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On the Choice of Support of Re-Descending y-Functions
in Linear Models with Asymmetric Error Distributions

By M. Hlynka1, J.N. Sheahanz, and D.P. Wiens?

Abstract: In M-estimation of the regression parameter vector in the linear model, we discuss the
choice of the support of certain re-descending y-functions for both cases when the distribution of
the i.i.d. errors is partially known and when it is completely functionally unknown.

AMS 1980 subject classifications: Primary 62F35; secondary 62G05, 62J05

Key words and phrases: Linear models, asymmetric errors, robust estimation, re-descending influence
functions

1 Introduction

We consider the linear regression model
XM =Cc™Moy+oU (1.1)

where C™ is an nxp design matrix with rows c{, and the components U; of
U are i.id., with d.f. F(u).

For an appropriately chosen function y, we estimate § by an M-estimator 6,
defined as a solution to the system of equations
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ch(X ce) 0, (1.2)

i=1

where 6 is a scale-equivariant estimator of o. Note that, where convenient, we
omit the dependence of the model on . In this article, we consider using a “re-
descending” w-function of the form

’ |yl -<—y0
w() =< yitanh [Ly,(@—w—|yDlsen () , ¥ =<|y|sa—w (1.3)

0 ’ Iyl Zao—w

where y,, y;, @ and a, are constants to be specified.
More generally, we investigate a y-function of the form

Y ly|5y0
ay— w— |:
w() = < Yok (LJ> sen (), ¥ =<|yl=a-w (1.4)
ao—w—)o
0 N IyIZao—CO

where &: [0, 1]1—[0, 1] is any fixed continuously differentiable and strictly increas-
ing function. Note that if we wish y to be continuous, ¢ will satisfy £(0) = 0 and
EN) =1,

The y of (1.3) was discovered independently by each of Collins, Hampel and
Huber (see Collins 1976, Hampel 1973 and Huber 1981, Sect. 4.8). See Collins
and Wiens (1985) for generalizations. Relying heavily on the results of Collins
(1976) and Collins, Sheahan and Zheng (1986), Lind, Mehra and Sheahan (1989)
showed that, under regularity conditions, (1.3) is, according to a certain asymp-
totic minimax variance criterion, the optimal y-function to use in (1.2), if 6 = ¢
is known and F belongs to a class & of distributions given below:

Let ,0<e<1 and gy be known constants. Then F={F|F is a distribution
function;

ye(—ay,ap)=F has a density f of the form
fO)=U-¢e)p(y)+eh(y) where ¢ is the standard
normal density and 4 is an unknown density sym-
metric about 0;

y &(—ay, ag)=F is completely unknown (and hence, in particular,
possibly asymmetric).}

(1.5)

The optimal choices of yy,y; and w are then given as follows: y, and y, are the
solutions of the equations
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Yo =y tanh [}y (@ — w-yg)] and
€ _ o o)
1—¢  y,cosh® [Ly,(a— w—y,)]
-2 (ag— w)+2D ()

[sinh (v; (@9 — w—y)) + 1 (@ — W=yl }(1.6)

where @ (x) = S"_mq)(y)dy, and w is any number as close to zero as desired (e.g.
o = 1079, as in the simulations of Lind (1988)). For reasons of identifiability of
6 in (1.1), € must be “reasonably small” and y, “reasonably large” — see Lind,
Mehra and Sheahan (1989) for more detail, and Lind (1988) for numerical work.

If then F is known to belong to & with ¢, @, and @, known, the optimal M-
estimator of @ in (1.1) is obtained by solving (1.2), with é = g,  given by (1.3)
and y, and y, given by (1.6). Two questions then arise:

(i) If Fis known to belong to # but g, is unknown, how should one estimate
this parameter?

(ii) If little is known about F, in particular if F is not known to belong to % but
one wishes to use a y-function of the form (1.3) or (1.4), how should one
choose the parameters of such a w-function?

Question (i) is motivated by the following considerations. In many practical
situations — see Sheahan (1988) for examples — it can be argued that the family
Z is a reasonable model for errors in the linear model (1.1), in particular since
it allows for gross errors that may or may not be generated from a symmetric dis-
tribution. The resulting optimal estimator of 6 relies on the parameter a, in (1.5)
being known, for the y of (1.3) depends on this @,. Now if one’s intuition or
background knowledge of the mechanism generating the data does not give one
a specification of a,, one is led to the problem of estimating it from the data. A
number of such estimates are proposed in a technical report by Hlynka, Sheahan
and Wiens (1989).

