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ABSTRACT

We consider the construction of designs for the extrapolation of regression responses, allowing both for
possible heteroscedasticity in the errors and for imprecision in the specification of the response function.
We find minimax designs and correspondingly optimal estimation weights in the context of the following
problems: (1) for ordinary least squares estimation, determine a design to minimize the maximum value of
the integrated mean squared prediction error (IMSPE), with the maximum being evaluated over both types
of departure; (2) for weighted least squares estimation, determine both weights and a design to minimize
the maximum IMSPE; (3) choose weights and design points to minimize the maximum IMSPE, subject to
a side condition of unbiasedness. Solutions to (1) and (2) are given for multiple linear regression with no
interactions, a spherical design space and an annular extrapolation space. For (3) the solution is given in
complete generality; as one example we consider polynomial regression. Applications to a dose-response
problem for bioassays are discussed. Numerical comparisons, including a simulation study, indicate that,
as well as being easily implemented, the designs and weights for (3) perform as well as those for (1) and
(2) and outperform some common competitors for moderate but undetectable amounts of model bias.

RESUME

Les auteurs expliquent comment construire des plans d’expérience pour I’extrapolation de variables
modélisées par régression en présence (i) d’hétéroscédasticité de ’erreur et (ii) d’imprécision dans la
spécification du modele. Les plans proposés sont minimax et les poids d’estimation correspondants sont
optimaux dans les situations ot : (1) on cherche un plan minimisant la valeur maximale sur (i) et (ii)
de l'erreur quadratique moyenne de prévision intégrée (IMSPE) dans un contexte d’estimation par les
moindres carrés ordinaires ; (2) on cherche a la fois un plan et des poids qui minimisent 'IMSPE maximal
dans un contexte d’estimation par la méthode des moindres carrés pondérés ; (3) on veut sélectionner les
points a échantillonner et les poids de fagon & minimiser 'IMSPE maximal sous une condition d’absence
de biais. Les solutions aux problemes (1) et (2) sont données dans le cadre de la régression linéaire
multiple sans interactions, pour un espace d’échantillonnage sphérique et pour un espace d’extrapolation
annulaire. La solution au probleme (3) est donnée en toute généralité et illustrée dans le cas de la régression
polynomiale. Les auteurs présentent en outre des applications ayant trait a un probleme de dose de réponse
dans des bio-essais. Des comparaisons numériques prenant notamment la forme de simulations indiquent
qu’en plus de leur facilit¢ d’implantation, les plans et les poids optimaux du cas (3) se comportent aussi
bien que ceux correspondant aux cas (1) et (2) en plus de surclasser certains compétiteurs d’usage courant
dans des situations ol le biais inhérent au modele est relativement important sans toutefois &tre détectable.

1. INTRODUCTION

In this article we study the construction of designs for the extrapolation of regression responses,
in the presence of both possible error heteroscedasticity and an approximately (and possibly
incorrectly specified) response function. Design problems for estimation in the face of re-
sponse uncertainty, but for homoscedastic errors, have been studied by Box & Draper (1959),
Huber (1975), Pesotchinsky (1982), Wiens (1992) and others; Wiens (1998) allows also for
heteroscedastic errors. Designs under error heteroscedasticity, assuming the fitted response to
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be exactly correct, were considered by Wong (1992) and Wong & Cook (1993); both of these
papers assumed a known variance structure. Designs for extrapolation of polynomials, again as-
suming a correctly specified response, were studied by Kiefer & Wolfowitz (1964a, 1964b) and
Hoel & Levine (1964). Studden (1971) studied such problems for multivariate polynomial mod-
els. Spruill (1984) and Dette & Wong (1996) constructed extrapolation designs for polynomial
regression, robust against various misspecifications of the degree of the polynomial. Draper &
Herzberg (1973) extended the methods of Box & Draper (1959) to extrapolation under response
uncertainty. In their approach one estimates a first-order model but designs with the possibil-
ity of a second-order model in mind; the goal is extrapolation to one fixed point outside of the
spherical design space. Huber (1975) obtained designs for extrapolation of a response (assumed
to have a bounded derivative of a certain order but to be otherwise arbitrary) to one point outside
the design interval. These results were corrected and extended by Huang & Studden (1988).

Extrapolation to regions outside of that in which observations are taken is of course an inher-
ently risky procedure and is made even more so by an over-reliance on stringent model assump-
tions. For such reasons we shall depart rather broadly from the usual linear model:

1. The response is taken to be only approximately linear in the regressors; viz.
E(Y|x) = 6'z(x) + f(x) ¢))

for a p-dimensional vector z of regressors, depending on a ¢-dimensional vector x of in-
dependent variables. The response contaminant f represents uncertainty about the exact
nature of the regression response and is unknown and arbitrary, subject to certain restric-
tions detailed in Section 2. One estimates 6 but not f, leading possibly to biased estimation
of E(Y'|x) and consequently to biased predictions. The experimenter is to take n uncorre-
lated observations Y; = E(Y|x;) + £(x;), with x; freely chosen from a design space S.
The goal is to extrapolate the estimates of E(Y |x) to a given region T disjoint from S.

2. The random errors, although uncorrelated with mean zero, are possibly heteroscedastic:
var{¢(x)} = ¢?g(x) for a function g satisfying assumptions given in Section 2.

As an optimality criterion we take an analogue of the classical notion of Q-optimality: the
supremum, over f and g, of the integrated mean squared prediction error (IMSPE) of the pre-
dicted values Y (x), with the integration being over the extrapolation region T, is to be minimized
by an appropriate choice of design. The following problems will be addressed:

(P1) For ordinary least-squares (OLS) estimation, determine designs to minimize the maximum
value, over f and g, of the IMSPE.

(P2) For weighted least-squares WLS estimation, determine designs and weights to minimize
the maximum IMSPE.

(P3) Choose weights and design points to minimize the maximum IMSPE, subject to a side
condition of unbiasedness.

