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ABSTRACT

The classical D-optimality principle in regression design may be motivated by a desire to maxi-
mize the coverage probability of a fixed-volume confidence ellipsoid on the regression parameters.
When the fitted model is exactly correct, this amounts to minimizing the determinant of the covari-
ance matrix of the estimators. We consider an analogue of this problem, under the approximately
linear model E[y|x] = 0 "z(x) + f(x). The nonlinear disturbance f(x) is essentially unknown, and
the experimenter fits only to the linear part of the response. The resulting bias affects the coverage
probability of the confidence ellipsoid on 8. We study the construction of designs which maximize
the minimum coverage probability as f varies over a certain class. Explicit designs are given in
the case that the fitted response surface is a plane.

RESUME

L’utilisation du principe classique de D-optimalité en régression peut étre justifiée par le souci
de maximiser la probabilité de recouvrement d’un ellipsoide de confiance de volume fixe pour
les parametres de régression. Lorsque le modeéle ajusté est exactement correct, cela revient a
minimiser le déterminant de la matrice des covariances des estimateurs. Nous considérons un
probleme analogue, sous le modele approximativement linéaire E[y|x] = 07z(x) + f(x). La
perturbation non-linéaire f(x) est essentiellement inconnue et la personne faisant I’expérience
s’en tient uniquement a la partie linéaire de la réponse. Le biais qui en découle affecte la
probabilité de recouvrement de I’ellipsoide de confiance pour @. Nous étudions 1’élaboration de
plans d’expérience qui maximisent la probabilité de recouvrement minimale, lorsque f varie dans
une certaine classe. Des plans explicites sont donnés lorsque la surface de réponse ajustée est un
plan.

1. INTRODUCTION AND SUMMARY

Consider the following situation. An experimenter fits, by least squares, a regression
model with
E[y|x] = 2" (x)8p. (1.1

Here, the regressors z € R” are given functions of x, with x varying freely over a
design space S C R?. The problem is to choose n (not necessarily distinct) design points
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x; € S. The estimate 0, determined from observations ( y;, X;), is to be robust, in a certain
minimax sense, against departures from (1.1) in the true model

Elylxl=2"(x)8 +f(x), f € Fy (1.2)

The class ¥, is an Lp-neighbourhood, defined at (1.5) below. We assume additive,
uncorrelated errors with common variance 2.

This situation is one commonly faced in practice. The experimenter is typically well
aware that (1.1) is only a convenient approximation, but is unable to determine, or
unwilling to fit, a more appropriate but more complicated model. Under the model (1.2),
however, 0 is biased.

Box and Draper (1959) made apparent the dangers of designing an experiment which
assumes that (1.1) is exactly correct. By analyzing the relative importance of errors
due to bias and to variance, they found that very small deviations from (1.1) can
eliminate any supposed gains arising from the use of a design which minimizes variance
alone. Beginning with Box and Draper (1959), designs for versions of (1.2) have been
constructed by various authors. See Kiefer (1973), Huber (1975), Marcus and Sacks
(1976), Sacks and Ylvisaker (1978), Li and Notz (1982), Pesotchinsky (1982), Notz
(1989), Wiens (1990, 1991).

Wiens (1992) studied analogues of the classical D, A, E, Q, and G optimality problems.
The first of these requires a design which minimizes the maximum, over % of the
determinant of the mean-squared-error matrix of @. Recall that in the classical problem,
one assumes that (1.1) is exactly correct, and works instead with the covariance matrix.
In either case the motivation is clear — one would like a small upper bound on the loss
of precision of @, as measured by the determinant of this matrix. There is, however, an
alternative way of motivating the classical D-optimality problem, as in Kiefer (1958) and
Fedorov (1972). The analogous problem, under (1.2), is the subject of this paper.

If the design matrix

Z=|z(x)), ..., z2(x,)||"

has full rank p, then the least-squares estimate of 8y is

0 =@2"2)"'Z7y,
and a confidence ellipsoid on 0 is given by
1
-2'2
n

. . 1/p
C = {0‘(0 —-0)'220 —0) < ¢? } (1.3)

The volume of C is P times that of a sphere of radius n_% in R”. Note that this volume
is independent of the choice of the x;’s, and of the ability of (1.1) to accurately reflect the
true state of affairs. The coverage probability may then be used to judge these factors.

If the random errors are normally distributed, the coverage probability of C is an
increasing function of the determinant IZTZI. It is given by

2 T |1/p
PO cC)=P (x2 < Mﬁ%—y—) . (1.4)

Under mild conditions, (1.4) holds asymptotically for nonnormal errors.
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The classical D-optimality problem is to choose the design points Xj,...,X, SO as to
maximize (1.4). Equivalently, |Z"Z| is to be maximized.

