Minimax Robust Designs and Weights for
Approximately Specified Regression Models
With Heteroscedastic Errors
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This article addresses the problem of constructing designs for regression models in the presence of both possible heteroscedasticity
and an approximately and possibly incorrectly specified response function. Working with very general models for both types of
departure from the classical assumptions, I exhibit minimax designs and correspondingly optimal weights. Simulation studies and
a case study accompanying the theoretical results lead to the conclusions that the robust designs yield substantial gains over some
common competitors, in the presence of realistic departures that are sufficiently mild so as to be generally undetectable by common
test procedures. Specifically, I exhibit solutions to the following problems: P1, for ordinary least squares, determine a design to
minimize the maximum value of the integrated mean squared error (IMSE) of the fitted values, with the maximum being evaluated
over both types of departure; P2, for weighted least squares, determine both weights and a design to minimize the maximum IMSE,
and P3, choose weights and design points to minimize the maximum IMSE, subject to a side condition of unbiasedness. Solutions
to P1 and P2 are given for multiple linear regression with no interactions and a spherical design space. For P3 the solution is
given in complete generality; as an example, I consider polynomial regression. In this case the minimax design turns out to be a
smoothed version of the D-optimal design, with modes coinciding exactly with the support points of this classical design.
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Robustness; Weighted least squares.

1. INTRODUCTION

In this article I study designs and weights for regression
models, with an eye to attaining robustness against two vi-
olations of the classical assumptions:

1. The response is taken to be only approximately linear
in the regressors,

Y(x) = E[Y[x] +&(x)

and
ElY|x] = 2" (x)0 + f(x), (1)

for a p-dimensional vector z of regressors, depending on
a g-dimensional vector x of independent variables. The re-
sponse error function f represents uncertainty about the
exact nature of the regression response. One estimates 6
but not f, leading to biased estimation of E[Y|x].

2. The random errors, although uncorrelated with mean
0, are possibly heteroscedastic,

var[e(x)] = 02g(x), 2)

for a function g satisfying assumptions given later.

Violation 1 is commonly dealt with at the design stage,
an approach initiated in the seminal work of Box and
Draper (1959) and continued by Huber (1975), Pesotchin-
sky (1982), myself (Wiens 1992), and others. Violation 2 has
most commonly been viewed purely as an estimation prob-
lem, handled by using weighted least squares with weights
inversely proportional to an estimate of g(x). This approach
requires considerable structure (e.g., groups of identifiable
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homoscedastic observations), and even then the usual vari-
ance estimates can be inefficient and inconsistent (Can oll
and Cline 1988).

When handled at the design stage, heterogeneity poses
special problems in that one may have no knowledge what-
soever of the function g(x). Wong (1992) and Wong and
Cook (1993) discussed characterizations of and algorithms
for constructing optimal designs for heteroscedastic re-
gression models with known efficiency functions A(x) =
g(x)~!. Bayes designs assuming a known efficiency func-
tion have been constructed by Dasgupta, Mukhopadhyay,
and Studden (1992). Pritchard and Bacon (1977) combined
Bayesian and sequential approaches—one is to choose the
next design point to maximize the mode of the posterior
density of the parameters. Heteroscedasticity is dealt with
by using weighted least squares with a power transforma-
tion, the power being estimated along with the regression
parameters. Power transformations in this framework also
have been studied by Schulz and Endrenyi (1983), who take
the power to be a random variable uniformly distributed
over [0, 1]. Bayesian models to determine weights in it-
erative weighted least squares regression were studied by
Hooper (1993).

In this article I adopt a minimax approach to the prob-
lem of unstructured and unknown heteroscedasticity and
response misspecification. As loss function I take the inte-
grated mean squared error (IMSE) of the fitted values f’(x),

IMSE =/SE[(1>(X)—E[Y|X])2] dx

Here and elsewhere the integration is over the design space
S; that is, the region to be explored by the experlmenter
I consider the following problems:
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P1. For ordinary least squares (OLS), determine a design
to minimize the maximum, over f and g, value of the IMSE.

P2. For weighted least squares (WLS), determine both
weights and a design to minimize the maximum IMSE.

P3. Choose weights and design points to minimize the
maximum IMSE, subject to a side condition of unbiased-
ness.

A precise definition of the regression models to be con-
sidered and preliminary reductions of problems P1-P3 are
given in Section 2. Solutions to these problems are given in
Sections 3-5. It turns out that the optimal designs are abso-
lutely continuous with respect to Lebesgue measure; meth-
ods of approximating and implementing them are discussed.
Two comparative studies and a case study are detailed in
Sections 6 and 7 respectively. Conclusions are given in Sec-
tion 8. All derivations are provided in the Appendix.

2. PRELIMINARIES

The minimax problems considered in this article require
maximizing the loss over model response errors f and vari-
ance functions g, and minimizing the resulting maxima over
the class of designs and possibly over the class of weights
as well. In this section I give the solutions to the easier of
these variational problems. I thereby reduce each of P1 and
P2 to single minimizations over a class of densities, and P3
to a single minimization over the class of weights.

Suppose that the experimenter is to take n uncorrelated
observations on a random variable Y whose mean is thought
to vary in an approximately linear manner with regressors
z(x): E[Y|x] ~ 27 (x)6. The sites x; are chosen from S, a
design space with finite volume defined by [¢dx = Q™'
Define the “true” value of 8 by requiring the linear approx-
imation to be most accurate in the L? sense:

0 :— argmin / (B[Y|¥] - 27 (x)t)2 dx.
¢ s

Then define f(x) = E[Y]|x] — 2T (x)0 and e(x) = Y (x) —
E[Y|x], so that (1) holds. As at (2), allow for the possibility
that the variance of ¢(x) varies with x. Define 02 = sup o[

var?[e(x)]2 dx)'/2. The model is then summarized by (1),
(2), and

/ z(x)f(x)dx =0 (3a)
s
[ P (3b)
s
and ’
[Pwax<ar (30)
s

The first condition of (3) is a consequence of the definitions
of @ and of f. Some condition like the second is necessary
so that errors due to bias do not swamp those due to vari-
ance. The third condition follows from the definition of
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o2 and also allows for homoscedastic errors g = 1, where
1(x) =1.