As a possible application, consider the following extrapolation problem for bioassays. Let
P(x) be the probability of a particular response when a drug is administered at dose . At vari-
ous levels of z one observes the proportion p,. of subjects exhibiting the response and transforms
to the p,-quantile Y = G~!(p,) for a suitable distribution such as the logistic. The regression
function is then modelled as E(Y'|z) ~ G~!(P(z)). Since P(z) is unknown, E(Y |x) is often
approximated by a low-degree polynomial {(z). In the low-dose problem, it is difficult or impos-
sible to observe Y near = 0 or the error variance increases markedly as z — 0; either of these
situations leads to the extrapolation of estimates computed from data observed at, say, z € [a, 1]
(a > 0) to estimate E(Y |2 = 0). Krewski, Bickis, Kovar & Arnold (1986) consider designs for
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such problems assuming that E(Y'|z) is exactly linear in In . Lawless (1984) takes an approach
closer to ours, obtaining designs which minimize the MSPE of Y|, —¢, for various trial values of
E(Y|z = 0) — ¢(0). Of course this difference is unknown; the approach of the current article
is to model it by f(0) in (1) in such a way as to open the door to a minimax treatment. Another
point of departure of our approach from that of Lawless (1984) or Huber (1975) is that although
our treatment does not allow the case 7' = {0} (or any other extrapolation space of Lebesgue
measure zero), it does treat the case of an interval 7', i.e., extrapolation to a range of values near
z = 0. This is particularly significant if the problem is to determine a “virtually safe dose”
(Cornfield 1977).

Despite these differences, Lawless (1984) reaches qualitative conclusions very similar to
ours, remarking that “. . . in extrapolation problems a slight degree of model inadequacy quickly
wipes out advantages that minimum variance designs possess when the model is exactly correct”.

The designs and weights which constitute solutions to problems (P1), (P2) and (P3) are given
in Sections 3, 4 and 5, respectively. Those for (P1) and (P2) are theoretically and numerically
rather complex, and our solutions are restricted to situations exhibiting considerable structure. In
contrast, the solution to (P3) is given in complete generality and turns out to be computationally
straightforward. We apply the solution to (P3) to the dose-response problem described above. A
comparative study accompanied by concluding remarks and recommendations is given in Sec-
tion 6. Some mathematical preliminaries are detailed in Chapter 2, where we reduce each of
(P1)~(P3) to a single minimization over a class of densities. Proofs for Section 2 are postponed
to the Appendix.

2. PRELIMINARIES AND NOTATION

For the regression model described in the Introduction, we shall assume that the contamination
function f(x) in (1) is an unknown member of the class

F={s U pogix <t <o, [ Peix <t <o, [srmac=o}, @
5 T s
for positive constants 75 and 77. The random errors £(x;) satisfy

var{e(x;)} = o%g(x;), /ng(x) dx < Q71 := /de < o0. 3)

The last condition of (2) is required in order that the true parameter  be uniquely defined, and
then 6 := argmin, [;{t'z(x) — E(Y|x)}?dx. One can instead start with this definition of
6, then define f(x) = 6'z(x) — E(Y |x), thus obtaining the last condition of (2) as a natural
consequence of the definition of the parameter being estimated. The other conditions of (2)
are needed to ensure that errors due to estimation and prediction bias remain bounded. The
conditions of (3) are equivalent to defining o = sup| [, var*{e(x) }Q dx]'/2.

At the outset the only assumptions made about 7" are that it is disjoint from S and that the
integrals in (2) exist; special cases will be considered in Sections 3 to 5. The requirement that
T and S be disjoint need not exclude the application of our results to interpolation problems,
i.e., the case T' C S, as long as design points are not to be chosen from within 7". One can then
replace S by S\T'. The cases in which S C T, or in which S and T are merely overlapping,
may be handled similarly. If design points may be chosen from within 7, then f (x) is defined
for values x € SN 7" and our method of maximizing the loss over F fails.

We remark that for (P1) and (P2) our results depend on the unknown parameters only through
v = o?/ (nn%) and rrs = nr/ns; for (P3) no knowledge whatsoever is required of these
parameters. One can interpret v as representing the relative importance of bias versus variance
in the mind of the experimenter. As v — 0 bias completely dominates the problem, whereas
v — oo results in a “pure variance” problem. Similarly, the choice of rr s reflects the relative
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amounts of model response uncertainty in the extrapolation and design spaces. In our simulation
study for this article, we made the rather arbitrary choice » = 2 and the intuitively appealing
choice rr s = 1; perhaps an equally appealing choice of r7 s is the ratio of the volume of T" to
that of S. The qualitative aspects of the results did not change when other choices of v and rr, s
were made.

To avoid trivialities and to ensure the nonsingularity of a number of relevant matrices, we
assume that the design and extrapolation spaces satisfy

(A) For each a # 0, the set {x € SUT : a’z(x) = 0} has Lebesgue measure zero.

We propose to estimate 8 by least squares, possibly weighted with nonnegative weights w(x).
Let £ be the design measure, i.e., ¢ = n~15_, dy,, where dy is a point mass at x. Define matrices
and vectors

Ar = [pz(x)7'(x)dx, As = [sz(x)7'(x)dx,
B = fs z(x)z’ (x)w(x) &(dx), D = fS z(x)z’ (x)wz(x)g(x) &(dx),
bss = fs z(x) f(x)w(x) &(dx), bs;r = fT z(x) f(x) dx.

It follows from (A) that A7 and A s are nonsingular and that B is nonsingular if ¢ does not place
mass on sets of Lebesgue measure zero. As discussed below, this sufficient requirement turns
out to be necessary as well.

The WLS estimator of 8 is

n

) — —1.1 z(x))w(x;)Y; = B~ | z(x)w(x)y(x X
0=B~" S alxulx)¥ = B L()(w()e(d),

with bias vector and covariance matrix
~ ~ 02
E(6)—-6=B'b;s, cov(§)=—B DB L
n

Note that 02 /n = n%v; we shall henceforth use the latter expression, since it will generally
appear together with functions of the bias.

We predict E(Y|x) for x € T by Y(x) = élz(x) and consider the resulting IMSPE. The
IMSPE splits into terms due to prediction bias, prediction variance and model misspecification:

IMSPE(f,0,0.6) = | BI{V(x) = B(Y]))?)dx

IPB (f,w,£) + IPV (g,w,£)+/f2(x)dx,
T

where, with H := BA}IB, the integrated prediction bias (IPB) and integrated prediction vari-
ance (IPV) are

IPB (f, w, ) /T [E(Y (x) — 6'2(x)})2dx — 2 /T E{Y (x) — 8'2(x)} f(x) dx

= b} sH 'b;s —2b; B~ 'by s, @)

IPV (g,w,&) = /Tvar{Y(x)}dx:n?gl//z’(x)H_lz(x)wz(x)g(x)£(dx).

