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ABSTRACT

We construct weighted Cramér-von Mises location estimators which are asymptotically
normally distributed throughout an g-contamination neighbourhood of a given, strongly
unimodal distribution function, and which minimize the maximum asymptotic variance in
such neighbourhoods. Applications to the estimation of a normal or logistic mean are given.

RESUME

On construit des estimateurs de position de Cramér-von Mises pondérés qui sont asympto-
tiquement distribués selon une loi normale partout un voisinage de contamination-& d’une
fonction de densité fortement unimodale donnée et qui minimisent la variance asymptotique
maximum dans de tels voisinages. On applique ces résultats a ’estimation de la moyenne
d’une fonction de densité normale ou logistique.

1. INTRODUCTION

We consider weighted Cramér-von Mises estimation of a location parameter,
with an eye to constructing robust, asymptotically normal estimators which enjoy
minimax variance properties in -contamination (“gross errors”) neighbourhoods of
the “target” distribution. The estimators are members of the general class of
minimum-distance estimators first studied by Wolfowitz (1957). Parr (1981) gives an
extensive bibliography of papers related to minimum-distance estimation. In partic-
ular, Millar (1981) discusses weighted Cramér-von Mises estimation from a deci-
sion-theoretic viewpoint, and determines the types of contamination against which a
specified weight function offers protection. Boos (1981) and Parr and DeWet (1981)
determine weight functions which are asymptotically efficient when the target
distribution is correctly specified.

Here, we specify a contamination neighbourhood by assuming that the sample
values arise through possible e-contamination of a known distribution G. Under
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some regularity conditions on G, the most important of which is strong unimodality,
we show that a suitably truncated version of the weight function efficient for G yields
an estimator which is asymptotically normal for all distributions in such a neigh-
bourhood, and whose maximum asymptotic variance, as the true distribution varies
over this neighbourhood, is a minimum. The results, with examples, are discussed in
Section 2 and proven in Section 3.

2. STATEMENT OF MAIN RESULTS

Given a random sample X, . .., X, with distribution function F(x — 6), and a
specified distribution function Fy, not necessarily equal to F we consider estimators
0, which result from minimizing

dp(0) = j :j: {Fy(x) = Fo(x — 0)Pw(x — 0) dx, 2.1

where F, is the d.f. of the sample. 1t is assumed that:

(Al) In[-a, b], w(x) is nonnegative, absolutely continuous with respect to Lebes-
gue measure, and with a continuous derivative w’(x) (one-sided, at —a and b); and
w(x) = 0 off of [-a, b].

(A2) F, Fyhave continuous densities f, f, w.r.t. Lebesgue measure.

Then dr(0) and d(0) have derivatives dr, = Ar , dr = Ar given by
[i -0.5
n

Ae(®) = 23

n: - Fo(X) - 9)]W(X(i) -0), (2.2)
i=1

where X, is the ith-order statistic, and

Ae(8) = w(b)XF(8 + b) — Fo(b)Y* — w(-a)(F(0 — a) — Fo(-a))

b
+2 f i {F(x + 0) — Fo(x)}fo(x)w(x) dx

- f_b {F(x + 0) — Fo(x)w’(x) dx. (2.3)

As in Parr and DeWet (1981), we take the estimand 6(F) to be a zero of Ax(0),
assume the existence of a consistent estimator 0 of 0, and define the estimator
0, = 6(F,) to be the closest zero, to 0, of Ar (). In practice, one would use (X — 8)/c
in (2.1) and minimize over both 6 and o to obtain an auxiliary estimate of scale. Since
the two estimators so obtained are typically asymptotically independent (Parr and
Schucany 1980) under the symmetry assumptions made below, and we are here
primarily interested in establishing the minimax property of the location estimate,
we shall assume that scale is known.