The optimal designs for P3 do not depend on the pa-
rameters o2 or n. Those for P1 and P2 depend on these
values only through the quantity v = ¢2/(nn?), which may
be interpreted as representing the relative importance to the
experimenter of variance versus bias: ¥ = 0 corresponding
to a “pure bias” problem, ¥ = oo giving a “pure variance”
problem.

I propose estimating € by least squares, possibly
weighted with nonnegative weights w(x). Let ¢ be the de-
sign measure; that is, the measure assigning mass n !
to each of {x;,...,x,}. Define matrices A, B, and D
and a vector b by A = [ z(x)z” (x) dx, B = [5w(x)z(x)
z"(x) d{(x),D = [sw?(x)g(x)z(x)z" (x) dé(x), and b =
Js w(x)z(x) f(x) d¢(x). In a more familiar regression nota-
tion these are B = n"'ZTWZ and D = n 'ZTWGWZ,
where Z is the n x p model matrix with rows z7 (x;) and
W and G are the n x n diagonal matrices with diagonal
elements w(x;) and g(x;). The motivation for writing these
quantities as integrals with respect to ¢ will become ap-
parent later, when I broaden the class of allowable design
measures to include continuous designs. Note also that al-
though it is mathematically convenient to treat £ as a prob-
ability distribution, I do so only in the formal sense of a
nonnegative measure with a total mass of unity—there is
no implication that the x; are measured with error.

Assume that A and B are nonsingular and define H =
B-1AB™!. In this notation, the mean vector and covari-
ance matrix of the estimate & = (ZTWZ) 'ZTWY =
B! [ w(x)z(x)Y (x)dé(x) are E[f] — @ = B~'b and
cov[d] = (0?/n)B~'DB'. I estimate E[Y|x] by ¥ (x) =
27 (x)0 and consider the resulting IMSE. This splits into
terms due solely to estimation bias, estimation variance,
and model misspecification:

IMSE(f’ g,w, 5)
= ISB(f,w,€) + IV(g,w,€) + / £2(x) dx,
/S

where the integrated squared bias (ISB) and integrated vari-
ance (IV) are

ISB(f, w, &) = / (B[V (x) — 27 (x)8])? dx — bTHb
S
and

IV(g,w,¢§) =/

S

var[Y (x)] dx = %2 - trace(HD).

I adopt the viewpoint of approximate design theory and
allow as a design measure ¢ any distribution on S. The
optimal designs are then not discrete. It is in fact easy to see
that if either of sup; ISB(f,w,§) or sup, IV(g,w,§) is to
be finite, then £ must necessarily be absolutely continuous
with respect to Lebesgue measure. A formal proof can be
based on that of lemma 1 of Wiens (1992).

Methods of implementing approximations to these con-
tinuous designs are discussed in Sections 6 and 7. My gen-
eral approach is to divide S into n regions to each of which



1442

Table 1. Constants for my(x) of P1, Minimax for OLS,
and Straight Line Regression

v a b c ¥
.01 6.67 7.33 458 .340
.05 6.42 1.38 465 .365
A 5.07 .843 467 .373
5 3.24 .263 472 .384
1.0 2.94 136 478 406
5.0 2.49 .045 A79 419
10 2.40 .031 480 427
20 2.32 .018 480 443
50 2.29 .015 480 446

¢ assigns a mass of n~!, and to place one design point in
each such region. This ensures that £ is the weak limit, as
n — oo, of the empirical measures of the design points.
When S is an interval, this apportionment can be done in
a natural way by placing design points at the quantiles of
&. When S is a hypersphere and ¢ is spherically symmet-
ric, the well-known factorization of a spherically symmetric
measure into the uniform distribution of the angles, and the
univariate distribution of the norm may be exploited; see
Remark 3 and Example 9. For general S there is consid-
erable arbitrariness in this approach, and the derivation of
implementations which are in some sense optimal is the
subject of further research.

In earlier work (Wiens 1992) I discussed some alter-
nate neighborhood structures for departures from linearity.
Although the neighborhood defined by (3) is rich enough
to necessitate absolutely continuous designs, alternate and
evidently thinner neighborhoods that have been proposed
lead to designs with mass concentrated at a small number
of, generally extreme points in the design space (see, e.g.,
Li and Notz 1982; Marcus and Sacks 1976; Pesotchinsky
1982). Such designs allow little or no opportunity to test the
fitted response, and so their robustness is somewhat ques-
tionable. My conclusion (Wiens 1992, p. 355) was that “our
attitude is that an approximation to a design which is ro-
bust against more realistic alternatives is preferable to an
exact solution in a neighbourhood which is unrealistically
sparse.”

Let k(x) = £(x) be the density of &, and define m(x) =
k(x)w(x). Assume, without loss of generality, that the av-
erage weight is [ w(x)dé(x) = 1. Then m is a density on
S and

%) gy —
/Sw(x)d 1. @)

Observe that now b and B, and hence ISB(f,w,£), de-
pend on (w, §) only through m and that IV(f, w, &) benefits
from a similar, though lesser, simplification. For this rea-
son, rather than optimizing over w(-) and densities k(-), it is
convenient to optimize over w(-) and densities m(-) subject
to (4).

The max halves of the minimax solutions are given by
Theorem 1.1. Before stating this, I give some definitions.
Define matrices C = [ m?(x)z(x)z” (x) dx and K = C —
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Figure 1. Minimax IMSE Designs for OLS and Straight Line Regres-

sion, as in P1. (a) Design densities and (b) least favorable variance
functions; v = .05 (——) and v = 50 (- ).

H~!. Note that K is positive semidefinite:
a’Ka = / {aT[(m(x)I - BA Y )z(x)]}2dx >0 Va.
S

Let ), be the largest eigenvalue of K'/2HK'/2; that is, the
largest solution to det(C — (A + 1)BA™'B) = 0. Denote
by B, the corresponding eigenvector, normalized so that
|8m|| = 1. Finally, define I,(x) = 27 (x)Hz(x).
Theorem 1.
a. Maximum ISB over all f satisfying (3a) and (3b) is
max ISB(f,w,€) = 7.
When m(-) is such that K is nonsingular, maximum
ISB is attained at f,(x) = 78LK~Y2(m(x)I —