Concerning (ii), when F is not known to be a member of F; the a, appearing
in (1.3) and (1.4) cannot now be thought of as the parameter g, of (1.5). Rather
we simply interpret (—ay, a;), or more precisely (—ay+ w, ay— w), as the support
of a w-function that we wish to use in solving (1.2). The use of such a y, vanishing
outside an interval, is reasonable if one wishes to protect against the influence of
gross errors towards the solution of (1.2). See Hampel et al. (1986) for further at-
tractive properties of re-descenders. In particular, note that a tanh form for y
which is a special case of (1.4), and is very similar to (1.3), is optimal V-robust
— it minimizes the supremum (over R) of the normalized change-of-variance
function. Furthermore, the breakdown point then has the maximum possible
value of 1/2. In practice it is sometimes recommended that when outliers are
suspected in the data one should use such a re-descender as well as a non re-
descender, and compare the resulting estimates — see Hogg (1979).
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In answering (ii) we will, in Sect. 2, assume that in (1.3) both g, and y, are
unknown, and, without assuming ¢ known, will choose values for them that
minimize an estimator of the asymptotic variance of the estimator 4 in (1.2). This
procedure is based on an idea of Jaeckel (1971) who estimated the proportion of
observations to be deleted in computing a trimmed mean; see also “proposal 3”
of Huber (1964), and Yohai (1974), who estimated in a similar manner the tuning
constant & of Huber’s w-function. Some of our derivations are based on those
of Yohai (1974).

Since the work contained in Sect. 2 is rather technical and notationally
cumbersome, we briefly summarize here its main content:

For each fixed (yp,dp), 0<yp<dy< o, an estimator § =0, , is defined in
(2.1), and the asymptotic behaviour of this estimator is described in Theorem 2.1.
The question that remains then is: What value of (yy,a,) should one use in prac-
tice in constructing ? A reasonable value (v, a$), given in (2.23), would be that
which minimizes (over all (yy, @), 0<y,<ay< ) the asymptotic variance of solu-
tions =, , of (1.2). Since (v,ag) will depend on the unknown Fe, it can-
not be used in practice. Accordingly, in (2.24) we define an estimator (J¢,48) of
»3,a), this estimator being shown in Theorem 2.2 to be consistent. Finally,
Theorem 2.3 establishes asymptotic normality of 6 = 8, 54, this estimator having
the same asymptotic optimality properties as the solution of (1.2) one would have
used had the “correct” (¥y,4ay), that is, (¥¢,ag), been known in the first place.

2 Estimation of Parameters in (1.3) and (1.4) when F is Arbitrary

In this section we relax the assumption that F belongs to the class Zof (1.5), and
consider again the problem of estimating # in (1.1) by solving an equation of the
form (1.2). If we wish to use a w-function of the form (1.3) or (1.4), which as in-
dicated earlier is advisable if we anticipate gross errors in the data, we are led to
the problem of choosing suitable values for the parameters in (1.3) and (1.4). Note
that if y; in (1.3) is known, then (1.4) includes (1.3) as a special case, so we deal
exclusively with the choices of y, and a; in (1.4). The numbers y, and a, are easi-
ly interpreted —  is linear in (—y,,¥,) so we are using a least squares procedure
on the residuals in that interval; outside (—ayg, ;) residuals have no influence on
the solution of (1.2), while residuals are down-weighted in (—a,, —y,) and (¥, ap)
by & Clearly the points y, and a, must be chosen appropriately; a poor choice
of ay, for example, may lead to the dismissal of “good” observations, or the
retention of “poor” ones which may result in inconsistency of the estimator of
6 in (1.2). The choice of the functional form of & is not crucial; one should how-
ever ensure that the resulting y does not descend too rapidly, in order that the
asymptotic variance functional (see (2.2) below) does not become inflated.

We commence our analysis by making the following assumptions about C™
in (1.1):
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A1) There exists a positive definite matrix C, such that
c'c™/m-C, as n—oo .

A2) sup{lcg')| li=1,...,n;j=1,...,p; n=1}<K for some constant K.