Now suppose that the statistician fits the model (1.1), when in fact the true model is
(1.2), with

Fo = {f / FAx) dx <7, / z(x)f (x) dx = 0}. (1.5)

The orthogonality condition in (1.5) is imposed without loss of generality, and ensures
the identifiability of 0.

An effect of the disturbance in (1.2) is to alter the coverage probability of C . Under
(1.2), the y? variable in (1.4) becomes noncentral, with a noncentrality parameter de-
pending on f and on the design. An appropriate analogue of the D-optimality problem
is then to determine a design which maximizes the minimum coverage probability of C
as f varies over .

The minimization over %, is carried out in Section 2 below. There, we also show
that the admissible designs are those which are invariant under groups of transformations
which leave the problem fixed.

It turns out that the admissible design measures are also absolutely continuous. This
poses a practical problem, which can be dealt with either by

(1) relaxing a strict adherence to optimality theory, and taking a discrete approximation
to the optimal design, or

(2) employing a randomized design, whereby the design points are randomly chosen
from the optimal design density. In this case, the expected minimum coverage probability
would be maximized.

See Remark 3 in Section 3, and Wiens (1992), for further discussion of this point.
In Section 3 of this paper, the theory of Section 2 is applied to the case in which the
design space is spherical and

q
270 =(1,x"), 2’8 =6+ Ox, p=g+L (1.6)
j=1

The optimal designs are shown to have spherically symmetric densities. For small values
of n they resemble smooth versions of the classical D-optimal designs, with the mass
highly concentrated near the boundary of S. As n — oo, they tend to uniformity. Their
qualitative behaviour is discussed further in the remarks at the end of Section 3.

2. GENERAL THEORY

We first write the coverage probability of C in terms of the disturbance f and the
design measure &. The latter is a probability measure on the design space S. We shall
assume that S has been linearly transformed in order to have Lebesgue measure 1.

Define

B =B() = / z(x)z' (x) d&(x) (= n~'Z7Z),
S

b = b(f., &) = /S 2(0f (%) dEX),
8(f, & =b'(f, OB ED(S, E),

v =c’/m?’.
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We have absorbed 1 into v, allowing us to assume henceforth that f € ¥;. Denote by
X2(A?) a noncentral x* random variable, with p d.f. and noncentrality parameter A%. The
analogue of (1.4) is

@2.1)

2 2 1/
P(f,&)=PO® €C|f, &)=P (x’z) (8 (C, &)) ¢ |B((§)| p).

In practice, any nonrandomized design measure will be discrete, with jumps consisting
of integral multiples of n~!. In view of Lemma 1 below, we now drop this restriction.
We search for a maximin design &, i.e., one for which

inf P(f, &) = sup inf P(f, ), (22

where the sup is taken over the class of all probability measures on S.

LeEMMA 1. In order that infg, P(f,&) be nonzero it is necessary that & be absolutely
continuous.

For a proof of Lemma 1, see Wiens (1992). Now let m(x) = &'(x) be the density of &.
Define p X p matrices

A= /s z(x)z" (x) dx, C= /s 2(X)z' (X)m*(x) dx,
G=C-BA™'B.
Note that
G= /S [{mI — BA™' }zx)][{m)I — BA™'}z(x)]" dx,
so that G is positive definite. Let G% be a positive definite symmetric root of G. Define
r(x) = G2 {m(x)I — BA™' }z(x). 2.3)
Note that for fixed &, (2.1) is minimized over F; by that f which maximizes &(f, ).

1 1
THEOREM 1. For a fixed design &, let | be the maximum eigenvalue of G2 B'G2, and
let By be the corresponding eigenvector, with ||Bo|| = 1. Then P (f,&) is minimized over
%1 by

fox) = r' (x)Bo, 2.4)
and infg, P (f,) is given by
o2 (B o CBEI
P(fo, O =P (x,, (—vé) <— ) 2.5)

Proof. We will show that the search for an f € F; which maximizes 8°(f,&) may be
restricted to the subclass H of ¥, defined by

H ={h(x; B)=r"®B; Bl = 1}.
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For any f € F, put B = G'%b(f, &)/llG'%b(f, £)||. Then we calculate that
b(h(:; Bf)7 &) = b(f, E..)/a7

where

0<a= <1

f JF(®)h(x; By) dx
by the Cauchy-Schwarz inequality. Thus
(ks By), &) = 8(by, &)/a 2 8(by, E),

and it suffices to maximize
S BN
&(n(;B). &) =B'G2B'G2B

over ||B|| = 1. From this observation, the result is immediate. Q.E.D.