The influence curve (Hampel 1974)

(1 - 5)F + 58.) — O(F)
s b

IC(z;F) = {13(‘)1

where 8, is unit mass at z, of 0, is obtained by implicit differentiation of the
relationship A-(0) = 0, and is found to be



1987 MINIMAX CRAMER-VON MISES ESTIMATORS 271

1c@R) -3 x'p(e(F»}‘l

X (W(-a)}{F(® - a) — F(-a){I(z <0 -a)- F(O - a)}
-w(b{F(0 + b) — Fo(b){I(z <0+ b)— F(0 + b)}

b
+ f_ [I(z=x+0)-F(x+0)]
X [{F(x + 0) — Fo(x)}w’(x) — fo(x)w(x)] dx). 2.4)

THEOREM | (Asymptotic normality at F). If Ax0(F)) # 0 then
Vn(8, - 8) £ N(O, EAICY(X; F))).

Note that IC(z;F) is bounded in z, and constant in the tails, but that it may be
discontinuous at 0 + b [0 — a] if Fi(b) [Fy(—a)] is incorrectly specified.

Now assume that both F and Fare symmetric about 0, wllich we take without loss
of generality to be zero, and put b = a. The initial estimator 6 may be taken to be the
sample median, trimmed mean, or any other reasonably robust estimator of a centre
of symmetry. Now (2.4) becomes IC(z;F) = Az(z)/Br, where

Ar(z) = sz(X)W(X) dx = (F - Fo)(z)w(2), 2.5)
Br=2w(a)fa)(F - Fo)a) + f _aaf(x)ﬁ)(x)W(X) dx

—f:(F — Fo)(x)fix)w’(x) dx. (2.6)

Assume further that F is an arbitrary member of a gross-errors neighbourhood %, of
a known distribution function G:

%.={F|F =f=(l - €)g + €h; h symmetric and continuous}.
Of G we assume:

(Gl) G’ =g is symmetric and continuous.
(G2) The score function § = —g’/g is strictly increasing and twice continuously
differentiable.

Choose F, to have minimum Fisher information for location,
I(F)=[ (f'/fYf dx, in 4.. Huber (1964) showed that F is given by

_ [ -¢g)gx), |X|=< a,
Julx) = [(1 —e)g(@)exp (- E@)(|x|-a), |x|=a,

with a and e related by [ fo =1, i.e.
£ __8@) T,

20-¢) &Qa)

Here and throughout, we use the notation G = 1 — G.
Any F € G satisfies (A2). Denote by W the set of weight functions satisfying (A1)
[with b = a determined from (2.7)], and for which infy, Br > 0. Note that since

Q2.7)
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f=/fo>0in [-a,al, I(|x|< a) € W and so W # Q. Denote by V(w,F) the asymp-
totic variance of Va(6, — 0), if (w,F) € W x 4. Then w, € W satisfies the minimax
property if

inf sup V(w,F) = sup V(w,F). 2.8)

e e '

See Huber (1981), Jaeckel (1971), Collins (1983) for classes of estimators and neigh-
bourhoods for which the minimax property is known to hold; Sacks and Ylvisacker
(1972,1982), Collins and Wiens (1986) for classes in which it does not. We adopt the
same approach as those authors above, who obtained positive results. That is, we
isolate a weight function w, which yields an estimator which is efficient at F,, and
then seek to verify the saddlepoint property

V(we,F) < V(wg,Fy) = V(w,Fy) foral W,F)E Wx%, (2.9

1
I(Fo)
which implies (2.8). From Boos (1981) and Parr and DeWet (1981), it is seen that, with
Yo = —f0/fo, the proper choice is (any nonzero multiple of)

v E)
folx) ~ - gx)

which satisfies (Al). If wo € W, then

wo(x) =

I(|x|=< a),

V(wo,F) = Vo(F) =2 f * AKz) dF(2)

0 B% ’

where, after an integration by parts in (2.5),

wle) - | (F - Foomice) dv, 0=z 2a,

Ar@ = | 4 (a) + woa)(F - Fo)a), 2> a; (2.10)
Br = 2wo@)f(a)(F - Fo)a) +2 f Foix) dx
-2 J:(F — Fo)(x)f{x)wo(x) dx. 2.11)