BA )z(x).
b. Maximum IV over all g satisfying (3c) is

max IV(g,w,£)
2 -1/2 , 1/2
= 7l </$ (w(x)lm (x)m(x)) dx)

and is attained at g, ., (x) & w(x)l,(x)m(x), normal-
ized so that [ g2 ,(x)dx =Q7".
c. Maximum IMSE is

n}ax IMSE(f1 g, w, é.)
g

1+ A + Q12

x(éwwmwmmwﬂwy

Table 2. Relative Efficiencies re1 (No Contamination) and re2
(Least Favorable Contamination) of £y of Example 1, With OLS,
Versus the “Optimal” and Uniform Designs

q relopt re’ ypis re2ynit
1 719 1.079 1.010
2 .694 1.041 1.013
3 .706 1.009 1.006
4 734 1.002 1.003
5 .762 1.000 1.004

NOTE: relynif(q) = 1.000 for g > 6.
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Table 3. Constants for mp(x) of P2), Minimax for WLS,
and Straight Line Regression

v a b c ¥
.01 2.33 21.8 1.11 335
.05 1.67 6.47 1.11 .336
A 1.61 3.62 1.11 .338
.5 1.60 1.12 1.11 .354
1.0 1.49 .890 1.11 .356
5.0 1.49 .548 1.11 432
10 1.48 524 1.13 440
20 1.60 426 1.16 496
50 2.02 .265 1.26 577

By Theorem 1c, problem P1 can now be phrased as fol-
lows:

P1: Find a density mo(x) to minimize

77_2 n}ax IMSE(fa g, w= 1, é.)
79 N

=1+ A\ + Q712

X </S (I (x)m(x))? dx>1/2. (%)

Then kg = my is the optimal (minimax) design density
for OLS estimation.

Problem P2 requires the derivation of optimal weights for
fixed m(z); these are given in Theorem 2. The “unbiased-
ness” in the statement of problem P3 refers to the require-
ment maxy ISB(f,w,&) = 0. Equivalently, E [6] = 6 for all
f. Theorem 2b states that this holds only when m(x) = (2,
the uniform density on S.

Theorem 2.

a. For fixed m(x), the optimal weights minimizing max,
IV(g,w,§) subject to (4) are given by wp,(x) =
am(lz( )m( N~Y3I(m(x) > 0), where a, =
JsUm (x))¥?dx. Then max, IV(g,wm,§&) =
Q- 1/2 3/2‘

b. ‘Subject to (4), the requirement max ISB( fow, &) =0
holds if and only if m(x) = Q.

By virtue of Theorem 2a and 2b, problems P2 and P3
now become

P2: Find a density mg(x) minimizing

77_2 n}ax IMSE(f, g, wm, &) = 1+ Am + VQ_1/2CV§,{2.
g

Then the design density ko(x) = ok (m3(x)ln,
(x))?/3 and the weights wy,, (x) = mo(x)/ko(x) are (mini-
max) optimal for WLS estimation.

P3: Find weights wo(x) oc (z7(x)A"tz(x))~%/3, satis-
fying (4) with m(x) = Q. Then wp(x) and the design den-
Sity Kuwg,0(x) = /wo(x) are optimal in that they minimize
maxgy g IMSE( f,g9,w,§), subject to the unbiasedness condi-
tion maxy ISB(f,w,&) = 0.
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3. MINIMAX DESIGNS FOR ORDINARY
LEAST SQUARES

For P1 and P2, I consider only multiple linear regres-
sion without interactions—z(x) = (l,qul) —with S a
g-dimensional ellipsoid {x|(x —a)T¥71(x —a) < 1} for
some positive-definite matrix 3. Via the transformation
»~1/2(x —a) — x, assume that a = 0 and X = I, so that S
is the hypersphere of unit radius centered at the origin. Then
Q' =7Y2/T[(¢/2)+1]and A = Q1@ (¢+2)7'L,). A
design density mg(x) appropriate for the spherical design
space transforms t0 m, (%) = |Z|71/2me(E72(x — a))
in the original elliptical region. Under these transforma-
tions, the loss function is altered only by a constant mul-
tiple depending on |X|, so that if m is optimal, then this
optimality is transferred to m, 5.

In particular, assume that the independent variables have
been transformed to a common scale. There being no a
priori reason to give preference to one quadrant over an-
other, restrict to densities m(x) that are invariant under

permutations and sign changes x — (£x;,,...,£z; ). Then
B = 1@ 11, where v = [ zim(x) dx.
Theorem 3 (Minimax Designs for OLS). For 0 <u <1,

put I(u;y) = 1 +u?/((g + 2)7?) and define
ho(u; ) = av (b +u?)/(1 + evl®(u; 7)),

where the positive constants a = a(y),b = b(y), and ¢ =
c(vy) satisfy

1 g—1
/ un ho(u;y) du = 1, 6)
0
uq+1
/ q ho(wsy)du =7, @)
0
and
1 1/2
2¢ </ 12 (u;y) qui= ha (u; ) du) =1. (8)
0
Define

Yo = argmin(Q " a(v)(b(y) + ¢7) + (42%(v)) ™). (9)

720

Denote expectation with respect to the density (qu?~!/Q)
ho(u; ) by Eo. If

Eol(g+1—=1(U;%))ho(U;%)] > 0, (10)
< g
2 2 /
1.0 0.0 1.0 1.0 00 10

(@) (b)

Figure 2. Minimax IMSE Design Densities (a) and Optimal Weights
(b) for WLS and Straight Line Regression, as in P2; v = .05 (—) and
v=250(--)
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Table 4. Relative Efficiencies re1 (No Contamination) and re2
(Least Favorable Contamination) of &9 of Example 3, With and
Without the Optimal Weights wr,, Versus the “Optimal”
and Uniform Designs and OLS

Optimal weighting of &g Constant weighting of &g

q redopt relynit re2ynif I'e'/opl retynif re2ypjf
1 731 1.096 1.344 .796 1.194 915
2 717 1.075 1.593 775 1.162 .872
3 731 1.044 1.788 .782 1.117 .828
4 742 1.012 1.919 .787 1.073 794
5 .769 1.009 1.993 .817 1.073 .750

then the minimax design &y has density ko(x) = mo(x) =
ho(||x]l; v0)- Minimax IMSE is

n}ax IMSE (fagzw = 1,£0>
’g

= 7*v(Q a(v0)(b(10) + g70) + (4Q%c(70))™1), (11)

attained at g, 1(x) = 2c(||x]/;70)mo(x) and fr,,(x) o<
mo (X) - Q.