We assume further that an “initial” shift-equivariant and consistent estimator
of @ exists; that is:

A3) There exists § = 8 such that §(X™ +C™t) = §(X™)+t for all teR”, and
07> 6. Note that, without some conditions on F, one cannot guarantee the ex-

istence of such a §. However, if for example F can be assumed to have a positive
and continuous density and F~!(1/2) = 0, then §;, the least absolute deviation
estimator (i.e. the solution of Y 7_,¢;|X;—c}f| = 0), is consistent (see Lind,
Mehra, Sheahan 1989 and references cited therein). It is in addition scale-
equivariant, ie. 8, (AX™)=|1]8,(X"), A#0. Even if F7'(1)#0, §, is,
under certain conditions, consistent, in particular if the central part of F is as-
sumed symmetric and strongly unimodal. For other candidates for &, such as
trimmed least squares estimators, see the simulation results in Lind, Mehra and
Sheahan (1989) and Lind (1988).

For any given (fixed) y, and g, in (1.4), and with w = 107% say, define a

“final” estimator 9, , = 6", of 6 as follows:

6* , if the equation (1.2) solved by Newton’s method with
0a, = _ initial value # has a unique solution 6* 2.1)
6 , if the Newton iterates do not converge.

The following theorem gives the asymptotic behaviour of éyo, o W shall
assume, for simplicity, that the distribution F of the i.i.d. errors U; has a density
S with respect to Lebesque measure. Finally, we add the non-stringent assumption
that for each y of the form (1.4) we have

Ad) [y (x)f (x)dx<0

where f’ is the derivative of f, which we assume to exist.

Theorem 2.1. Under assumptions A1), A2), A3), A4) and the conditions on &
given in Sect. 1, the estimator 9)’0»“0 is for each fixed y, and @, a consistent
estimator of 6. Further, n'/ 2(9),0,,,0—9) converges in distribution to the
multivariate normal distribution with mean 0 and covariance matrix
Cq' V(wy, o F) Where Wy,.q, 15 the y of (1.4) with its dependence on y, and a,
emphasized, and
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§9,2 w3 o (W)dF(u)
V(vy o, F)= > w0
T %0 W ) AF @)

2.2)

Proof of Theorem 2.1: We shall content ourselves with a sketch (albeit a rather
detailed one) of the proof of Theorem 2.1, since the details are similar to those
in the proofs of Lemma 3.1, Lemma 3.2 and Theorem 3.1 of Collins, Sheahan and
Zheng (1986). For brevity of the argument that follows, we shall assume that in
our model (1.1) g is known, so that without loss of generality we take o = 1. Thus,
in (1.2), we omit the term & (— in the case where ¢ is unknown, an easy modifica-
tion of the proof below goes through if & is a consistent estimator of &), and
hence we replace (1.2) by

n

Y qw(X;—ci9)=0, 2.3)
i=1

In proving the consistency and asymptotic normality of the estimator
0= 0 o of (2.1) there is no loss of generality in assuming that the true value 6,
of @ is 0. This follows because 8 is, by A3), a shift-equivariant estimator of 6,
so that clearly 8 is also shift-equivariant. In establishing consistency of 8, we note
that the standard consistency argument of Huber (1964) must be modified to take
into account the fact that the equation (2.3) has multiple roots, due to the fact
that w vanishes outside an interval.

We define the random process

1 n
Hit)=-= Y cyX;—cjt), teR? (2.4
ni=1

and the function

H(t)—-— Z ¢ w—cit)f(x)dx , teR” .
ni=1

Note that if, for simplicity, we assume that f is symmetric on (—ay+ w, ay— w)
then since y is skew-symmetric equation (2.3) will now read

H () = H,(0) . 2.5

The idea underlying the proof of consistency of (2.1) is to show that the process
H x(t)|te RP} “behaves like” its expected value H,(¢), for sufficiently large n,
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and that this function H,(¢) has a unique root 0 in a neighbourhood of 6, = 0,
so that it will follow that (2.5) has, with probability, tending to 1 as n— o, a root
which is a consistent estimator of . Since by A3) 8 is also consistent, it will
then follow that the § of (2.1) is itself consistent, i.e. that 6 = 9‘”)7 0.