Note that 4 z(z) = yo(z), Br, = I1(Fy) > 0, Vo(Fo) = 1/I(Fy). The second inequality in

(2.9) is essentially the Cauchy-Schwartz inequality. With y(z) = f , Jo(x)w(x) dx in
(2.5), (2.6), we have

Vs, Foy fwzfo . fwzfo

el (Jfen)

> f(f[lé)zf = 1(114,0) = V(wg, Fy).
= | Jo
0

Conditions under which wy, € W are given by
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THEOREM 2 (Asymptotic normality throughout ¥.). If G is such that either
(G31i) wyx)<0,x€[0,a]or
(G3ii) wyx)=0,8"(x)<0,x €0, a]

then wo € W, so that

Vn(®, - 0SNOV(F))  forall FES%,

ExaMPLE 1. Condition (G3 i) applies to the hyperbolic-secant distribution (the
distribution of log|Z|, if Z is a Cauchy r.v.), for which g(x)=msech x and

wo(x) = gL)I(|x < a)/(1 - ).
THEOREM 3 (Attainment of the minimax property). Suppose that conditions (Gl),
(G2), (G3ii) hold, and that in addition

(G4) wy is convex (wq nondecreasing) in [-a, a], or merely
(G4') supjpq) wolx) = wo(a).

Then supg, Vo(F) = 1/I(Fy), so that the minimax property (2.8) holds.

EXAMPLE 2. If G = ® is the standard normal distribution function, then wy(x) =
{(1 - e)p(x)y ' I(|x|< a) is minimax, with supg, Vo(F)= [{l — e}l - 2®(a)}]™.
See Huber (1981) for some numerical values of a and €. Parr and DeWet (1981)
suggested the use of this weight function in estimating the mean of a normal
distribution, apparently without being aware of its optimality. They recommended

the trimmed mean, with trimming proportion ®(a), as a starting value.

EXAMPLE 3. For G(x) = (1 + ™), the logistic distribution function, the weights
wo(x) = 2I(]x | < a)/(1 — €) are optimal. With ¢ = G(a) - 3, the relevant values are
g =(1-2t)*/(1 + 4t*) and supy, Vo(F) = 3(1 + 4t%)/{4t*(3 — 4¢*)}. Since

g(x)
wo(x) a Py )G (x)I (Ix|=a),

0, can be heuristically described as an Anderson-Darling estimator, with truncated
weights.

The generalized logistic density [Gumbel (1944); see also Johnson and Kotz
(1970)] is defined by g,,(x) = const. g"*!(x), with g(x) as above. In this case, the
weights should be chosen proportional to g™ (x)I(|x | < a).

3. PROOFS

3.1. Proof of Theorem 1.

The proof parallels that of Theorem 3.1 of Boos (1981), who assumes a continuous
weight function. Define

An(x) = Fy(x) - F(x),

Ar(1) = Ar(6)
ha(t) = 20-6) ° £+ 8(F),
— LAEOF)), 1 =6(F);
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T(F:A) = (hp(e»-'(w(—a)An(e _ a)(F(® - a) - Fo(-a))
—w(b)A,(0 + bY{F(0 + b) — Fy(b)}

0+b
+ J AX){F(x) = Fo(x — 0)w'(x — 0) — fo(x — O)w(x — 0)] dx)

0-a
Since Vn T(F;A,) = n™2 S IC(X;;F), it suffices to establish
i=1

0, — 0=T(F;A,) + 0,(n™"?). (3.1)
The consistency of § implies that of 0,, so that
h(8,)>hp(8) + 0.
Then (3.1) is a consequence of

h(6)

|hF(en)| en - 9 - hF(en)

T(F;A,)

M‘Lzlﬂ@ ~ heO)T(F;A)| = 0,(n).  (3.2)