Remark 1. The integrand in (6) is the density of U =
[|X]|, when X has the density mg(x). The parametric form
of mg(-) given in Theorem 3 is such that it minimizes (5),
subject to the marginal second moment y being fixed. Equa-
tions (7) and (8) allow (5) to be expressed as a function of
~ alone; a further minimization over + then results in (9).
The symmetry of m(-) implies that A, in (5) is one of only
two distinct eigenvalues AD or A?; condition (10) ensures
that A, is indeed the larger of /\ﬁ,lbg and /\5,32) I have nu-
merical evidence for, but have been unable to prove, the
conjecture that (10) is vacuous in that it holds for all values

of (v,q).

Remark 2. For the numerical work, (6)—~(8) were first
solved for a,~, and ¢, for fixed b. Then (11) was minimized
over b and (10) was verified. See Table 1 for some represen-
tative values of the constants and Figure 1 for plots of the
minimax densities and least favorable variance functions in
the case ¢ = 1 (straight line regression). It is interesting
to note that the modes of the design densities are not at
the extremes of the design space, even for large values of
v. (Recall that v = oo corresponds to a “pure variance”
problem.) For smaller v the design becomes more uniform,
with the modes remaining in the “shoulders” of the design
space.

Remark 3. To implement these designs, one may use
the fact that if X has a spherically symmetric density k(||x]|)
on |x|| < 1, then X/||X]|| is uniformly distributed over
the surface of the unit sphere, independently of U = ||X]|,
which has density h(u) = qu?~1Q~1k(u) on [0, 1]. Denote
the corresponding distribution function of U by Hy. A pos-
sible implementation then consists of choosing a,, , design
points uniformly distributed over each of the annuli ||x|| =
Hy'(i)[n)ang)),i = 1,...,[n/ang), and n — ap 4[n/anq]
points at 0. See Example 9, where a172 = 3.
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Example 1. When the fitted model E[Y|x] = z7(x)8
is correct and the variances are homogeneous, the relative
efficiency of £ relative to another design £;, also symmetric
with identical marginals and with second moment ~1, is

IMSE(f =0,g=1,w=1,&)
IMSE((f =0,9=1,w =1,&)

_vaLe) (1+ w5mr) (%) (12)

IV(1,1,&) -1 (1+ Tém) (5

rel(q) =

[V}

[S}
~—r

n
Table 2 gives some representative values of rel(q) for &
the optimal design in this situation—all mass at ||x|| = 1

and v; = ¢~ '—and for ¢; the uniform design, with constant
density  and v; = (¢ +2)~!. Also given are values of

_ 77_2 maxg g IMSE(f7 9, 1)51)

n~2maxy, IMSE(f,g,w,&)’ 1)

re2(q)

with w = 1. The denominator of (13) is given in (11). For
&1, the aforementioned “optimal” design, the numerator is
oo; for the uniform design, it is obtained from Theorem 1c
and is 1+ vQ~1((¢® + 6¢> + 13¢ + 4)/(q + 4))'/2. 1 have
used v = (O, so that the bound ([ f2(x)dx/ [4dx)"/? <
o/+/n is of the same order as a standard error.

Example 2. A design minimizing max, IV(g,1,¢)
alone may be obtained by letting v — oo in Theorem 3.
One then obtains mo(x) = ho(||x||;v0), where ho(u;y) =
d(b 4+ u?)/1?(u;7),d = d(v) and b = b(y) satisfy (6) and
(7), and o = argmin.,d(~y)(b(7) +¢y). Minimax IV is max,
IV(g,1, &) = (d(0) (5(70) + 470)/2%)"/202 /m, attained by
Grmoa (%) o< (b(0) + |x|2)/i(x;70). See Figure 1 for
close approximations (“v = 50”) to mg and g,,,1 When
g = 1, in which case vy = .464, d(yo) = 4.64,b(y0) = .004,
and max, IV(g,1,&) = 4.1702/n.

4. MINIMAX DESIGNS AND WEIGHTS FOR
WEIGHTED LEAST SQUARES

I take the same multiple linear regression model and
spherical design space as in Section 3.

Theorem 4 (Minimax Designs and Weights for WLS).
Let I(u;v) be as in Theorem 3. Define ho(u;v) to be the
positive root of

ho(u; ) + et/ (us )by (us 7) — av (b +u?) = 0;

Table 5. Relative Efficiencies re1 (No Contamination) and re2
(Least Favorable Contamination) of £y, of Example 5, With
and Without the Optimal Weights wy, Versus the “Optimal”
and Uniform Designs and OLS

Optimal weighting of &g Constant weighting of &g

q redopt re1ynif re2yni relopt retuni re2ynif
1 .696 1.044 1.087 .745 1.118 993
2 692 1.037 1.075 732 1.098 1.002
3 .720 1.028 1.059 751 1.073 1.004
4 749 1.021 1.046 774 1.056 1.003
5 774 1.016 1.037 795 1.043 1.002
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Figure 3. Minimum IMSE, Subject to max ISB = 0, Design Densities for qth Degree Polynomial WLS Regression, as in P3. (a) g = 2, (b) q =

3,(c)g =4, (d)qg= 5. -, the limiting density, as q — oo.

that is, h/® (u;7) = y/3 (w)—cvl?/3(u; y)y~1/3(u) /3, where

y(u) =3

a(b+u?) + \/% vl (u;y) + (a(b+ uz))zl .

The positive constants a = a(v),b = b(y), and.c = ¢(v)
satisfy (6), (7), and

1 1/2
c= (/ (quq_l/Q)l2/3(u;fy)hg/?’(u;7) du) . (14)
0

Define

Yo = mggéina(v)(b(v) +q7).

If (10) holds, thén the minimax design &y, and weights wp,,
have mq(x) = ho(||x||; v0). Minimax IMSE is

max IMSE(f, g, wm,, o)

f.9
= n°vQ a(v0)(b(10) + a70), (15)

attained at gmgw,,, (X) = (ko(x) JOY? and fp,(x) o
mo(x) — Q. The minimax design density ko and minimax
weights wy,, are given by

ko(x) = ¢~ 2273 (||x[|;70)mg ® (x)
and

Wy (X) = mo(x)/ko(x).

‘Table 3 gives values of the constants and Figure 2 plots
the minimax densities and weights, both for the case ¢ = 1.