It follows from Lemma 3.2 of Collins, Sheahan and Zheng (1986) that for
each de(0,w),

sup{]H,;“(t)—H,,(t)|:|t|s(5}70 as n—oo

and (2.6)
*,
sup OH, (1) _oH,(t) (|t|<dp—>0 as n—ooo .
ot ot ?
o oG ()
Here || denotes any norm on the indicated spaces, and ——— denotes the
t

Frechét derivative of a function G: R?—R. It follows from (2.6) that given any
c¢>0, there exists d,(c)>0 such that

Pr(sup {|HXt)—H,(t)|: |t] =5(c)}=c)—>1 as n—oo 2.7
and

P, <Sup UJH:(t) _H, (1)

gy o e séz(c)} sc>—>1 as n—oo , 2.8)

where Pr(A) denotes the probability of an event 4 when the distribution of the

*
U, is F. Since Ilim §H;(t) = —COS v (x)f (x)dx, it can be seen from A1), A4)
{|~0 t

n— oo

and the perturbation lemma (see Ortega and Rheinboldt 1970) that

* PN
Pr <det éi%(—) #0 forall zsatisfying |¢] < 52(c)> -1 as n—o .(2.9)
Next, by a one-term Taylor expansion of H, (¢), we see that

H,(t)-H,0) = ! i c;c) [S wv(x)f (x)dx+0(1)]t as (-0,

i=1
so that A1) and A4) imply that there exist ¢,>0 and §;>0 such that

|H,(t)—H,(0)| =c,|t| for all ¢ satisfying |¢| <J; . (2.10)
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If we now define ¢, =c;d;/4 and J; = min{w,d,(c,),d3), it follows from
(2.7)—(2.10) that

Pr (H is a one-to-one mapping on the set {¢: |[¢| <d,})—>1 Q.11)
and

Pz (H,(0) is an inner point of the image of the set {¢: |#| <J4}

under the mapping H,)—1 as n—oo . (2.12)
It now immediately follows that

P ((2.3) has a unique solution in the set {t: |#| <J)—1 as n—>oo . (2.13)

If we now let >0 be any number satisfying d<d,/4, a repetition of the above
argument, with an appropriate change of constants, shows that

Pr ((2.3) has a unique solution in the set {#: |#| <J;}
and this solution lies in the set {t: |¢| <J})—1 as n—> oo . (2.14)

By (2.14), the consistency of 8 (from A3)), and the definition of 8 in (2.1), it
follows that

Ppr (8 is the unique solution of (2.3) in the set {¢: || <d})—1 as n—> o .
(2.15)

Because 0>0 is arbitrary, (2.15) implies that

6= 9(’”70 (2.16)

as was to be seen. It remains to sketch a proof of the asymptotic normality of
6, with variance-covariance matrix given by C;! times (2.2). For clarity, we now
revert to denoting by 6, (rather than 0) the true value of 6. Since y has, by
assumption, a continuous derivative, an application of the mean value theorem
_yields

1 n
H 7(6)—H y(60) = . L cly(Xi—ci0)—w(X;—ciy)]
i=1

1 n
= Y iy’ [X;—ciby+a;ci(@p—0ONBO6-6) ,  (2.17)
i=1
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where the a;, 0<a;=<1, are constants, i = 1, ..., n. Setting = f, we obtain from
2.17),

n'’(8-6,) <1 i CiC§‘I/'[Xi—c§9o+aic§(9o—9)]>
ni-i
= —n'2[HX8)-H,(0)]+n"*[H 0)—H,©O)] . (2.18)

Now in (2.18), first note that

—n'? [H:(é)—H,,(O)]70 . (2.19)

(2.19) follows from the fact that for each n and any fixed £>0, the event
{H }(@)—H,(0) = 0} is contained in the event {n'’?| HX@)—H,(0)| <&} and the
fact that the former event has by (2.15) [see also (2.5)] probability tending to 1
as n— oo,

Next, by the Central Limit Theorem,

n'"2 (H (60~ H, (Ol —» N(O, Co§ wifdx) , (2.20)
where —9» denotes converges in distribution, and finally we see that

1 ~

. Y cciy’ [X,-—c§80+a,~c;-(90—9)]7 Co | w ) fx)dx . (2.21)