When the design problem is invariant under a group of linear transformations of the
design space, the invariant design measures dominate the noninvariant measures. Specif-
ically, let IT be a group, under composition, of volume-preserving linear transformations
of S given by

X — (X) = QpX, |Qr| = £1.

Suppose that:

(H1) &S =S for all ® € I1.
(H2) For each & € I there is a nonsingular matrix P; such that z(n(x)) = Prz(x).

Let Z be the class of absolutely continuous design measures on S. For each & € =
with density m, each f € ¥, and each & € I, define &; and f; by

E(x) =m(n(x)),  fu(x) =f(n(x)).
Let Z be the class of Il-invariant measures on S, i.e.,
En={§€E|& =& foreach t € m}.

Similarly, define

Jn={f € Fi|fa =f for each € I1}.
The following technical result will be required for the proof of Theorem 2 below.

LemMa 2. If 'V, W are matrices each of whose elements is a linear function of a real
variable A, and if W is positive definite, then

o) =c'VIW!ve
is a convex function of A for each c.
Proof. Denote differentiation with respect to A by a dot. Put K = W~'V. Then
o) =2¢"VIW Ve — ¢ 'KTWKc,
0"(\) = 2¢"K' WKe > 0.

Q.E.D.



64 WIENS Vol. 21, No. 1

THEOREM 2.

(i) supz ming, P (f,&) = supz, ming, P (f,E).

(ii) If there exists &y which maximizes ming, P (f,&) in En, and if P (f, &) is minimized,
over all of F1, by a member of T, then &y maximizes the minimum coverage probability
over all of ' in the class of all design measures on S.

Proof. (i): Let f € Ty, m € I1 be arbitrary. Then

b(f, &) = Pz'b(f, ),  BE&) = P;'BE)P,,

so that
F(f, &) =84f. 8.,  [Bé&n)| = [BE).

Put &, = (1 — M)+ A&y, A € [0, 1]. By Lemma 2, 8(f,£,) is convex and so
&(f, &) < (1 = VS, &) +A*(f, &) = 8(/, ©).

Similarly, since |B(Ey)|~' is convex in A, we have
[BE'? > [BE)['”.
It follows that
P(f, &) 2 2P(f, 5,

so that we can improve on & unless § = &y, ie., § = &;.
(ii): If the stated conditions hold, then

n}jln P(f. 8 Sn}i‘n P(f, §)Snj1rli1n P(f, §0)=n;§|n P(f, &)
for any measure  on S. Q.E.D.

3. RESPONSE SURFACE A PLANE

In this section we construct maximin designs, satisfying (2.2), for the response function
(1.6). As design space we take a sphere, in R?, of unit volume:

1/q
S = {x x| <r:= ES‘I—/%L}

Let IT be the group of orthogonal transformations of S. Then (H1), (H2) of Section 2
are satisfied (we take P, = 1 ® Qy), and Zp is the class of absolutely continuous,
spherically symmetric probability measures on S. Any such measure then has a density
which depends on x only through ||x||:

m(x) = g(||x|)),
where F e
fq“ g(u) du=1. G.1)
o M

The integrand in (3.1) is the density of ||X]|| := U. Define y = EX?, ie.,

rd

r uq+l
Y= f g(u) du. (3.2)
0
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Then
BO =10yl [BOI=7" (3.3)
A special, limiting role is played by the uniform measure [m(x) = 1], for which

r2

q+2’

Yo = El [m(x) = 1] =

THEOREM 3. For the response function (1.6), there is a design &y which maximizes the
minimum coverage probability in the class of all probability measures on S. It has the
density

mo(x) = go(|x]}; ), (3.4)

parametrized by ¥ € [Yo,r*/q).
Case (a): For 1 <¥/Yo <(q+2)°/q(q +4),

Y g+4\ [u?
go(u;v)={“(y_o”‘) (T) (y_o“’)’ Osu=r a5

0 otherwise.