Table 6. Relative Efficiencies re1 (No Contamination) and re2
(Least Favorable Contamination) of £, o of Example 7, With and
Without the Optimal Weights wy, Versus the D-Optimal and
Uniform Designs and OLS

Optimal weighting of &g Constant weighting of £o

q reip retynit re2ypis relp retynif re2ynif
1 .696 1.044 1.087 .745 1.118 .993
2 .848 1.060 1.157 .902 1.127 1.057
3 915 1.067 1.211 964 1.124 1.115
4 952 1.071 1.255 .996 1.121 1.163
5 976 1.074 1.290 1.015 1.117 1.204

10 1.028 1.078 1.406 1.054 1.106 1.341

NOTE: With optimal weighting of &, limg—oore2unit =
limg— corelunit = 1.084.

co and limg—scorelp =

A general prescription seems to be that for large values of v
(variance dominant) the design places most of its mass near
the extremes of the design space, but the more extreme de-
sign points receive relatively little weight in the regression.
For smaller values of v (bias dominant), the design tends
to become more uniform, with extreme design points still
being somewhat downweighted. ‘

Example 3. Efficiencies of (£o,wm,) under exact lin-
earity and homoscedasticity, relative to other designs and
OLS, may be computed as in Example 1, but with the de-
nominator of rel(q) using

v (g = 1,UJO,£0)

= AQE[IV3(1X ] 90)Ro 21X 70)]0 2/,

where Ej denotes expectation with respect to mo(x). When
&o is used with OLS, this denominator is as in (12), but with
~o replaced by v, = fol 22ko(x;70) dx. Table 4 gives some
numerical values of rel and re2, with £y used both with the
minimax weights and with OLS. The numerator of re2 is as
in Example 1. The derominator for WLS is given in (15);
that for OLS is obtained from Theorem 1c with w = 1 and
m = kg. I again take v = Q.

Example 4. Letting v — oo in Theorem 4 gives a de-
sign and weights minimiziag max, IV(g,w,&). Then
mo(x) = ho(|x[;70), where ho(u;v) = d(b + u?)*/
12(u;7),d = d(v) and b = b(-y) satisfy (6) and (7), and v =
argmin,,d(b + ¢). Minimax 1V is maxg IV(g, Wi, &) =
(d(70)(b(70) + ¢70)%/Q%)*/26%/n. The minimax weights
are W, (%) = (b(0)+¢70)/ (b(70)+||x|[%), and the minimax
design has density ko(x) = d(v0)(b(70) + [|x[*)*/((b(0) +
qv0)l?(||x||;v0)). Figure 2 gives close approximations
(v = 50) to ko and wy,, when ¢ = 1, in which case v, =
700, d(0) = 4.81,b(0) = .117, and maxy IV(g, W, &o) =
4.5802 /n.

5. MINIMUM VARIANCE UNBIASED DESIGNS FOR
WEIGHTED LEAST SQUARES

Problem P3 can be solved in considerably more general-
ity than seems feasible with P1 and P2. In this section I do
not restrict the class of competing designs in any way, and
do not impose any special structure on the design space.
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Table 7. ISB, IV and IMSE for the Designs of Example 8;
Heteroscedastic Errors and Incorrect Fitted Response
OLS WLS

Design ISB v IMSE . ISB v IMSE
Minimax .017 237 (.217) 254 001 .225(.231) .225
D-optimal  .194  .195 (.200) 389 194 195 (.200)  .389
Uniform .003 .269 (.232) .272 .004 .246 (.232) .250

NOTE: Values in parentheses are those of IV under homoscedasticity.

Theorem 5 (Minimax Designs and Weights for Un-
biased WLS). Subject to the unbiasedness condition
maxy ISB(f,w,§) = 0, the maximum loss maxy
IMSE(f, g, w, £) is minimized by the design &, o with den-
sity

(2(x)"A"'2(x))*/*
Kuo Q(X) =
’ J5(z(x)T A~1z(x))2/3 dx

and weights wo (x) = Q/kuy, o (x). Minimax IMSE, attained
at go(x) = (kuo,0(x)/)'/2, is

max IMSE(f, g, Wo, g’wo,ﬂ)

fig
1400712 </S (z(x)T A z(x))?/3 dx)g/z} .

Note that the minimax weights wy(x) are equal to
go(x)~%; if g(x) is known, then the efficient weights are
- proportional to g(x)7!. '

=7]2

Example 5. For the multiple linear regression model
of Sections 3 and 4, T obtain k,, o oc (1+ (g + 2)|x||>)%/3.
Table 5 presents relative efficiencies as ¢ varies, with v = Q.
With g = 2, this design is evaluated numerically in Example
9 and then transformed and implemented in Section 7.

Example 6. For multiple linear regression without
interactions—z(x) = (1,1,...,24)T—on § = [-1,1]4,
the optimal design density is ky, a(x) oc (1 + 3|x?)%/2.
If the independent variables have been linearly transformed
to lie in this hypercube, then optimal designs in terms of
the original units may be obtained as in the discussion at
the beginning of Section 3.

Example 7. For z(z) = (1,z,22,...,29)7 (degree-q
polynomial regression) on S = [—1, 1], the optimal design
densities k., q(z;q) are as follows, for ¢ = 2, 3,4, 5:

kwg (73 2) = 425(1 — 222 + 5z%)%/3,

Euwe.0(2;3) = .081(9 + 4522 — 1652 + 1752°)%/3;

Table 8. Simulated Size and Power of Test of
Homoscedasticity in Example 8

a=0 a=2
Design 7 =0 n? = 1/12 2 =0 n? = 1/12
Minimax .047 (1) 041 (1) 212 (3) 196 (3)
D-optimal 047 (1) .046 (1) 229 (3) .229 (3)
Uniform .042 (1) .039 (1) 204 (3) .208 (3)

NOTE: Standard errors in the third decimal place are in parentheses.
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Kwo,0(2;4) = .095(9 — 3622 + 2942 — 64425 + 4412°)%/3,

and

uwo a(;5) = .043(25 + 17522 — 1,750z + 6,5102°
— 9,5552% 4 4,851210)2/3,

There is an interesting connection between k.o (z;q)
and the Legendre polynomials, and hence to the classical
D-optimal design {p; that is, the (¢+1)-point measure min-
imizing the determinant of the covariance matrix of 6.