Note that (2.21) follows from A1), A2), (2.16), (with 6, denoting the true value
of #) and piecewise uniform continuity of ' on (—ay+ w, ay— w). Since Cj is
positive definite, it follows from (2.18)—(2.21) and Slutsky’s Theorem that

n'”?(6- 69— =N, | vifax/If y'fdx)?) ,

completing the proof of Theorem 2.1. [
An estimator of V('/’yo,ao’F ) by the method of moments is
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&, x
- E l//yo,ao(Xi_cie)
ni=1

1 1
-X Vy,a,(Xi—cit)

nNi=1

I7('//y0,ao’ F)= (2.22)

It is tacitly assumed that F is such that the denominator of (2.2) does not
vanish, so that with high probability for large n, (2.22) is well-defined.

Now if F were known, a natural choice for the pair of numbers (y,, ;) would
be that which minimizes (2.2). We propose choosing (yy,ay)’ to be the vector
minimizing (2.22). This procedure will then be asymptotically efficient if the
minimizer of (2.22) is a consistent estimator of the minimizer of (2.2), and this
we shall show under certain conditions. We shall agree that whatever choice we
make for (¥y, ag)’, yo should not be less than yyo and a, should not exceed a0,
where y; and a, (vo<ag) are fixed numbers determined from experience: the ex-
perimenter will know not to expect “aberrant” errors close to zero, so wants to
use least squares on residuals in some interval (—ya,y(0), but also knows that
he can expect gross errors outside (—ag0g,ay0).

We now add the following assumption:

A5) There exists 6 = 6 such that & is shift-invariant,

scale-equivariant and satisfies 6— 0 .
P

As with 8, the existence of such a scale estimator cannot be guaranteed
without imposing further conditions on F. We remark however that if F happens
to belong to Zand if the rows of C™ contain repetitions, such a & can be ob-
taifed — see Sheahan (1988). Other estimators of g are possible, depending on
what functional of F one selects to define the scale parameter. While consistency
of & is required for the optimality theory we are presenting to be valid, in practice
one may be required to use the median absolute deviation or other such robust
scale estimator.

We now define the following subsets of R%:

S ={0oa)'| —yoo=<ys<ay<ayo} and

S=1{o a0 | —yob=yy<ay<ayé} .
Finally, let (¥§,al) satisfy

V(Wys a0 F) = inf V(0 0., F)| 00, a0) €S} (2.23)
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and define an estimator (J§,a@g)’ of (v¢,ag) by letting (§¢,a3) satisfy
C(wys,a0F) = inf (P (W, o, F)| 00, a0) €5} . (2.24)

We now have the following theorem.

Theorem 2.2. Assume that (v§,a() is the unique minimizer in S of V(y, ., F).
Then under assumptions A1), A2), A3) and AS), and the conditions on ¢ given
in Sect. 1, the statistic (J§,a)’ satisfies

(j}(’)k’aﬁ(,)k)l_‘;' (.yg’a(’;)l .

Proof of Theorem 2.2: To prove Theorem 2.2 we first prove the following Lemma.

Lemma. Define B = {(yy,ap) |yo<Yo<ap=<ay .

Under assumptions A2) and A3), and the conditions on & given in Sect. 1, we
have

SUp (¥ Wy, ap )=V Wy, )| 00, @) € B}—0 .

Proof of the Lemma: From the definitions of V(Wyo,ao’F) and V(y, ,,F) in
(2.22) and (2.2) respectively, it is sufficient to show that
9

1 5 -
sup {; Y veXi—ci®)— § Wf}o,ao(u)dF(ll)l(yo,ao)GB}70(2.25)
i=1

—ay+w

and that

1 n - aQ—-w
sup {—Zw;o,ao(X,-—c;G)— § u/;o,ao(u)dF(u)l(vO,ao)eB}—9;0- (2.26)

ni=1 —a,tw

To prove (2.25) it is clearly sufficient, by the triangle inequality, to show that
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1 2 ~
sup {— Y vl o Xi—ci®) = y2 . (Xi—ci)] I(Vo,ao)GB} —=0 @27

i=1

and that

sup{ E |W3,0,(Xi—ci60)— 5 v/yoao(u)dF(u)II(yo,ao)eB}—w

i=1 —ay+w (2.28)
We first prove (2.28). Let £¢>0.
For any fixed (y§,ag)eB, the Weak Law of Large Numbers implies that
- E Wi a2 (Xi—ci0)—» 5 Wis ar(W)dF(u) . (2.29)
ni= 4 —atw

By compactness of B, and noting that Yyo.a, (x—cjf) vanishes outside
(—ay+ w,ay— w), there exist neighbourhoods B; = B [(7h, @] of a finite number

m of points (yf,a ),j =1,...,m, in B such that U B;= B and
j=1
00, ) €B;=sup |y} o (x—ci0)— w3y o (x—ciB)| | (x—c;0)

e(—ay+w,a)— w)}<e .