Case (b): For (g +2)*/q(q+4) <v/Yo <(q+2)/q,

(u/r)* —b

i A A— <u<

go(u; ) = { K,(b) husr, (3.6)
0 otherwise

where Ky(b) = (1 —b) — (2(1 — b¥/?*") /g +2), and b is the unique solution, in [0, 1], to

l _ Kq+2(b)

Yo Kq(b) '

In each case the value of  is related to v = ¢* /nn2 by

Jo(go; V) Ayl
y:argmaxp(xf,( y )5 =) (3.7
where s
1(‘{7*4_) (l — l) , case (a),
Jolgo; V) = o (338)
—br
quK ) -1, case (b).
q
The least favourable member of T, is
go(lx[l; v —1
Jo(x) = =—————. 3.9
° VJo(gos V) G2

Proof. Let £ € En be arbitrary, with density g(||x||; ) indexed by y. We find that

G = Jo(g; V) @ Ji(g; DIy,
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where

Jog;V=FEgu; ) — 1, Jig; ) = E{U%(U; Y)}—:—Z.

Put Bo = (1,0")". We claim that P (f, &) is minimized over %y by

o (Xl —1
B = e

For this recall that, as in the proof of Theorem 1,

(3.10)

P(f, & > Ph(; B, .
But if f € Fy, then
b(f, &) = / £(x) dE(X) - Bo,

and we find that By = Bo. Thus h(x; Bo) € Fn is less favourable than f. Since this 4 does
not depend on f, the claim is established.
Using (3.10) and (3.3) in (2.1) gives

, Jogs VY _ Ay
S ?(f,é)zP(xg( - v )S o? )

To maximize this in Z; we first fix vy, and find go(u; y) to minimize Jo(g; 7y), subject to
(3.1) and (3.2). For this, it suffices for go(u; y) to minimize

ro g+l

roq—1
Jo(g: y)+2abr2/ uu_) du—Za/ “
0 rd 0

rd

g(u) du

" ut”! 2 2 2 Y

= — (qg°(u) — {2a(u” — br)}gw) —q |1+ — du (3.11)
o 1 Yo

for some Lagrange multipliers a, b, and to satisfy (3.1), (3.2). We minimize (3.11) by

minimizing the integrand pointwise, obtaining

gl V) = a@? —brt* /g,  a>0, b<1, 0<u<r.

Solving for a and b in terms of ¥, and then maximizing over 7y, shows that for f € Fyy
the optimal & € Zyy is given by (3.5)—(3.8). Cases (a) and (b) correspond to b < 0 and
b > 0 respectively.

To complete the proof we must, by Theorem 2(ii), show that P (f,&p) is minimized,
over all of i, by fo(x) = h(x; Bp). By Theorem 1, this holds as long as By is the
eigenvector corresponding to the maximum eigenvalue of

11 _
G2B™'G2 = Jy(go; V) @ ¥ Vi(g0; Y-

Equivalently,
Jo(go; V) = v " Ji(gos V). (3.12)

The verification of (3.12) is straightforward. We omit the details. Q.E.D.
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3.1. Remarks.

REMARK 1. The solution in case (a) of Theorem 3 holds for small values of v. In the
limiting case v — 0 (n — oo) we have Y = Yo, go(#;Y) = 1, and the maximin design
is uniform on S. This is to be expected, since as n — oo the bias becomes the sole
contributor to the estimation error. In Box and Draper’s study (Box and Draper 1959) of
regression designs when the fitted model is incorrect, they note that “the optimal design
in typical situations in which both variance and bias occur is very nearly the same as
would be obtained if variance were ignored completely and the experiment designed so
as to minimize bias alone.” They go on to construct designs which minimize bias, and
find that the bias-minimizing designs must have all moments, up to a certain order, equal
to those of the (continuous) uniform design. Case (b) of Theorem 3 holds for large v; in
the limiting case v — oo (n? — 0) we find y — r? /q and the optimal design places all
mass on the boundary of S, as in the classical D-optimality problem.

RemaRrk 2. The maximization in (3.7) has been carried out numerically, for selected
values of p. We have set
72\ /P
=d (;) Xp095: 3.13)

so that the coverage probability is 0.95 for the classically optimal design, under the ideal
condition 1 = 0. See Table 1 for numerical values. We have denoted by v = v, the
boundary point between cases (a) and (b). If v > v, then b > 0, and S contains a sphere,
around 0, within which no observations are made. The last column in the table gives
the coverage probability when in fact the fitted model is correct. The difference between
this value and 0.95 may be thought of as the premium paid, in lost coverage at the ideal
model, in return for the protection afforded by a more robust design, at the given value
of M. The user may then choose the particular design corresponding to the maximum
premium which he is willing to pay.

Note that the minimum coverage for the optimal design is never catastrophically less
than the nominal value 0.95. In contrast, it is a consequence of Lemma 1 that the minimum
coverage probability, in Fy, for any n > 0, of the classically “optimal” design is zero.