Lemma 1. Denote by P, (z) the mth degree Legen-
dre polynomial on [—1, 1], normalized by f_ll P2(z)dz =
(m + .5)71. Define a density on [—1,1] by hy(z) = (¢ +
1)~'z27(z)A~1z(z). Then ky, o(z;q) o hy(z)?3 and

hqg(x) = 5(Py(2) Pyyq(z) — Py(z)Pyta(z)),  (16)
) (1_ 2)—1/3
Jim ko a(z;q) = W,;(g—g) (17)

It can be shown that the local maxima of h4(x), and hence
those of ku, o (z; ), are the Os of (1 — z2)P)(x). These are
precisely the points of support of the D-optimal design {p.
In this sense kq,.q(+; ¢) is a smoothed version of £p, which
has the limiting density (1 — 22)7Y/2 /1 = limg_,o0 hg(2).
This should of course not be taken as an endorsement of
using £p in these situations—having only as many sites
as parameters, {p affords no opportunity to even test the
adequacy of the fitted response.

Figure 3 presents plots of ky,.o(z;9),g = 2,3,4,5 to-
gether with the limiting density. Table 6 gives efficien-
cies relative to the D-optimal and uniform designs, with
v = Q = .5. For WLS, the numerator of relp may be de-
termined by using the results of section 9.5 of Pukelsheim
(1993). With B denoting the relevant moment matrix, it is

o? o dglg+1)
IVig=1,w=1 -2 qAB 1= . . ZEMHE T/
(g , W 7£D) " tr n 2q+1

The other required quantities may be obtained from Theo-
rems 1 and 1 and Lemma 2.

6. COMPARISONS

Example 8 (Quadratic Regression). Consider a re-
gression model as at (1), (2), and (3) with z(z) =
(1,z,22)7, -1 < z < 1, normally distributed errors with
02 = 1, and sample size n = 24. As response error f(z),
take the cubic Legendre polynomial with the normalization

Table 9. Simulated Power of Test That 63 = 0 in Example 8

OLS;n? = 2/n WLS; 12 = 2/n
Design a=0 a=2 a=0 a=2
Minimax 186 (2) 196 (3) 190 (2) 211 (3)
Uniform 186 (2) 243 (3) 188 (2) 192 (2)

NOTE: Standard errors in the third decimal place are in parentheses.
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Figure 4. Designs of Example 9 Transformed for Stackloss Data. (a) P3, (b) C, (c) U.

[s [?(z)dz = n* = 1/12, so that v = Q. The true response
is then cub1c, with cubic coefficient 65 = 1.25,/7/6. The
variance function is g(z) o (1 4 2?)® with o = 2, normed
so that [ g*(x) dz = Q. Three designs are compared: the
minimax demgn of Example 7, the D-optimal design with
eight observations at each of 0 and +1, and the uniform de-
sign. For the two continuous designs observations are made
at & ((i—-1)/(n—-1)),i=1,...,n.
Values of ISB, IV, and IMSE are given in Table 7 for both
OLS and WLS fits. As benchmarks, the values of IV under
homoscedasticity (o« = 0) are also included. In the exact
quadratic model (n = 0), the ISB is of course 0 in all cases.
For the uniform design, the weights are w(z) = 1/g(z);
that is, optimal for known g(z). Even under such conditions
favorable to the uniform design, it is by these measures
outperformed by the minimax design, as is the D-optimal
design. Note that estimates obtained from the D-optimal
design, with no more sites than parameters, are necessarily
unaffected by the use of WLS.

Are these model inadequacies likely to be detected? To
answer this question, I have obtained the powers of two
tests, each at a nominal level of 5%:

1. Totest H: o = 0 versus K: « # 0, apply the scores test
of Cook and Weisberg (1983), after preliminary OLS fits
using the three designs. In terms of g; = dg(z;)/0ajq—0 =
log(1+z?) (ignore the additive constant) and ¢’ = Y, g./n,
the test statistic is

o [Zilgi =9 2/a >
221(91
Here ey, ...,e, are the OLS residuals and 62 = Z 2/n.

The values of T are compared to those of the 2 d1str1bu-
tion.

Table 10. ISB, IV, and IMSE for the Designs of Example 9;
Heteroscedastic Errors and Incorrect Fitted Response

(18)

oLs WLS

Design  ISB v IMSE  ISB v IMSE
P1 003 606 (531)  .608 .018 541 (584) 558
P2 047 582 (471) 630 .000 .532(518)  .532
P3 019 591 (496) 610 ..001 537 (535)  .538
U 002 612(534) 613 031 541 (534) 572
c 554 594 (370) 1.148 554 594 (.370) 1.148

2. To test a quadratic versus cubic response, (i.e., H: 03 =
0 vs. K: 63 # 0), use the usual normal-theory F test after
fitting a cubic response. This excludes the D-optimal design
from consideration. Both OLS and WLS fits are compared
for the minimax and uniform designs.

The powers, based on 25,000 simulations, are given in
Tables 8 and 9. The same 600,000 N(O, 1) values were used
in preparing each column of the tables. The weights used
with the uniform design were again optimal for known g(z).

For the three designs the powers were comparable, and
low. This is somewhat alarming in view of the fact that in
each case the parametric form of the alternative was cor-
rectly specified. A lesson to be (re-)learned is that barely
detectable model deviations can have a significant effect on
the accuracy and precision of the estimates. I remark that
for smaller values of n(n < 20) or a(a < 1), the perfor-
mance of the D-optimal design in the test for heteroscedas-
ticity was disastrous, with the powers falling to or signifi-
cantly below the size of the test. The performance of this
design also deteriorated rapidly under an asymmetric vari-
ance function. That of the minimax and uniform designs
was quite stable under asymmetry.

Example 9 (Multiple Regression With Two Regressors).
Take the multiple linear regression model, with ¢ = 2, of
Sections 3 and 4 and Example 5 and compare the corre-
sponding designs (P1, P2, P3) with the uniform (U) and
classically optimal (C) designs. Use f(x) = \/12/n(||x||2—
5) and n = 17, so that n? m/n and v = €, and
g(x) o (1 4+ [|x]|?)2 w1tha—2andfsg x)dx = Q71

Design C consists of n points equally spaced over the
boundary |x|| = 1. It is classically optimal in the sense
of minimizing IMSE(0, 1, 1, £); that is, it minimizes the IV
(as well as the trace and the determinant of the covariance
matrix of the regression estimates) under the assumptions

Table 11. Simulated Size and Power of Test of
Homoscedasticity in Example 9

a=20 a=2
Désign n? = n? =m/n n? =0 n? =7/n
P1 051 (1) 055 (1) 050 (1) 042 (1)
P2 060 (2) 085 (2) 013 (1) 013 (1)
P3 056 (1) 069 (2) 030 (1) 023 (1)
U .051 (1) 052 (1) 052 (1) 043 (1)

NOTE: Values in parentheses are those of IV under homoscedasticity.