S

In contrast to the decomposition of IMSE for estimation into positive summands, the IPB may
be negative. However, IPB+ [, f%(x) dx > 0.
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In practice £ must be discrete, with atoms consisting of integral multiples of n~! at the design
points. We adopt the viewpoint of approximate design theory and allow £ to be any probability
measure on S. It then turns out that the optimal extrapolation designs are not discrete. In fact, to
guarantee that either of sup; IPB (£, w, £) orsup, IPV (g, w, ) will be finite, it is necessary that
£ have a density. This can be established by modifying the proof of Lemma 1 of Wiens (1992).
A consequence is that the optimal extrapolation designs must be approximated to make them
implementable. This can be carried out by placing the design points at an appropriate number of
quantiles of €.

Let k(x) be the density of &, and define m(x) = k(x)w(x). Without loss of generality,
assume that the mean weight is [ w(x)£(dx) = 1. Then m(x) is also a density on S which for

fixed weights satisfies
/ M) =1, (5)
s w(x)

From the definitions of B and b s we see that IPB(f, w, £) depends on (w, £) only through m
and IPV(g, w, £) through m and w. Hence, we can optimize over m and w subject to (5) rather
than over w and k.

Given fixed m(x) and w(x), the “max” parts of the minimax solutions are given by The-
orem 2.1. Before stating this, we define matrices K = [,z m?(x)dx and G =

K — BA3'B. We define ), to be the largest solution to |G — /\H| = 0 and let ag be any vector
satisfying (GH 1G AmG)ag = 0 and ajGag = 1. Define also /,,, (x) = z'(x)H™'z(x) and

m = [o{lm( 2(x)}?*/3 dx.
THEOREM 2.1. (a) The maximum integrated prediction bias is
supIPB(fwf _775{(\/ +rT5) -rTS}>O

attained at

£ < | PO~ AT B, xS
—nr2' (x)B~1Gag/V Ay, xeT.

(b) The maximum integrated prediction variance is

1/2
sup IPV (g, w, &) = nZvQ~1/? [/ {w(x)l, (x)m(x)}? dx] ,
g 5

attained at g, o (x) o< w(X)ly (x)m(x).

(c) The maximum integrated mean squared prediction error is

supIMSPE (/.. 1,6) = 1{ (Vi +71,5)” 40" 2 [ et ()}zdx]l/z}.

£

Note that the least favourable contaminant is in fact linear (in z) on T and that f,, also
maximizes IPB + [, f*(x) dx (since [}, f2 (x) dx = n3.).
We say that a design and weights pair (¢, ) is unbiased if it satisfies

E(@)=6  forall f € F,

so that sup, IPB (f,w,{) = 0. The following theorem gives the minimax weights for fixed
m(x), and a necessary and sufficient condition for unbiasedness.
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THEOREM 2.2. (a) For fixed m(x) the weights minimizing sup, 1PV (g, w, §) subject to (5) are
given by
Wi (%) = am {15, (x)m(x)} /2 I{m(x) > 0}.

Then sup, IPV (g, wm,§) = nqu_l/zaZ{Q.
(b) The pair (£, w) is unbiased if and only if m(x) = .

In view of Theorems 2.1 and 2.2, our problems in this article can be rewritten as follows:

(P1) Find a density m, (x) which minimizes

1/2
=2sup IMSPE (f,¢,1,€) = (\/ +rT5 ? v 1/2[/{1 }de] .
1.9

(6)
Then k. (x) = m,(x) is the optimal extrapolation design density for OLS estimation.

(P2) Find a density m, (x) which minimizes
157 Sup IMSPE (£, 9,0, €) = (VAm +11.5) + v 1/232.
fg

Then the weights w, (x) = m.(x)/k«(x) and the design density
ka(x) = gt {m2 (%), (%) )2/
are optimal for WLS estimation.

(P3) Find weights wo(x) o l,,(x)~2/3 satisfying (5) with m(x) = Q. Then the weights
wo(x) and the design density ko(x) = $/wo(x) are optimal in that they minimize
sup; , IMSPE (f,9,w,&), subject to the side condition of unbiasedness.

Note that we have multiplied the quantities to be minimized by 1752; this is without loss of
generality and makes our results dependent only on the parameters v and rr 5.

3. MINIMAX EXTRAPOLATION DESIGNS FOR OLS

For (P1) and (P2) we consider only multiple linear regression without interactions, i.e., z’(x) =
(1,x’), with S being a ¢g-dimensional sphere of unit radius centered at the origin. We take an
annular extrapolation space: 7' = {x|1 < ||x|| < 8}. There being no reason to give preference
to one coordinate of x over another, we restrict to densities m(x) with identical, symmetric
marginals. Then As = Q' (1@ (¢ + 2)~'I;) where @ = I'(1 + ¢/2)/7%/?, and B = 1 & ~1,
where v := [ Zm(x) dx. Define parameters

" = fT dx, ko = Q,
z? dx
n = qu,),lz k1 = Qq(g+2)

We calculate that

yielding ; = (89t* —1)/k; fori = 0,1,and that Ap = 70 & [, 27 dx - L.
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FIGURE 1: Optimal extrapolation design densities and least favourable variances for OLS and SLR:
(a) design densities, 3 = 1.5; (b) design densities, 3 = 5;
(c) least favourable variances, 3 = 1.5; (d) least favourable variances, 3 = 5.
Each plot uses three values of v: v = 0.25 (broken line), v = 1 (solid line), v = 100 (dotted line).

TABLE 1: Constants for m(x) of Theorem 3.1;
g=1 (SLR)and ryg=1(* Case0; ' Case L.).

