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Abstract

We present and derive the asymptotic properties of a certain Neyman-Pearson test, relevant for14
problems concerning discrimination between two competing models. We then study an application in
which this test is used to assess the efficacy of designs, the purpose of which is to aid in discriminating16
between two nonlinear regression models.

AMS Subject Classification: Primary: 62F03; 62F05. Secondary: 62K05; 62J02.18

Key-words: Asymptotics; Design; Discrimination; DT-optimality; Kullback-Leibler divergence;
Michaelis-Menten; T-optimality; KL-optimality.20

1. Introduction

The purpose of this article is to present and derive the asymptotic properties of a certain22

Neyman-Pearson test, relevant for problems concerning discrimination between two com-
peting models. We then study an application in which this test is used to assess the efficacy24

of designs, the purpose of which is to aid in such discrimination problems.
The problem of discrimination can be viewed as one of choosing between two hypotheses.26

We suppose that, under the null hypothesis H0, the data at hand have arisen from a density
f0(y|x,µ0,τ0). Under the alternate hypothesis H1 the density is f1(y|x,µ1,τ1). The data are28

values of a random variable Y , together with covariates x, possibly chosen by design. Under
Model j – specified by H j – the mean conditional response is µ j(x), which depends upon30

the covariates through a, linear or nonlinear, regression response. The stochastic component
∗1559-8608/09-2/$5 + $1pp – see inside front cover
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420 Douglas P. Wiens

is specified by the density f j. The remaining terms τ j represent possibly vector-valued
nuisance parameters. Where there is no possibility of confusion, τ j will not be explicitly2

mentioned.
Given a finite design space S = {xi}N

i=1 with ni ≥ 0 observations {yi j}ni
j=1 made at xi, and4

if the parameters are completely specified under each hypothesis, the Neyman - Pearson test
of H0 vs. H1 rejects for large values of R = ∑i, j Ri j, where6

Ri j = 2log
{

f1(yi j|xi,µ1)
f0(yi j|xi,µ0)

}
.

Under the large-sample approximation to the distribution of R derived in §3 of this article8

and presented as Theorem 1.1, the power of the test is maximized by the design maximizing

EH1 [R] = 2n
∫

S
I(µ0(x),µ1(x))ξ (dx), (1.1)10

where n = ∑N
i=1 ni, ξ is the design measure placing mass ni/n at xi, and

I(µ0 (x) ,µ1 (x)) =
∫ ∞

−∞
f1 (y|x,µ1) log

{
f1 (y|x,µ1)
f0 (y|x,µ0)

}
dy12

is the Kullback-Leibler divergence, measuring the information which is lost when f0 is used
to approximate f1. This is the basis for the design problem considered in §2.14

In the proof of Theorem 1.1 we assume the usual regularity conditions for likelihood
estimation - these are stated in §3 - and we consider contiguous alternatives.16

Theorem 1.1. Suppose that the densities f0, f1 are the same, i.e. f j(y|x,µ j,τ j)= f (y|x,µ j,τ)
for a density f , and that µ1(xi) = µ0(xi)+n−1/2∆i, i = 1, . . . ,N. Define18

D =
∫

S
I(µ0(x),µ1(x))ξ (dx) =

N

∑
i=1

I(µ0(xi),µ1(xi))ξi. (1.2)

Then under the regularity conditions given in §3 we have the following.20

(i) Under this sequence of contiguous alternatives D is O(n−1) and R is asymptotically
normally distributed under each hypothesis:22

under H0,
R+2nD√

8nD
L→ N(0,1); (1.3)

under H1,
R−2nD√

8nD
L→ N(0,1). (1.4)24

Thus a test with asymptotic size α test rejects for R > zα
√

8nD−2nD and has asymp-
totic power26

β = Φ(
√

2nD− zα), (1.5)

where Φ is the N(0,1) distribution function and zα = Φ−1(1−α).28

(ii) If f is the Normal density with variance σ2 then 2nD = ∑N
i=1 ∆2

i ξi/σ2 and these asymp-
totic distributions are exact, for all n.30
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Asymptotic Properties of a Neyman-Pearson Test 421

2. Examples

Suppose that one is to design an experiment, the purpose of which is to determine which2

of two regression models is appropriate for the data. Under the null model the mean response
is of the Michaelis-Menten form4

µ0(x) = η0(x|θθθ 0) =
V0x

K0 + x
, with θθθ 0 = (V0,K0)T ;

under the alternate it is exponential:6

µ1(x) = η1(x|θθθ 1) = V1(1− e−K1x), with θθθ 1 = (V1,K1)T .