NOTE: Standard errors in the third decimal place are in parentheses.
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Table 12. Simulated Power of Test for Second-Order
Response in Example 9
OLS;n? = /n WLS; 7% = m/n
Design a = a=2 a = a=2
P1 075 (2) 146 (2) .070 (2) 107 (2)
P2 073 (2) 094 (2) .108 (2) 102 (2)
P3 074 (2) 117 (2) 091 (2) 109 (2)
u 077 (2) 152 (2) .081 (2) 101 (2)

NOTE: Standard errors in the third decimal place are in parentheses.

that the fitted response is exactly correct and the errors are
homoscedastic. To implement the four continuous designs,
apply Remark 3 with a,, = 3. Thus first [n/a, 4] = 5
values, u; = Hy;'(i/5),i = 1,...,5 were obtained. Then
an,q design points

cos (¢i + —27;(1;1))
xij=ui~ =1,"-aa'n,q
sin (gbi + _2“(2;1))
were taken, equally spaced over ||x|| = wu; for each
value of i. The angles ¢; were a random permutation of
{2rk/(angln/angl): kK = 1,...,[n/an4]} and hence were

equally spaced over [0,27/ay 4). There were two design
points at 0; see Figure 4.

When WLS was used, the weights used for P1 were the
same as those for P2, obtained from Theorem 4. Those used
for the uniform design were again optimal for known g(z).

Tables 10-12 give the same performance measures as in
Example 8, with Tables 11 and 12 again based on 25,000
N(0, 1) simulations. Note that C cannot be used in the test
of heteroscedasticity, because for it the denominator of (18)
vanishes. In Table 12 the test is the F test for the presence
of second-order effects; that is, of H: 611 = 025 = 619 = 0.

The findings are much as in Example 8. Designs P2 and
P3 in particular result in substantial decreases in IMSE,
even though the departures from the fitted model would
generally not be picked up by the standard tests. Note also,
from Table 10, the good performance of these designs un-
der homoscedasticity when WLS is used unnecessarily. The
power of the test to detect heteroscedasticity was very low
" in all cases.

7. CASE STUDY

Journal of the American Statistical Association, December 1998

Table 13. Coefficient Estimates for Stackloss Data

Design 6o 04 02
P1 —37.53 (.550) .693 (.009) 575 (.012)
P2 —37.56 (.461) .694 (.007) .575 (.010)
P3 —37.53 (.500) .694 (.008) .575 (.011)
C —37.75 (.370) .700 (.006) 574 (.008)
U —37.54 (.564) .693 (.009) 575 (.012)

NOTE: SE in parentheses.

9 so as to adapt them to the Stackloss data of Brown-
lee (1965). The original dataset includes three independent
variables: X7, air flow; X5, water temperature; and X3, ni-
tric acid concentration. The response Y measures ingoing
ammonia lost as unabsorbed nitric acid. Daniel and Wood
(1980) found that 4 of the 21 data points—1, 3, 4 and
21—correspond to transitional states and should be omit-
ted from the dataset, and also that X3 can be dropped from
the model. Their analysis also indicates the presence of a
quadratic effect in X;. Ryan (1997) found some evidence
of heteroscedasticity and, following Staudte and Sheather
(1990), constructed an equileverage design for fitting the
first-order model,

EY|X] = 6o + 01 X1 + 02 X5;.

50 < X; <65, 17 < X5 <27, (19)

to the 17 points remaining after the deletion of those men-
tioned earlier. An equileverage design is one for which the
“hat” matrix has a constant diagonal; that constructed by
Ryan (1997) coincides exactly with design C of Example 9.

I applied linear transformations to the designs P1, P2,
P3, C, and U so that they spanned the ranges in (19) ex-
actly. I then simulated heteroscedastic data in the following
manner. I first fitted (19) to the 17 real data points by OLS,
obtaining an estimated regression function,

Y (x) = —42.00 + 776 X + .569X. (20)
I also fitted a second-order model, obtaining
V) (x) = —13.41 — .048X; + 281X, + .007X?

+.011X2 — .004X: X,. (21)

For a single vector € of iid N(0, 1) variates, and for each .
of the five designs, I used the following data:

: , , V@ () LY@ (50— VO (Ve G
As an illustration, I transform the designs of Example ¥ =Y (%) + 4|Y (i) =YW (x)les;  i=1,...,17.
12 7 12 13
" 13 16 “ 15
o - ) w -~ 1 614 ] o 2 14
[3¥] [ ©
] 4 9 1 3 17 3 Ta 9
‘» g ) 7] o
g °1® 4 g ° 8 13 & 3 ¢ 31 8 !
- 3, ; - 3 : 3 4
% - ‘ 6 % - 1112 4 3 2 7
16 16
0 6
. — 7 — 2 A — —1Z
10 14 18 8 12 16 20 10 14 18
fitted values fitted values fitted values

()

(b) (©

Figure 5. Studentized Residuals Versus Fitted Values by Observation Number for Stackloss Data. Designs (a) P3, (b) C, (c) U.
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The simulated regression function is then that in (21),
whereas the error standard deviation at a point x is one-
fourth the difference between (21) and (20). With each de-
sign I fitted the first-order model (19) using WLS and op-
timal weights with P2 and P3, OLS otherwise.

Figures 4 and 5 give plots of designs P3, U, and C and the
corresponding (studentized) residual plots. Those for P1 and
P2 tell very much the same story as P3 and so are omitted.
Coefficient estimates and standard errors are in Table 13.
These estimates are quite similar for the five designs. How-
ever, the residual plots for P3 and U show evidence of both
response nonlinearity and heteroscedasticity—evidence ap-
parently not exhibited by the residuals from design C.

8. SUMMARY AND CONCLUSIONS

I have presented optimal robust designs and correspond-
ingly optimal weights for a variety of estimation methods.
Those for P1 (minimax designs for OLS) and P2 (minimax
designs and weights for WLS) are at present limited to mul-
tiple regression without interactions, whereas those for P3
(minimum variance unbiased designs and weights for WLS)
can be used in almost complete generality.