An(x)
Define [|A,[l, = SUP_ox oo | ,,
bounded above by [[FEL = Fo)]

L[ v -ogias

. Then the second term in (3.2) is

e |7 1A Ut — By 8 e - Bywcx - 0,1

e 101 o~ Fue - 011w - 0

+ fi |8, [ F(x) = Folx = 0) [ [w'(x = 6,) - W’(x—G)IdX}
+ X we) {%A§(9n+c)+ 1808, + ) [ | Fn(8, + €)= F(8 + )|
c€{-ab}
+ IAn(9n+C)—An(9+C)IIF(9+C)~Fo(C)I}
< 3l Anlly-ell Al - f:, [FOL = FOIFw(x - 8,) dx

+ ||An||%-ef_°:0 [FOXL = FOOMNEE|folx — B)w(x — 8) = fo(x — 8,)w(x — 8,) | dx

+ ||Anlls-e f:F(x){l - FOeD](| Folx — ) — Fo(x — 6,)| [w'(x - 8,)]|
+ |F(x) = Fo(x —0)| [w'(x - 0,) —w'(x —0)|} dx
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t 2 b)w(c)[%IIAnllg_ellAnll 1-o[F(8, + X1 = F(8, + c))F*
+ 114413 o[F(8, + X1 = F(8, + c))J | F(8, + ¢) = F(6 + ¢)|
+ | A0, +¢) = A0 +0) | ] (3.3)

As pointed out by Boos (1981), it follows from Lemmas 7.1, 7.3 of Gregory (1977) that
lAulls-s = O,(n™) and [|A,ll;-s>0,  for €>0.

We can represent |A,(0, +c)— A, 0+ c¢)| asn™'|Y, - np,|, where Y, ~ bin(n, p,)
andp, = |F(®+c) - F(8, + ¢)|—0. It follows from these observations that the term
at (3.3)is 0,(n™"?).

3.2. Proof of Theorem 2.

We need only verify that infy, Br > 0 under either condition. From (2.11),

Bp=> 2]0 [wo — (F = Fo)wglf dx. If (G3 i) holds, then
Br=2 fo yofo dx = I(Fy) > 0. If (G3 ii) holds, then (2.7) gives

€ vy SX)E(x) (gx) gla)) gla) & (x)
Wo = 3w ) = =20 (a(x) a(a)) Ea) g(0)

+(1 - g)wi(x)G(a) >0, (3.4)

so that

BFZZ,[O (WO‘%WO)T dx22fo (Wo—%Wo)’ﬁ)dx>O.

3.3 Proof of Theorem 3.

We repeatedly use the relationship
a)==—>=, 3.5
Yo(a) Fo@) (3.5)
which is equivalent to (2.7). The first step in the proof is to bound V,(F) by a more
tractable functional V,(F), for each k = 2e7/(F — F)(a) € [0, 1]. Define

Fr={F|F=(1 - €)G + ¢eH, H a symmetric distribution function

with H{[-a,al} =k}, k€0, 1].
Note that %, is convex, and that ¥, £ 5{) %), since we do not require H to possess a
density. For F € %,, define

2[ fo ’ v3 dF + (\Ifo(a) + %WO(a))z(Fo(a) - %)}

VilF) = p 2 a 2
|foawi v ar - {wsa %) +vi@% + [ wi vy ar |
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LEMMA. If F € §. N Fy, then V(F) < Vo F).
Proof. Using (G3 ii) in (2.10),

0<z<a,

0 < Ap(z) < Ap(z) = | Vo .
yo(a) + %wo(a), a<z.