An optimal design will maximize (1.2).8

If the data are normally distributed under each model, and equally varied, then

2σ2D =
N

∑
i=1
{η1(xi|θθθ 1)−η0(xi|θθθ 0)}2ξi. (2.1)10

For this case Hunter and Reiner (1965) proposed a sequential method to construct the design:
after n observations have been made and estimates θ̂θθ j computed, the next design point12

xn+1 should maximize {η1(x|θ̂θθ 1)−η0(x|θ̂θθ 0)}2. Fedorov and Pazman (1968) extended this
approach to heteroscedastic models. If instead the data follow a log-normal distribution,14

with a common coefficient of variation cv, then

2log(1+ cv2)D =
N

∑
i=1
{logη1(xi|θθθ 1)− logη0(xi|θθθ 0)}2ξi; (2.2)16

some details are in López-Fidalgo, Tommasi and Trandafir (2007). Again a sequential ap-
proach is plausible.18

It is our purpose here to construct static, i.e. nonsequential, designs. For this, one can
clearly not rely on estimates of the parameters; in this case Fedorov (1975) suggested the20

maximin procedure of maximizing (1.1) after first minimizing over θθθ 0 and θθθ 1. Atkinson
and Fedorov (1975a) - see also Atkinson and Fedorov (1975b) - assumed that Model 1 was22

known to be the correct one, that θθθ 1 was known, and constructed designs, termed T-optimal
designs, maximizing infθθθ 0

∫ {η1(x|θθθ 1)−η0(x|θθθ 0)}2ξ (dx). López-Fidalgo, Tommasi and24

Trandafir (2007) studied extensions of these notions to non-normal models, leading to the
maximization of infθθθ 0

∫
I(η0(x|θθθ 0),η1(x|θθθ 1))ξ (dx); this criterion is termed KL-optimality.26

We instead take the following approach. We first introduce a “working response” E[Y |x];
this can be constructed in several ways. In Example 2.1 we take E[Y |x] = η1(x|θθθ 1) for28

θθθ 1 = (1,1)T . In Example 2.2 we take E[Y |x] = .35 + .12x, which is a linear response ap-
proximating η0(x|θθθ 0) when θθθ 0 = (1,1)T . Another possibility, as mentioned by Atkinson30

and Fedorov (1975a), is to take E[Y |x] = ∫
η1(x|θθθ)p(θθθ)dθθθ for a prior p(θθθ).

Once a working response is chosen, we define32

θθθ j = argmin
θθθ ∑

S

{E[Y |xi]−η j(xi|θθθ)}2, (2.3)

i.e. θθθ j provides the closest agreement, in this L2 sense, between the true regression response34

and its approximation in Model j. We then seek a design ξξξ ∗maximizing (1.2).
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422 Douglas P. Wiens

Example 2.1. Here we consider normal data, and take E [Y |x] = η1 (x|θθθ 1) for θθθ 1 = (1,1)T .
We take x ∈ S = .1(.1)5; thus N = 50. Then from (2.3), θθθ 0 = (1.22, .91)T . See Figure 2.1.2

If one-point designs are allowed, then the optimal choice ξξξ ∗ maximizing (2.1) places all
mass at4

argmax
S
|η1 (x|θθθ 1)−η0 (x|θθθ 0)|= .3.

The resulting powers (1.5) of level α = .1 tests of η0 (x|θθθ 0) against η1 (x|θθθ 1), evaluated6

with n = 20 at a range of values of σ 2, are
(

σ2 : 1 .5 .1 .01
β : .14 .15 .25 .73

)
.8

In this case even the power attained by this best possible design is disappointingly low,
unless σ2 is quite small. Most other values of θθθ 1 which we applied resulted in substantially10

larger powers.
One-point designs are of course poor if parameter estimation is also a goal. In such cases12

we dictate a minimum number q of support points and use a simulated annealing algorithm
(see, e.g., Fang and Wiens, 2000) to obtain the designs. For instance if q = 4 - allowing for14

estimation of θθθ and σ2 - and S = .1(.175)5, then when n = 20 we find that

ξξξ ∗ =
(

.275 .45 4.825 5.0
.85 .05 .05 .05

)
. (2.4)16

There is a negligible deterioration in the powers, which in this case are
(

σ2 : 1 .5 .1 .01
β : .14 .15 .24 .71

)
.18

Although the powers were variable - and typically higher - we found little change in
these designs upon experimenting with different inputs θθθ 1. Under normality our design20

criterion is quite similar to that of T-optimality, which requires the maximization of (2.1).
A difference is in our treatment of θθθ 0, which we define through (2.3) with (in this example)22