In Examples 5-7 I have given explicit expressions for
designs applicable to a number of common situations. The
designs afford considerable protection from some common
and realistic model departures, and I recommend their rou-
tine use with at least a preliminary OLS fit. Any ensu-
ing indication of heteroscedasticity should call for a WLS
analysis. Given the difficulty in detecting these deviations
from the model, and given the good performance of the
robust designs with WLS even when the true model is ho-
moscedastic, one should consider a WLS analysis from the
start.

APPENDIX: DERIVATIONS

To avoid trivialities, and to ensure the nonsingularity of a num-
ber of relevant matrices, [ assume that the design space satisfies
the following condition: for each a # 0, the set {x: a”z(x) = 0}
has Lebesgue measure 0.

Proof of Theorem 1

Part a is proven as theorem 1 of Wiens (1992). Part b is the
Cauchy—Schwarz inequality applied to

IV(g,w, &) = (crz/n) / w(x)g(x)m(x)lm (x) dx.
s
Part ¢ follows from Parts a and b.

Proof of Theorem 2

a. Note that w,, satisfies (4). Let wi(x) be any other non-
negative function satisfying (4). For ¢ € [0 1], put wy =
(1 — t)wm + tw; and define

o(t) = / (e ()l ()m(x))? i + 265, / m(x)
S

s Wi (x)
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The function ¢ is convex in ¢. Then
50 =2 [ (1m0t (om*00) - o, 72O
X (wi(x) — wm(x))dx =0,

because the integrand vanishes identically by the definition
of wm. Thus ¢(0) < ¢(1); that is, [ (wm (x)lm(x)m(x))?
dx < [ (w1 (%)l (x)m(x))* dx.

b. The suﬂic1ency is immediate from (3a). For the necessity,
denote by F the set of functions f satisfying (3a) and (3b),
and write b(= [ z(x)f(x)m(x) dx) as bs. Suppose that
by = 0 for all f € F. To see that this requires m(x) to
be uniform, first let f be arbitrary but with [ f*(x)dx <
00, [5 |2(x)[|£(x) dx < oo. Let f be proportional to f(x)—

( TA_lfS z(x f(x) dx, normed so that [, f*(x)dx =
n?. Then fs (x)dx = 0, so that f € F, and hence bz,
which is proportlonal to fs (x)I — BA™Yz(x) f(x) dx,
must vanish. Because f is arbitrary, (m(x)I — BA™!)z(x)
= 0 ae. x € 8. Thus m(x) is an eigenvalue of BA™! if
z(x) # 0, so that on Sy := {x € S : z(x) # 0},m(x)
can assume at most p distinct values. Decompose Sp as
So = Uj_;S;, with s < p and m(x) = «a; on S;. For
any S; with positive Lebesgue measure, the relationship
(0,1 — BA™Yz(x) = 0, together with assumption A),
forces ;I = BA™!, so that at most one set S; can have
positive measure. Thus m(x) is almost everywhere constant
on Sp, and hence on S itself because, again by A), S\ So is
of measure 0.

Proof of Theorem 3

Using the symmetry of m(x), one finds that

1+/\m=Q_1max</Sm2(x)dx,/$%dx).

Under the stated conditions, mo(x) minimizes

®(m) := Q_l/m2(x) dx +vQ~'/?
s

1/2
x ( / (b () (x))? dx) |
S
andQ lfsmo dx—1+/\7n0

First, fix v so that I,,(x) = Q7 '(||x||;) no longer depends
on m and ®(m) is a convex functional of m. Observe that if
Q is any orthogonal matrix and the density mq(x) is defined
by mq(x) = m(Qx), then ®(mq(x)) = ®(m). Thus &(.5m +
bmq) < ®(m), and it follows that to minimize & one need only
consider densities satisfying m = mgq for all Q. Such densities
are spherically symmetric: m(x) = h(]|x||) for some nonnegative
function h satisfying fo (qu?™'/Q)h(u) du = 1. The integrand
here is the density of U = ||X]|. Constancy of « is (7) with hg
replaced by h.

Let h1(u) be any nonnegative function satisfying these con-
straints. Put h;(u) = (1 — t)ho(u;7y) + thi(u) for ¢t € [0,1] and
define
®(ms) — 20 tav

() = (b+qv)

1
=2 / qu¥ 'R} (u) du + Q2
0
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1 1/2
X (/ 12 (u; ) qu?™ g (u) du)
0

1
—207? / av(b+u?)qu?™ " he(u) du. (A1)
0

The multipliers have been arranged so that ¢"(0) = 0; this together
with the convexity of ¢(t) yields ¢(0) < ¢(1), so that ho(]|x||;)
minimizes ®(m) for fixed ~.

Writing the definition of ho(u;y) in the form (1 +
cvl®(u;))ho(u;y) = av(b + u?), then taking expectations and
applying (6)~(8) gives E[ho(U;~)] + (4Qc*)™" = av(b + ¢y), so
that, from (A.1), ®(ho(|| - |l;7) = Q av(b + qv) + v(4cQ?)~ 1,
which is minimized by ~o.

Thus mo minimizes ®(m) unconditionally. If (10) holds, then
Q7" [y mp(x)dx = 1+ Amg, and it follows that mo is minimax.
The remaining statements of the theorem follow from Theorem 1.

Proof of Theorem 4

This is very similar to that of Theorem 3 and thus is omitted.

Proof of Theorem 5

This is immediate from Theorem 1b and Theorem 2.

Proof of Lemma 2

Define p(z) (Po(x), ..., Py(x))T, and let Pgiixqt1 be
the matrix of coefficients of the Legendre polynomials, defined
through p(z) = Pz(z). Then with

D = diag(2,...,(i+.5)"},..., (@ +.5)7)),

one has

1
D=/
-1

so that A = P~'DP~1"

1

z(z)p” (z) dz = PAPT

(@) (2)do =P [

-1

. Then calculate that
q

ho(w) = (g+1)7" > (i + 5)P2(z),
=0
and formula 8.915.1 of Gradshteyn and Ryzhik (1980) gives (16).
A standard asymptotic expansion for Legendre polynomials—
formula 8.965 of Gradshteyn and Ryzhik (1980)—yields (17).

[Received July 1996. Revised March 1998.]
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