ) satisfies (12). From this, we calculate
> r_ vk = n(n + 1)(n + 2)/(2sin® ¢), whence normalizing s
to have unit length gives (11). It then remains only to establish
that the terms in (14) are in decreasing order. Because both us;
and v; are in (p2;41, M2j—1), We require pg; > v;. This follows
from the observation that the function on the left of (12) is strictly
increasing where it is nonnegative and is negative at cos™" .

Proof of Theorem 2

If £ € E,,q has model matrix Z = (1 : Xp), then for P; we are
to maximize |ZTZ| = n|X{X,|, subject to >3-, Q(x(y) being
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a minimum. But by Lemma A2, any X, whose columns minimize
2 _5-1 Q(%(;)) must be of the form X4;1) D1 for a diagonal matrix
Dy, and then | X' X,| = |D;|? is maximized by maximizing |D;|.
The proof for P, is entirely analogous.

Proof of Theorem 3

A convexity argument allows a reduction to designs with spher-
ically symmetric densities. The maximization of b} B¢ ' (0)by,e
over F can be carried out as in theorem 1 of Wiens (1992); the
methods of section 3 of that paper then show that the B-robust
design is the solution to the problem of maximizing Eg [U?] sub-
ject to a bound on Eglg(U)], where h(u) = (qui™'/r%)g(u)
is the density and H is the distribution function, under &, of
U := ||x||. To solve this problem, we first fix v = Ex[U?]/q.
With the aid of Lagrange multipliers, we find that g is of the form
g(u) = p@? + 8%, u > 0,u € [0,r], where u(y) and 6(v) are
chosen to make h a proper density and to attain the required bound
on Ey[g(U)]. Then Ex[U?] is maximized over v, yielding Ho (u).
The final statements of the theorem follow from the observation
that by virtue of spherical symmetry, T = x/||x|| is uniformly
distributed over the surface of the unit sphere, independently
of U.

Proof of Theorem 4

Under the stated conditions, in each case we have CVS(¢™*,P) =
sup,;y 2p(1)[(n — 1)/n + ZZ:l Qx(y)l < a.

[Received March 1995. Revised February 1997.]
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