1.5 0.25* 15.26  14.52 110.56 0.140 0.334
0.5* 1497  0.203 4.61 0.159 0.417

1* 11.57  0.079 3.80 0.163 0.423

10* 7.07 —-0.163 1.53 0.184 0.579

100* 6.80 —0.195 1.45 0.185 0.596

oo* 6.77 —0.198 1.44 0.185 0.597

5 025! 701 —0.000 215 4.04e—6 0.334
051 251  —0.005 0771 4.35e—6 0.339

1t 1.48 —0.015 0.445 4.62e—6 0.343

101 0983 —0.096 0.296 9.0le—6 0.436

1000  0.981 —-0.132 0.280 1.12e—5 0.475

ool 0973 —0.134 0.277 1.13e—5 0.476

We find that [, (x) = [(||x]|;~), where I(u;¥) := 7o + T1qu? depends on the design only
through v. The maximum eigenvalue \,, in (6) is found to be \,, = max(/\g,? ), /\ﬁi)), where

A0 = r,-{/ [|x||%*m?(x) dx — K?j}.
s

We must consider two cases. For u € [0, 1] and : = 0, 1 define

aiv(b; +u?)*
(1 + rp sci)u? + divl®(u;y)’

hi(u;y) =

where the constants a; = a;(y) > 0, b; = b;(7), ¢; = ci(y) > 0 and d; = d;(7y) > 0 satisfy
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Jo e hi(usy)du = 1, o)

fol ﬁ‘%:thi(u;'y)du =qy, (8)

c?r,-{fol gi%:uQih?(u;'y) du — ni} =1, 9
1/2

2d¢7’,~{f01 12(u;y)qui=th?(u; ) du} =1. (10)

We denote these by Case 0 (¢ = 0) and Case 1 (: = 1). It turns out that for fixed v, case 0 holds
for small values of (3, case 1 for large values of 3. The precise relationship between v and /3 has
not been determined.

THEOREM 3.1 (Minimax extrapolation designs for OLS). For i = 0, 1 define

. -1 9 17
;= ; — . 11
Vi argglzlg [{02(7) +rr s}t + QQdi('Y)Ti] (1D
If the inequality
2(1—i ci(yi)™?
EA{ U2 Db (U; i)} < + K1 (12)

T1—i

holds, where E;{ -} denotes expectation with respect to the density (qui='/Q)h;(u;v;) and
where k1 and T are evaluated at v = 7, then the minimax (for OLS) extrapolation design
density is

ke (x) = ma(x) = ha(||x[; )-

The minimax IMSPE is

sup IMSPE (f,g,w = 1,€,) = 0% [ {ci (%) "' + rr,s}* +

14
—_ . (13)
f.g 29([{(‘)’{)7‘,’

Remarks.

(1) We sketch the proof of Theorem 3.1 for ¢ = 0; that for ; = 1 is similar. We first find

mo minimizing (6) with A, = A{Y). Then if my satisfies A'Y) > A1) it is the required

minimax density. For fixed v and \,,, = /\5,?) , the loss (6) is a convex functional of m which
remains fixed under orthogonal transformations of x. By averaging over the orthogonal
group we find that the minimizing my is spherically symmetric. A standard variational
argument shows that mg(x) is of the form ho(||x||;y) for appropriately chosen constants
ao—do. The integrand in (7) is the density of U = ||x||, equation (8) fixes v = E(U?)/q,
equation (9) states that c; 2= )\5,3 ), and equation (10) expresses the first-order variational
condition that hg is a stationary point. These equations allow (6) to be expressed as a
function of v alone; a further minimization over + then results in (11). The condition (12)

ensures that /\5,3?, (=co(y0)™H > /\5,1(),

(2) For the numerical work, the equations (10) (for 7 = 0, 1) were first eliminated by using
them in the presence of (7) to (9), to express d; in terms of a;—c;:

di' = 4Q7 ai(bi + qv) — 1w{(cfﬁ)_l + 'fz'}]- (14)
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The remaining equations were then solved. Finally (11) was minimized and (12) verified.
See Table 1 for some numerical values of the constants in the case ¢ = 1 — straight-line
regression (SLR) — with rp s = 1. Figure 1 gives plots of the minimax extrapolation design
densities for varying 3 and v.

To implement these designs, we may use the fact that under the density m. (x), x/||x|| and
U = ||x|| are independently distributed, with x/||x|| being uniformly distributed over the
surface of the unit sphere. A possible implementation is then as follows. Let H, be the
cumulative distribution function of /. Choose r,, design points uniformly distributed over
each of the annuli ||x|| = H 1(i/[n/ryn]), i = 1,...,[n/rn], and n — r,(n/7,,) points at
the origin.

(4) When the fitted model E(Y |x) = 68'z(x) is correct and the variances are homogeneous,

ipv

the OLS estimate is unbiased and the loss is

IMSPE(f=0,9=1, w=1, §)

Il

IPV (1,1,€) = nsvE{I(||x]|;7)}
17%1/(7'04- 2/ :c? dx),
YJr

where v is the second moment of £. In Figure 2(a) we compare the loss for our minimax
SLR design &, with that of the two-point (1) design £, constructed by Hoel & Levine
(1964) under the assumption of an exactly correct fitted model and of the continuous uni-
form design £>. When the model may contain response contamination and heteroscedastic
errors, §; has sup; , IMSPE = oo. Figure 2(b) gives plots of sup; , IMSPE for the uni-
form design and for ¢,. For the minimax design sup, , IMSPE is given by (13). For the
uniform design, Theorem 2.1(c) gives

sup IMSPE (f,4,1,&) =
fg

2 2 %
4q{q(q + 2)y*m } ] } (15)

2] 2 2 212
+ 2
775{’°T,5+V[{7'0 (g + 20y n}* + 114

with 7, evaluated at y. We have used » = Q = 0.5 and s = np = 1 in Figure 2. For this
value of v the minimax design is close to the uniform, and the efficiencies relative to &,
when the model is correct, are rather low. For larger values of v these relative efficiencies
are somewhat higher.

g 2

& o

] =7

(=) (]
10 15 20 25 30 35 40 1.0 15 20 25 30 35 40

(@ (b)

FIGURE 2: (a) Integrated prediction variance vs. 3;
(b) supyoIMSPE vs. 3 for three designs: £, (minimax, v = §; solid lines),
&1 (two-point; dotted line), &, (uniform, broken lines); all for OLS and SLR.
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4. MINIMAX EXTRAPOLATION DESIGNS AND WEIGHTS FOR WLS

We consider the same multiple linear regression model, spherical design space and extrapolation
space as in the previous section. We again consider two cases. For « € [0, 1] and i = 0, 1 define
h;(u;~) to be the (sole) real root of

1/3
L+rpsci o 1 (u; y)hi(u;7) e N4 _
v uhi(u;y) + 40%d; —ailbi+ )T =0,

ie., b3 (u;y) = 21/3(u) — [v{1%(u;7)/(49%d;7}) }1/3/{3(1 +rr,s¢;)u’}] 271/3(u), where

14

1*(u;7)
S AN SR A(bs + u2)+)2 Ll 4
2(1+7'T,Sci)u2z{az( + u?) +\/{a( + u2)+} +2m?dﬂﬂl+w,sc{)u21

The constants a; = a;(y) > 0, b; = bi(y), ¢i = ¢i(y) > 0 and d; = d;(y) > 0 are determined
by (7), (8), (9) and (14).