ReMArk 3. If a random vector x has a spherically symmetric density, then x/||x|| is
distributed uniformly over the surface of the unit sphere, independently of ||x||. Thus, to
randomly choose design points from the optimal design density one could first simulate
a value u of U, with density qu?™! go(u;Y)/rd, as at (3.1), and then simulate values of
u-x/||x||. Since the distribution of x/||x|| is the same for any spherical density, it suffices,
in this last simulation, to let the g elements of x be i.i.d. normals.

3.2. Examples.

We illustrate the construction of designs in two cases. In Example 1 the optimal design
measure is approximated by a discrete measure. In Example 2 we use both a discrete
approximation and a randomization as described in Remark 3 above.

ExampLE 1. Take g = 1—straight-line regression with an intercept. Suppose that we are
willing to pay a premium of about 5%, in lost coverage at the ideal model, for the added
robustness. From Table 1 we may take v = vy = 3.1174. Theorem 3 then gives that the
distribution function of the optimal design is

Eo(x) = 4x* + 0.5, —-05<x<0.5.



68 WIENS Vol. 21, No. 1

TABLE 1: Numerical values for the designs of Section 3.

v (= 6%/m?) ¥/Yo b ming, P (f,&) P (0,&)
P=2Y=1
0 1 — 0.8226 0.8226
0.01 1.0044 — 0.8231 0.8233
0.1 1.0392 — 0.8258 0.8285
1.0 1.3224 — 0.8456 0.8632
2.0 1.5708 — 0.8604 0.8856
vo=3.1174 18000 0 0.8724 0.9018
4.0 1.8834  0.0499 0.8797 0.9069
10.0 2.1849  0.2580 0.9036 0.9224
100.0 26649  0.6754 0.9351 0.9406
00 3.0 1 0.95 0.9500
p =57 = 0.0750

0 1 — 0.8442 0.8442
0.005 1.0010 — 0.8443 0.8446
0.10 1.0250 — 0.8484 0.8528
0.30 1.0730 — 0.8563 0.8680
vo=0.5265 1.1250 0 0.8645 0.8827
1.0 1.1780  0.2183 0.8778 0.8960
10.0 13907  0.7722 0.9243 0.9360
100.0 14619 09229 0.9419 0.9456

00 1.5 1 0.95 0.95

This can of course be approximated by a discrete design measure in numerous ways. One
is to take design points

i —0.5 2i —1
xi=§5—l(1 nO ):05( ln —1) s i=1,...,n.

For n = 10, this gives design points

W—

+0.2321, £0.3347, £0.3969, 3-0.4440, $0.4827.

ExaMPLE 2. Take ¢ = 4 and an approximate 5% premium. From Table 1, we take v = 1.
By Theorem 3, and with

Hl—

2 1-b°
= — ~0.6709, Ksb)=(1—-b)— ~ (04518,
r 7 4(b) = ( )
the d.f. of U is
0, 0<u<rvb~03135,
Gu) = 2 1 2\2(9,,2 2
(u) u? — br*)*Qu* + br )’ WB<u<r.

3K4(b)r6

As design points we take
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TABLE 2: Randomized design points for Example 2.

i X X, X3 X4 U

1 —0.072 0.417 0.025 —0.019 0.425
2 0.052 —0.038 0.323 —0.345 0.477
3 —-0.314 0.121 0.378 0.023 0.507
4 —0.317 —0.404 0.117 —0.044 0.529
5 0414 —0.099 —0.153 —0.306 0.546
6 0.357 0.271 0.293 0.166 0.561
7 —0.335 0.089 —0.398 —0.223 0.573
8 —0.217 0.324 0.112 —0.420 0.585
9 —0.418 0.368 —0.097 0.185 0.595

10 —0.071 0.218 —0.450 0.332 0.604
11 0.437 —0.284 0.248 0.203 0.612
12 0.406 —0.137 0.441 —0.082 0.620
13 0.505 —0.164 —0.105 0.318 0.627
14 0.303 0.008 —0.188 —0.524 0.634
15 0.330 0.102 0.398 —0.365 0.641
16 0.130 —0.584 —0.164 0.183 0.647
17 —0.194 —0.238 0.014 —0.576 0.653
18 —0.411 0.227 0.360 —0.287 0.658
19 —0.233 0.478 —0.287 0.274 0.663
20 0.277 —0.159 0.263 0.525 0.669

where the v; are randomly generated vectors, each consisting of four independent normal
I.V.S.

Table 2 gives design points obtained in this manner for n = 20. Some selected
projections of this design are presented in Figure 1.
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