Hence

1 n a,—w
sup {‘; Z l//)z'o’ao(Xi—c;'e)_ j U/fro,ao(u)dF(u) |()’o,00)eB}
i=1

~ay+w

= - max sup { Z |Wy0,a0(X C; 0) V/yf a{,(Xi_c;e)l}
j=1.. vm(yo ao)EB ni=1

+ max  sup {05 |(W§{),a{,(u)—W}/o,ao(u)ldF(u)}

Jj=1,....m (yo,ao)ij —ay+w

n -
Y vl aqXi—cif)— § Wiy a (W) dF (1)

i=1 —ay+w

J

L& for® 2
- Y Vi aXi—ciO)— §  wi . @)dF(u)
i=1

—aqytw

1
+ max -
Jj=1,....m n

<€é+ée+ max
Jj=1,...,m

.

(2.30)
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(2.28) now follows immediately from (2.29) and (2.30).
To prove (2.27), first note that

P
max (c;f—cjf)|< max Y |c;||0;—6,]—>0
i=1,...,n i=1,...,n ;4 P

by A2) and A3) .

We now observe that since y is continuous and vanishes outside the compact set
[—ay+ w,a,— w], it attains its supremum over that interval. Hence if we define

n
1 v wz(X,-)l <b? for all n=1.
i=1

Consequently, if we decide to use Theorem 8.2, p. 55, of Billingsley (1968) to
prove (2.27), we see that condition (i) of that Theorem is satisfied with his a = b?
and his # = 0. By the above-mentioned Theorem of Billingsley (1968), or by a
direct argument, (2.27) follows if we can show that given £¢>0 and >0, there ex-
ist >0 and an integer n, such that

b=sup{ly()|:ye(-ay+w,a,— w)}, we have

1 n
P sup sup — ¥ |yj  (Xi—t)-w} o (X;—0)| > |<n,
Upag)€B |1, —1,] <o N j=1

for all n=n, . (2.31)

Using again (uniform) continuity of x//yo,,,o(x—t) and compactness of B, we can
find >0 such that

2 2
sup sup sup |y o (x—t) -y . (X—1)| <&
0p.ap)€B |t,~1,] < xeR

and hence it follows that (2.31) holds with, in fact, # = 0 and ny, = 1. The proof
of (2.26) is identical with that of (2.25) on replacing y? by w’. The proof of the
Lemma is thus complete. [

Proof of Theorem 2.2: Fix £€>0. Write V(y,,aq,F) for V(wy, ap F)- Since
3, ad) is the unique minimizer of V(yy,ay, F) in S, continuity of V(y,,ay, F)
shows that there exists d >0 such that the events

|08,d8)Y ~(3,a0) | >¢ and (9g,d5)eS
imply the event (2.32)

V@s.ag, F)>V(y5,a5,F)+0 .
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Since S NS = S with probability tending to one as n— o by A4), it follows from
(2.32) that with probability tending to one as n— oo, the event

(¢, a8y -, ad)| >¢ implies the event V(P§,a8,F)>V(E,a8,F)+0 .

Since this last event has, by the Lemma, probability tending to zero as n— oo, we
have P(|(§§,43) —(v5,ad) | >€)—0 as n— oo, completing the proof. [

We remark that uniqueness of (v§,a{) is assumed only to simplify the proof
of Theorem 2.2. If (y¢,ay) is not unique then, with positive probability,
I7(u/y0, aan ) will have more than one minimizer even for large n. In such a case,
care must be taken in practice to identify an appropriate minimizer of
17(!//},0‘ o F) by a specified algorithm, to ensure that this minimizer is a consis-
tent estimator of a minimizer of V(Wyo,aO’F ). (Compare with the problem of
solving (1.2) in practice — it has infinitely many solutions because y vanishes out-
side an interval, and hence we chose a solution (2.1) which is a consistent
estimator of 6, stated in Theorem 2.1.)