In (2.11), write fo (F — Fo)wyf dx as

%f: wo(x) % (F — Fo)(x) dx + joa (F - Fo)(x) % {wi(x) + 2wd(x)) dx

and integrate by parts, obtaining

Be={ [ @wir v -

+2 [ Wi dFy - wi@F - Fop(@) - ita)E - Fora)]

N ( fo " (F = Fol dwp + 2woa)(f — fo)@)(F - Fo)(a))-

Denote by B the term in braces. Either of (G4) or (G4') implies that Br > B, and
then (G3 ii) gives

B = 4yi(a)(F - Fo)(a) + 2fo(a)we(a) — wia)(F — Fo)X(a) — yi(a)(F — Fo)a).
Since F € %,, this last term may be written as (¢/2)p(k), where the quadratic

€ , , 41 - ¢
Pl = -5wita) + k@&’ - @) + X" Vg
is clearly positive at k = 0, and can be seen, using (2.7) and wy(a) < yo(a)wq(a), to be
positive at k = 1. It is thus positive throughout [0, 1], and so By = B > 0. Then

® A2 dF
%(F)Szf —FB,Z = Vi(F).
0 F

QE.D.

It is now sufficient to show that supg, Vi (F) < 1/I(Fy) foreach k € [0, 1]. Ifk =0,
then Vi(F) = 1/I(Fp). If k > 0, then %, may be identified in an obvious way with the
set of all distribution functions on [0, 1], and is thus weakly compact by Prohorov’s
theorem. Since V(F) is weakly continuous, it attains its supremum over %, at Fy,
say. By Lemma 4.4 of Huber (1981), ¢(t) = {Vi((1 — t)F, + tF})}™" is a convex
function of r€[0,1] for each F,E %,; hence (Vy(F))" is minimized by
F iff 9'(0) = 0 for each F}, i.e. iff

0= [ i)+ 4 -rvicn dFi-F). al Fes, (3.6)

where ry = (Vy(Fi)Br)™. Within [0, a], F; is then necessarily of the form
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Fo=F+ 8—2k-80, 3.7)

where §, is unit mass at ¢ = c(k), and c is any point at which 4y + (1 — r;)y3 has a
minimum in [0, a]. Otherwise, choosing F) to be of the form (3.7) would violate
(3.6). Rather than determine c(k) explicitly—this can be done in specific cases—we
shall show that

Vio(Fr) < 572~ (3.8)

I (F I(Fy)
for all distributions of the form (3.7). For such distributions,

I(Fy) + T,

Vel = ey v o

where

T = ekyi(c) - vi(a) + 2yi(a)]
+ 6k 5 (@)[Wil@) - 293(a)] -
(&

)3 wi(a),

[4%(C) +yi(c) - yi(a)] - wy(a).

Then (3.8) becomes
T3+ (2T, - T)I(F,) = 0. (3.9)
Define

yo(a)
R = via )>0
e V2 vo' PN
a=RR-1) A (a)+—ﬁ) (@) <RR-1) 7 @.

Then 2T, - T, = ek[(ek)*wj(a) — 20k + 8B]/4. We can assume that this is negative,
so that the quadratic, as a function of €k, must have two real roots. This implies
R>1andR2-10R +1>0,ie.

B =2yi(c) - yi(a) = Ryi(a),

R >5+26. (3.10)

It follows from (3.10) that the function V6 — 2)Eg(x) - fo E%g dt is increasing in
[0, a], so that

=@ 2t Hag@ S\F 7 3.1

NI L e(245)
With
Y = 4yi(c) + wi(c) - wi(a) > 4yi(a) - yia) = (4R - Dyd(a), (3.12)

A =7 -2R(R - DSyi(a) - 25vi'(a) v, (a),
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RSyi(a) -y ywi'(a)
B = Ryd(a)—= - ,
vdla) Fo(a) fola)
the inequality (3.9) becomes

gk(A + Bek)
—

This s satisfied by all ek € [0, 1]if both A and A + B are positive. That 4 > 0 follows
from (3.11), (3.12). Then using as well Fo(a) <

’ 2
0= (%@) (k) + 2BI(Fo) +

1
i’
A + B = {y- Ryja)y*+(2S - R)Ryj(a) > (8R* - 2R + )yi(a) > 0.
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