E [Y |x] = η1 (x|θθθ 1) but which, in the classical approach, is design-dependent and defined
as the minimizer of ∑n

i=1 {η1 (xi|θθθ 1)−η0 (xi|θθθ)}2 ξ (xi). We were motivated to define the24

parameters as we did partially by robustness considerations. The assumptions that µ j (x) =
η j (x|θθθ j) might hold only approximately, in which case the parameters can be unidentifiable.26

To avoid this, the definition (2.3) is particularly convenient. In Wiens (2009) the means
µ j (x) are taken to be unknown members of certain neighbourhoods of the η j (x|θθθ j) and the28

robustness of the discrimination designs is investigated.
Our emphasis on exact designs, in finite design spaces, has led to the use of annealing30

algorithms as in Example 2.1. There is a further consequence. Some authors - Atkinson
and Fedorov (1975a), López-Fidalgo, Tommasi and Trandafir (2007) - have exploited con-32

vex design theory to prove equivalence theorems which can then be used to establish the
optimality of designs. In our case the various restrictions imposed on the designs render the34

class of such designs non-convex, so that analogous results cannot be expected.

Example 2.2. Here we consider lognormal data, so that (2.2) is to be maximized. We take36

n = 20 and E [Y |x] = .35 + .12x, and find that when S = .1(.1)5 the parameters defined
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Figure 2.1. Mean reponses for Example 2.1.

by (2.3) are

θθθ 0 = (1.02,1.13)T , θθθ 1 = (.85, .73)T .2

See Figure 2.2. With q = 1 the design ξξξ ∗ concentrates all mass at

argmax
S
|logη1 (x|θθθ 1)− logη0 (x|θθθ 0)|= .1,4

resulting in powers
(

cv2 : 1 .5 .1 .01
β : .69 .85 1.00 1.00

)
.6

When q = 4 and S = .1(.175)5 we find that

ξξξ ∗ =
(

.1 .275 .45 .625
.85 .05 .05 .05

)
, (2.5)8

with powers
(

cv2 : 1 .5 .1 .01
β : .64 .81 1.00 1.00

)
.10

Even with the imposition of the requirement q > 1, the designs presented here are poor
for estimation or prediction from the chosen model. This seems intuitively clear, and can be12

quantified by the D-efficiencies

eff =

( ∣∣M(
ξξξ ∗

)∣∣
maxξ∈Ξn,q |M(ξξξ )|

) 1
p

,14
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Figure 2.2. Hypothesized responses η j
(
x,θθθ j

)
for Example 2.2, with E [Y |x] linear.

where |M(ξξξ )| denotes the determinant of the information matrix of the design ξξξ , Ξn,q is
the class of q-point exact designs on S using the specified sample size, and p is the number2

of regression parameters in the model being considered. For the design (2.4) we compute a
D-efficiency of .483 for Model 0 and .355 for Model 1. The locally D-optimal designs in4

these cases were again found by simulated annealing and are
(

.625 .80 4.825 5.0
.45 .05 .05 .45

)
and

(
.975 1.15 4.825 5.0
.45 .05 .05 .45

)
,6

respectively. For (2.5) these D-efficiencies are .205 and .106 for Model 0 and Model 1
respectively; for both models the locally D-optimal design is8

(
.1 4.625 4.825 5.0
.50 .05 .05 .40

)
.

This inefficiency, for estimation or prediction, of discrimination designs was noted by10

Hill, Hunter and Wichern (1968), who proposed a sequential method to maximize a con-
vex combination of the discriminatory power and a measure of estimation efficiency such12

as a weighted average of the determinants of the information matrices in the two models.
Atkinson (2008) has proposed the maximization of a convex combination of the logarithm14

of D(ξξξ |0,0), as at (2.1), and the logarithm of the determinant of the information matrix
under Model 0. This criterion, combining as it does classical D- and T-optimality criteria,16

is termed DT-optimality. Wiens (2009) has proposed, in a robustness context, a sequential
method which shifts emphasis from maximization of (1.2) towards minimization of mean18

squared error of the predictions, as evidence accrues in favour of one of the two models.