The following result is established in a manner similar to that used for Theorem 3.1.
THEOREM 4.1 (Minimax extrapolation designs and weights for WLS). For i = 0, 1 define

z(u) =

o . (=1 24 Y
% = argmin [{01(7) +rrsh 4Qdi(7)ﬁ'}

If the inequality (12) holds, then the minimax (for WLS) extrapolation design density k.(x) and
weights wp,, (x) are given by

ko(x) = {4924 (vi)mh2 (Il 7)1l 7)),
mi(x) = hi(llx|l;7),  we(x) = ma(x)/ka(x).
The minimax IMSPE is
2
14
sup IMSPE (f, g, w,,&,) = 2[{c,~ )4, } +——]. (16)
Iy ( ) Ns ( ) T,S 4Qdi(7i)7-i

Table 2 gives some typical values of the constants, and Figure 3 shows plots of the minimax
design densities and weights—bothfor¢ = 1 and rp s = 1.

TABLE 2: Constants for m(x) of Theorem 4.1;
g=1 (SLR)andryg = 1. (*Case 0;  Case 1.)

1.5 0.25* 21.82 20.69 225.84 0.096  0.336
0.5* 11.69 7.46 84.91 0.097  0.336

1*  11.15 0.865 16.04 0.099  0.359

10t 1.39  0.122  2.51 0.016  0.485

100t 1.18 0.161 1.96 0.017  0.508

oof 1.16 0.166 1.91 0.017  0.511

5 0.25% 60.76 0.233 3.35 2.95e—5 0.349
0.5 3.44 0.005 0.875 5.26e—6 0.425

1t 2,26 0.005 0.467 7.07e—6 0.485

10t 1.38  0.027 0.247 9.68e—6 0.559

100! 1.34 0.027 0.215 1.06e—5 0.585

oo! 1.32  0.029 0.215 1.06e—5 0.585
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FIGURE 3: Optimal extrapolation design densities and minimax weights for WLS and SLR:
(a) design densities, 3 = 1.5; (b) design densities, 3 = 5; (c) minimax weights, 3 = 1.5;
(d) minimax weights, 3 = 5. Each plot uses three values of v: » = 0.25 (broken line),

v = 1 (solid line), v = 200 (dotted line).

We have computed the efficiencies of £, relative to other designs &, also symmetric with
identical marginals and with second moment . When the fitted model E(Y|x) = z'(x)8 is
correct and the variances are homogeneous, this relative efficiency is

IPV(g =1, w=1,§
IPV(g =1, w=w,.,&)

rel(§) =

70+ (a/7) fp €2 dx
(AVQ dir;)=2/3 [} (qua=1 Q)R (u; %) 113 (u; 75) du

Table 3 gives some representative values of re 1(£) for £ = £;, with all mass on the boundary
of S, and £ = &5, the continuous uniform design. Also given are values of

sup; , IMSPE (f,4,1,¢)
sup; , IMSPE (f, g, ws,€.)’

re2(¢) = 17
which measures the efficiency of (€., w,) relative to another design £, with constant weights,
when the true response is only partially linear and the variances are heteroscedastic. The denom-
inator of (17) is (16). For £; the numerator is co; for &5 it is given by (15). As before, we take
v = and rp s = 1. The numbers in Table 3 show the appreciable gains to be enjoyed when €,
is employed in the presence of contamination and heteroscedasticity.

TABLE 3: Relative efficiencies re 1 (no contamination) and re 2 (maximal contamination)
of £« of Theorem 4.1, with optimal weights w. and v = £, versus the design £; with all mass
on [|x|| = 1 and the uniform design £», both with constant weights. (* Case 0; ! Case 1.)

B q rel(&) rel(§&) re2(é1) re2(&)

1.5 1* 0.517 1.15 00 1.27
2% 0.609 1.07 o 1.16

3* 0.671 1.04 oo 1.10

5 1f 0.495 1.40 oo 1.57
Al 0.567 1.11 00 1.24

3t 0.649 1.07 oo 1.14
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5. OPTIMAL UNBIASED EXTRAPOLATION DESIGNS

In this section we make no a priori restrictions beyond assumption (A) on the design density,
design space or extrapolation space. Note that if mq(x) = 2, we have B = QA 5. The following
result is then an immediate consequence of Theorem 2.2.

THEOREM 5.1. The density ko(x) of the optimal extrapolation design measure &y, and optimal
weights wo(x), which minimize sup; ; IMSPE (f, g, w,§) subject to sup; IPB (f,w,£) = 0,
are given by

{#/(x)A5 AT AS 2(x)}/°

Js{z'(x) A5 Ar A5 a(x)}2/3 dx

and wo(x) = Q/ko(x). The minimax IMSPE is

ko(x) = (18)

3/2
upIMSPE (7,9, w0,0) = 1{ s + 197 | [ ' (1A Ar AT 000 o] 1,
fi9 S

attained at go(x) = wo(x)~1/2,

Example 1. Consider the multiple linear regression model, design space and extrapolation space
of Sections 3 and 4. The optimal unbiased extrapolation design density is

got? , 2/3
ko(x) {1+<q+2>ﬂ_ ||x||} |

See Table 4 for the relative efficiencies, with v = Q and 77 s = 1. These efficiencies are at most
only marginally lower than those of (€., w.) of Section 4.

TABLE 4: Relative efficiencies re 1 (no contamination) and re 2 (maximal contamination)
of & of Example 1, with optimal weights wo and v = (2, versus the design ¢,
with all mass on ||x|| = 1 and the uniform design &>, both with constant weights.