Our last Theorem gives the asymptotic properties of 9;7;,@;’ the estimator
(2.1) with the estimator (J¢,d¢)’, satisfying (2.24), as our choice for the vector

(yO9 aO),-

Theorem 2.3. Under the same assumptions as in Theorem 2.2, and (A4),
n'? (9y~3, ar— 6) converges in distribution to the multivariate normal distribution
with mean 0 and covariance matrix Cg ' Ve, a F)

Proof of Theorem 2.3: By Theorem 2.1, with the fixed (but arbitrary) (y,, a;) of
(2.1) replaced by the fixed (v{,ag) of (2.23), we have

9y3,a57 6, (the true value of 6) (2.33)
and by Theorem 2.2 we have
073,@3‘)'70/3,03)' . (2.34)

By continuity of w on the compact set [—ay+ w,q;— w], and assumption A2),
it follows from (2.34) that

953,45 = 5,051 —>0 - 2.35)
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As in (2.18) we write, for some numbers y;, O<y;<1,i=1,...,n,

A 1 ~
n'"(Bsz 42— 60) <; PIRAH [Xi—cf‘%"‘ )’ic§(9o‘9y;;,ag)]>
= —n'"2[H} B 40)—H, ()] +n'*[H} (6)— H,(0)] . (2.36)
Now in (2.36), we claim first that

—n'"2(H* B5z.a0—H, O] —-»0 . (2.37)

To prove (2.37), fix £€>0 and, in analogy with the proof of (2.19), observe that
for each n,

Pp(n' 1 B33, 42)— H, (0)] < &)= Pr(H: (053 42)— H,, (0) = 0)
= Pp(IH} (By3 45— H By2, ) + [H (Bgz 45)— H, (0)] = 0)

—1, as n—o , because
|H3 By, = H 7 By a)| — >0 (2.38)
by (2.35) and uniform continuity of H} on compact subsets of R”, while
|H 3 yz,09)— Hn (0] — >0 (2.39)

by (2.19) with the fixed (but arbitrary) (yy,a,) of (2.1) replaced by the fixed
3,a3) of (2.23). This proves (2.37).
Next, in (2.36) we know from (2.20) that

n’/Z[H:(ao)-H,,(O)]TN(o, Co§ wifdx) . (2.40)
Finally, in (2.36) we see, in analogy with (2.21), that

1 ~
— X ciciy' IXi=cif+ 7ici@o= Oy, o)l — = Col w' (S 00 dx 2.41)



380 M. Hlynka et al.

by A1), A2), piecewise uniform continuity of ' on (—ay+ w, ay— w), (2.35) and
(2.33).

The proof of Theorem 2.3 is now completed upon inserting the results (2.37),
(2.40) and (2.41) into (2.36) and applying Slutsky’s Theorem. [

We remark that if one wishes to use Theorem 2.3 in practice to obtain con-
fidence regions for, or to perform hypothesis tests about, 8, one can estimate
Viwys o F ) by V(wﬁg,ﬁg,F), which can be computed without knowledge of F.

We remark further that if in practice one knows nothing about F, one may,
at least for slight analytical convenience in the computation of (J§,d¢) from
(2.24), consider using a linear & The w-function used in solving (1.2) would then
be (with w = 1079)

y, | =55
b2 ; _ . . _
YO) = @107~ y|), 5§ <|y|=as-10"°
00—10 _yO
0, ly| =a¥—-10"6

In any case, whatever the choice of &, subject to its properties given in Sect. 1,
the resulting estimator 9%’ ax Is asymptotically normal, and optimal in the sense
that it has minimum asymptotic variance among all solutions of (1.2) that are
based on y-functions of the form (1.4).

In conclusion, we remark that an alternative procedure to the one of this sec-
tion is to replace § in (2.22) by the unknown 6 and then choose a value for
(v0, @p)’ that minimizes (2.22) subject to (1.2) holding. We have not examined the
theoretical properties of this procedure, which is an analogue of Huber’s “pro-
posal 3” (Huber 1964).
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