3. Proof of Theorem 1.120

In proving Theorem 1.1 we will make use of the following assumptions.

(A1) The density f (y|x,µ) is three times differentiable with respect to µ , and the derivative22

of
∫

f (y|x,µ)dy can be obtained by differentiating under the integral sign.
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Asymptotic Properties of a Neyman-Pearson Test 425

(A2) With

ψ (y|xi,µ0 (xi))
de f
=

∂
∂ µ

log f (y|xi,µ)|µ=µ0(xi) ,2

(and with dots denoting differentiation with respect to µ), there exists a function
M (y|µ0 (x)) and a number c > 0 such that4

sup
|s|≤c

|ψ̈ (y|x,µ0 (x)+ s)| ≤M (y|µ0 (x)) ,

with6

∫ ∞

−∞
M (y|x,µ0 (x)) f (y|x,µ0 (x))dy < ∞ for x ∈S.

(A3) The random variables ψ̇ (Y |x,µ0 (x)) have second moments which, under either hy-8

pothesis, are uniformly bounded for x ∈ S.
(A4) The random variables ψ (Y |x,µ0 (x)) have third absolute moments which, under either10

hypothesis, are uniformly bounded for x ∈ S.

Remark 3.1. Since S is finite, (A3) and (A4) require only that the specified moments be12

finite for each x ∈ S. Assumptions (A1)-(A4) are easily seen to hold for the examples of
Section 2.14

Proof. (i) For some ti ∈ [0,1] we have the expansion

Ri j = 2log
{

f1 (yi j|xi,µ1)
f0 (yi j|xi,µ0)

}
16

= 2log
{

f (yi j|xi,µ0 (xi)+∆i/
√

n)
f (yi j|xi,µ0 (xi))

}

= 2ψ (yi j|xi,µ0 (xi))
∆i√

n
+ ψ̇ (yi j|xi,µ0 (xi))

∆2
i

n
18

+ ψ̈
(

yi j|xi,µ0 (xi)+ ti
∆i√

n

)
∆3

i

3n3/2 .

Thus, using (A2),20

R = ∑
i, j

Ri j = Un +Vn +Op(n−1/2),

where22

Un =
2√
n ∑

i, j
∆iψ (yi j|xi,µ0 (xi)) ,

Vn =
1
n ∑

i, j
∆2

i ψ̇ (yi j|xi,µ0 (xi)) .24
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426 Douglas P. Wiens

An expansion similar to that above, and using (A2)-(A4), gives

2nD =
N

∑
i=1

∆2
i J (xi,µ0 (xi))ξi +O

(
n−1/2

)
,2

where

J (xi,µ0 (xi)) =
∫ ∞

−∞
ψ (y|xi,µ0 (xi)) ḟ (y|xi,µ0 (xi))dy4

=
∫ ∞

−∞
ψ2 (y|xi,µ0 (xi)) f (y|xi,µ0 (xi))dy.

We then calculate (using (A3)) and Chebyshev’s Inequality) that, under either hypothesis,6

Vn =−
N

∑
i=1

∆2
i J (xi,µ0 (xi))ξi +op (1) =−2nD+op (1) .

Thus8

R = Un−2nD+op (1) .

Under the null hypothesis, the term Un has mean 0 (this follows from (A1)); under the10

alternate hypothesis

EH1 [Un] = 2
N

∑
i=1

∆2
i J(xi,µ0(xi))ξi +O(n−1/2) = 4nD+O(n−1/2).12

Under either hypothesis,

VAR[Un] = 8nD+O(n−1/2).14

By (A4), Liapounov’s Central Limit Theorem applies:

Un−E [Un]√
VAR [Un]

L→ N(0,1);16

(1.3) and (1.4) follow.

(ii) If f is the normal density, then18

R =
1

σ2

[
2∑

i, j
Yi j (µ1 (xi)−µ0 (xi))−

N

∑
i=1

ni
(
µ2

1 (xi)−µ2
0 (xi)

)
]

,

which is normally distributed with variance 8nD, where D is as given in the statement of the20

theorem. Under the null hypothesis the mean is −2nD; under the alternate it is 2nD. ¤
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