B q rel(&) rel(&) re2(ér) re2(&)

1.5 1 0.514 1.14 00 1.27
2 0.607 1.07 00 1.16
3 0.671 1.04 0 1.10
5 1 0.441 1.22 0 1.54
2 0.562 1.10 00 1.23
3 0.640 1.06 00 1.13

Example 2. In this example there is insufficient structure to allow for a tractable treatment via

(P1) or (P2), but (18) is easily evaluated. The regression response is as in Example 1, but the
design space is the g-dimensional cube S = [—1, 1]¢ and the extrapolation region is the possibly
asymmetric perimeter 7' = [—f1, 32]7\S, where 81, 3, > 1. One of 3;, 3> may be unity, for
one-sided extrapolation. We find that

? 1 1133
ko(x) {(1 + 315 lx,) + 9(/12 — W) x> — /7} ’
3 3

where p1 = (B2 — £1)/2, p2 = (B2 + B1)?/12 and pz = (B2 + 1) /2. For symmetric extrapo-
lation 31 = (5 and p1 = 0.
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For the dose-response problem discussed in Section 1, if a linear approximationto E(Y |z) is
taken then the design density is

2 14+a 2 a a?
_ <r<l: = — = —.
1_ak0{(x 9 )(l_a)}) a_ﬁ_l)ul 21“2 12

If instead a polynomial approximation is thought more appropriate, then the design density is
obtainable by applying a similar linear transformation to z in Example 3 below. In either case, a
suitable implementation would consist of taking an appropriate number of replicates at each of a
number of quantiles of £;( - ). The number of replicates vs. the number of quantiles would likely
be determined by the requirements of the particular problem under investigation.

Example 3: Polynomial regression. Take z'(z) = (1,z, ..., zP~!), corresponding to polynomial
regression of degree p— 1, on S = [—1, 1]. To evaluate (18) it is convenient to first express z(z)
in terms of the Legendre polynomials. Denote by P, (z) the mth-degree Legendre polynomial,

normalized by f_ll P2 (z)de = (m + 0.5)~!. For instance Py(z) = 1, P(z) = z, Ps(z) =
(322 — 1)/2, Ps(z) = (5z3 — 3z)/2. We then find that

2 (z)A5'ArAG 2(z) = D ayPi(z)Py(2),
OSZ)JSP_I
where Q= (z + 05)(] + 05) fT Pg(.’IJ)PJ(CE) dx.
Denote the density (18) by k,_1(x; 3). When T is symmetric, i.e., T =[-8, 8] \ S, we find

ka(z;8) o {58°(B8 +1)(3z% — 1)2 — B(B + 1)(5z* — 2222 + 5) + 4(1 — 222 + 5z%)}*/3,

ks(z; B) o« {1758%(B + 1)a?(3 — 5z%)? — 583(8 + 1)(5952° — 963z* + 3692 — 9)
+58(8 + 1)(1402° — 1772* + 902? — 9) + 4(1752° — 1652* + 4522 + 9)}2/3.

When T" = [1, 3] is one-sided, we find

ka(z;8) o {58*(322 — 1)+ 5433z — 1)(z + 1)(32® — 1)
~B%(5z* — 302° — 2222 + 10z + 5)
—B(x + 1)(52° — 152> — Te + 5) + 2(10z* + 52° — 42® + = + 2)}2/3,

ka(e; 8) o« {1758%2% (52 — 3)? + 1758%2 (2 + 1)(5e” — 2z — 1)(5z% — 3)
—54*(5952° — 5252° — 963z 4 49023 + 3692 — 1052 — 9)
+54° (z + 1)(5952° — 385z* — 578z% + 25822 + 111z — 9)
+54(1402° — 2102° — 1772* 4 3202 4 902> — 102z — 9)
+58(z + 1)(1402° — 352* — 14223 4 4822 4 42z — 9)
+7002° + 5252° — 660z* — 4702 + 180z + 165z + 36}/3.

For both symmetric and one-sided extrapolation regions,
(P (2)}*?
T .
Jo AP ()23 dee

kp_1(z;00) = (19)
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FIGURE 4:

Optimal unbiased extrapolation design densities in biased quadratic and cubic polynomial models:

(a) quadratic model, symmetric extrapolation region; (b) quadratic model, one-sided extrapolation region;

(c) cubic model, symmetric extrapolation region; (d) cubic model, one-sided extrapolation region.

Each plot uses two values of 3: 8 = 1.5 (solid line), 3 = 5 (dotted line).

Remarks.

(1) The limit in (19) is approached quite rapidly, and we find that for moderately large 3

the symmetric and one-sided design densities are, for practical purposes, identical. In
contrast (see Figure 4), for small # and one-sided extrapolation the optimal designs place
appreciably more mass on that side of S closer to the extrapolation region. For large p one
can combine (19) with the asymptotic expansion

1 Us(p-
b= DPe) = g ) | g, 20)

where Uy(p—1)(2) = sin((2p — 1) arccos z)/ sin(arccos z) is Chebyshev’s polynomial of
the second kind. The right-hand side of (20) is a density whose first term is the limiting
density of the D-optimal design as p — oc.

(2) The modes of k,_1(z;00) are at 1 and at the critical points of P,_(z). Recall that

these are precisely the support points of the classical D-optimal design which minimizes
estimation variance alone. Thus k,_(z; c0) may be viewed as a smoothed version of the
D-optimal design. Efficiencies relative to the continuous uniform design £> and Hoel &
Levine’s (1964) extrapolation design 3, with v = Q and r7 ¢ = 1, are given in Table 5.
Note however that both {3 and the D-optimal design have only as many design points as
parameters, so that there is no opportunity to assess the fit of the model.

6. COMPARISONS

We have carried out a simulation study for a regression model as at (1)-(3) with z(z) = (1, z)’
(-1 < z < 1), normally distributed errors with ¢ = 1 and sample size n = 20. We took
rp,s = land T = [—f3, B]\S with 8 = 1.5. Designs solving problems (P1), (P2) and (P3) were
constructed and compared with the continuous uniform design (“U”) and the two-point design
(“HL”) of Hoel & Levine (1964). Table 6 gives some values of n§2 maxy g IMSPE. In preparing
this table we assumed that (P2) and (P3) would be used with the correspondingly robust weights.
Note that by this measure of maximum loss, the unbiased design (P3) performs as well as (P2)
for moderate values of v.
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TABLE 5: Relative efficiencies re 1 (no contamination) and re 2 (maximal contamination)
of & of Example 3, with optimal weights wo, versus the uniform design &
and the p-point design {3, both unweighted.

T=[-8,8]\5 T=(18]
B8 p-1 rel(&) rel(€s) re2(&2) re2(&s) rel(§2) rel(€&s) re2(&) re2(&s)

1.5 1 1.14 514 1.27 00 1.35 .380 1.42 00
2 1.23 387 1.78 00 1.51 329 227 00

3 1.32 .389 2.17 00 1.53 340 2.89 00

5 1 1.25 441 1.54 00 1.30 424 1.61 00
2 1.29 455 1.76 o0 1.32 452 1.83 00

3 1.29 471 1.86 00 1.32 469 1.93 00

TABLE 6: Comparative values of > maxs, IMSPE
for the designs of Section 6.

v (PL) P2 (®3) (U HL

0.25 2.8 2.3 2.3 2.8 00
0.5 4.6 3.6 3.6 4.6 00
1 7.7 6.2 6.2 8.1 00
10 57.1 48.4 53.1 72.5 00

00

100 543 482 522 716

To compare the relative performances against particular types of departures, we then chose a
quadratic response: f(z) o P»(z) with the normalization [ f?(z) dz = 1/5, and the variance
function g(z) o (1 + 2%)* (@ = 0,2), with the normalization [, ¢*(z) dz = Q~!. Designs
(P1) and (P2) employed v = Q = 0.5. Note that then [, f(z)dz = 2n%; this choice was
made to further test the robustness of (P1) and (P2). For the continuous designs the design points
were placed at the quantiles E~*((i — 1)/(n — 1)) (i = 1, .. ., n) of the design measures. When
using WLS, the weights used for (P1) were generated from Theorem 4.1 in the same way as
those for (P2). The uniform design weights were generated from Theorem 5.1 in the same way
as those for (P3). For (HL), with 10 points at each of +1, weighting has no effect. The other
design points and weights were as shown in Table 7.

Table 8 gives values of n5°IPB, 5 2IPV and 55 2IMSPE for both OLS and WLS fits. All
three robust designs performed substantially better than did (U) or (HL); (P2) and (P3) in par-
ticular did well both with and without weights. Note however that when used without weights,
this good performance was attained at the cost of a substantial negative IPB. When used with the
optimal weights, (P2) and (P3) virtually eliminated this bias. Design (P3) enjoys the additional
advantage of requiring no particular assumptions on the design space or fitted response function.

Faced with data reflecting the departures modeled by these simulations, would a statistician
see evidence of the inadequacy of the linear model? To answer this we fitted a quadratic response
0o + 61z + 622 and carried out size-0.05 t-tests of Hg : 65 = 0 vs. Hi : 0> # 0. Both OLS
and WLS fits were compared. The powers based on 20,000 simulations are presented in Table 9.
The same 400,000 simulated normal errors were used in each of the four design cases. Note that
for HL the quadratic model cannot be fitted and the power is zero.
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TABLE 7: Design points and weights.
(P1) P2) (P3) ()
Design Design Design Design
point ~ Weight  point  Weight point  Weight point  Weight
+0.095 2.49 +0.133  2.62 +0.148  2.59 +0.053  2.20
+0.265 1.71 +0.344 1.58 +0.353  1.57 +0.158 1.84
+0.398 1.24 +0.484 1.15 +0.489 1.15 +0.263 1.43
+0.506 0.976  +0.591 0.929 +0.595 0.934 +0.368 1.10
+0.600 0.811 +0.680 0.792 +0.682 0.800 +0.474 0.867
+0.684 0.698  +0.757 0.697 £0.759 0.705 £0.579  0.701
+0.764 0.612 +£0.825 0.628 £0.827 0.636 +0.684 0.581
+0.842 0.544 +0.886 0.575 +0.889 0.583 +0.789  0.491
+0.920 0.487 +0.942 0.532 £0.947 0.539 £0.895 0.421
+1.00 0.438  +1.00 0.493 +1.00 0.504  +£1.00 0.367
TABLE 8: IPB, IPV and IMSPE for the simulations of Section 6; heteroscedastic errors and
contaminated response function. Values of IPV under homoscedasticity in parentheses.
OLS WLS
Design 5 ’IPB 5 ?IPV  n ?IMSPE n2IPB  n’IPV 5 ’IMSPE
(P1) —.22 0.30(0.23) 1.09 11 0.27 (0.27) 1.38
(P2) —.33  0.28(0.20) 0.96 —.02  0.25(0.25) 1.23
(P3) -.33 0.28 (0.20) 0.95 —.04 0.25 (0.24) 1.22
) —-.07  0.35(0.26) 1.28 29 0.30(0.33) 1.59
(HL) —.86 2.52 (1.29) 2.66 —.86 2.52 (1.29) 2.66

TABLE 9: Power of #-test of quadratic vs. linear response for
homoscedastic (@ = 0) and heteroscedastic (o« = 2) errors.

OLS WLS
Design a=0 a=2 a=0 a=2
(P1) 0.29 0.31 0.29 0.33
P2) 0.29 0.28 0.32 0.33
(P3) 0.29 0.27 0.32 0.32
((8)] 0.31 0.37 0.20 0.29
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A message to be learnt from the powers in Table 9 is that the common and realistic response
departure used in these simulations is not likely to be detected, even when its parametric form is
specified exactly by the alternative hypothesis. We view this as a powerful argument in favour of
anticipating and addressing such departures at the design stage.

7. CONCLUSIONS AND GUIDELINES

We have given methods of designing for regression extrapolation, in the face of model uncer-
tainties and possible heteroscedasticity, under some optimality criteria. The results tend to be
somewhat complex and in some cases require extensive numerical work prior to implementation.
They do however admit some informal and heuristic guidelines:

(1) In general, and as one would expect, the experimenter should place relatively more design
points closer to the boundary between the design space S and the extrapolation space T,
either as the volume of 7" increases relative to that of S, or as the emphasis on variance
minimization versus bias minimization increases (as expressed by increasing values of v).

(2) Notwithstanding the previous point, relative to designs for variance minimization alone
the designs of this article are substantially more uniform, with mass spread throughout S
rather than only at extreme points near 7". This allows both for bias minimization and for
the testing of alternative models.

(3) The unbiased designs of Section 5 are numerically less demanding than those of the pre-
ceding sections, although not completely without computational requirements. In line with
(18), the general prescription is for the designer to place mass at points x proportional to
values of t(x) := {2z'(x)A5' A7 A5 z(x)}?/3; the appropriate regression weights are
then inversely proportional to this quantity. This requires a study of ¢(x) for the particular
design and extrapolation spaces under consideration. Some intuition can be gained from
the explicit expressions in Examples 1 and 2; the latter in particular illustrates the manner
in which the relative magnitude of ¢(x) varies as 7" changes. As in Example 3, it can be
convenient to transform to orthogonal regressors, so that A s becomes a diagonal matrix.

A relevant problem concerns the manner in which the desired number n of observations is to
be apportioned between design sites and replicates. We have recommended placing the former
at quantiles of the optimal design densities; the determination of the number of such quantiles is
the subject of further research.

APPENDIX: DERIVATIONS

Proof of Theorem 2.1. (a): First note that we can assume that the inequalities in (2) are in fact
equalities. For, if f € F is such that [ f2(x)dx < n% or [, f?(x) dx < n2, then we define
a function c¢f € F as being cs f on S and ch onT, where les| > 1 |ex| > 1 and the sign of
crcs is chosen so that —2b/ , . B~ bcf s = —2cresb o 1bf s > —2b} 2B 'b; 5. Then
IPB(cf,€) > IPB(f,£). Hence it is sufficient to evaluate the maximum value of IPB(f,¢)
under the conditions [ z(x) f(x) dx = 0, [ f*(x) dx = n}, [}, f*(x) dx = 9}.

Note that

G :/S[{m(x)l —BA;'}z(x)][{m(x)I - BA5'}z(x)] dz > 0. (A1)

We temporarily assume that G is positive definite. Given any f € F, define

5,7 (x){m(x)] - A;'B}H-"bys, z €S,
hy(z) =
th'(X)B_lbf’S, z €T,
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with
st =n3/b; sH'GH 'bys, 17 =n3/b; sH 'b;s
and sy = £,/s2 5%,y = :I:\/; chosen so that bh, TB‘lbhf,S < 0. Then we claim that (i)

hg(x) € F and (ii) IPB(hf,£) > IPB(f,£). The verification of (i) is straightforward. For (ii)
we note thatb,, r =t ArB~ bf s,thatby, s = s;GH™ lbf s, and that

/f(x)hf(x)dx:Sfb}’SHf_:qbf,S, Af(x)hf(x)dx:tfb}YSB‘lbfyT. (A.2)
S
Evaluating (4) gives

IPB(hs,€) = sib} sHT'GH™'GH by s + 2|s¢||t;|b} sH"'GH 'by 5.

By the first equality of (A.2) and the Cauchy -Schwarz inequality, we have
s7(b) sH by 5)? < [o f2(x) dx [ h%(x) dx < 775’ so that the definition of s; gives n% >
(blf’SH_lbfys)z/blfysH_lGH lbfys Smnlarly, 7]T > (bf,SB lbfyT) /bfysH lbfys.
Hence

1]?;( }’SH_IGH_IGH_Ibf’S) + 27]S7IT( }’SH_IGH_lbf,S)
by sHT!GH by s /(b sH-IGH- by 5)(b) sH-1by 5)
(b} sH™'by 5)? 1y lay— _
> @ ﬁﬁlGH_lbe)Q [ sH'GH'GH 'b; s +2|b} sB~'b; 7,
1,5 ,
and so IPB(hy, &) > IPB(f,¢) if
(b} sH™'by 5)(b; sH'GH™'GH 'by,5) > (b} sH"!GH 'by 5)?,

IPB (hy,£) =

an inequality whose verification is again straightforward.
We can now restrict to f € F of the same form as hy, i.e.,

z'(x){m(x)I — A5'B}a, z€S,
f(x;a,¢) =
ZI(X)B_IC, zc Ta

where a and ¢ satisfy 7% = [, f2(x;a,¢)dx = a'Ga, n} = [}, f*(x;a,¢)dx = ¢/H™!
Subject to these conditions we are to maximize IPB (f,¢) = a’GH 'Ga — 2¢H"!Ga. The
maxmnzmg cisc = —nrGa/||[H~/2Gal|, and then IPB (f,¢) = (Va’'GH™'Ga + 7)?

n%. With ag = a/ns, we are then to maximize ajGH 'Ga, subject to agGag = 1. ThlS
is a standard eigenvalue problem. If A, is the largest solution to |GH_1G - AG| =0, ie,
|G — AH| = 0, then the maximizing ay is a solution to (GH_IG — A G)ag = 0, normalized
to satisfy ajGag = 1. A final evaluation of IPB(f,£) now completes the proof of (a) when
G > 0.

If the design density m(x) is such that G = G(m) > 0 but |G| = 0, we proceed as follows.
Take any density m; (x) for which the corresponding matrix G(m;) > 0. Put m;(x) = (1 —
t)m(x) + tm;(x) and define p(t) = |G(m;)|. Then p(¢) is a polynomial in ¢ € [0, 1] with
p(0) = 0and p(1) > 0, so that p(¢) is nonconstant and nonnegative on [0, 1]. Thus p(t) > 0 for
all sufficiently small ¢ > 0. Now apply (a) of the theorem to G(m,), and let ¢ — 0, to see that
the result holds in the general case.

(b): By the Cauchy-Schwarz inequality we have

J wxlatxt beym) i < | [t )}2dx]1/2{ / g2(x>dx}1/2

and (b) follows. Part (c) follows from (a) and (b). 0O
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Proof of Theorem 2.2. Part (a) is a straightforward variational problem. For (b), note that by
Theorem 2.1(a) and (A.1) we have

supIPB (f,w,&) =0 = An=0 < G=0
f
= (m(x)I — BAg')z(x) = 0 ae.

Thus m(x) is an eigenvalue of BA 3" if z(x) # 0, so thaton Sp := {x € S : z(x) # 0}, m(x)
can assume at most p distinct values. Decompose Sy as Sp = Ule Si, with s < p and m(x) =
a; on S;. For any S; with positive Lebesgue measure the relationship (o;I — BAgl)z(x) =0,
together with assumption (A), forces o; 1 = BAgl, so that at most one set .S; can have positive
measure. Thus m(x) is almost everywhere constant on .Sy, hence on S itself since, again by (A),
S\ Sy is of measure zero. 0O
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