MAXIMIN EFFICIENT BOUNDED BIAS DESIGNS

Douglas P. Wiens¹

August 1, 2018

In the notation of Wiens (2018, "I-Robust and D-Robust Designs on a Finite Design Space," *Statistics and Computing*, 28, 241-258), suppose that loss in Ψ_{τ} (defined by $\sum_{\mathbf{x}\in\chi}\psi^2(\mathbf{x}) \leq \tau^2/n$ and $\sum_{\mathbf{x}\in\chi}\mathbf{f}(\mathbf{x})\psi(\mathbf{x}) = \mathbf{0}$) is

$$\mathcal{I}\left(\psi, \boldsymbol{\xi}
ight) = rac{1}{n} \left\{ \sigma_{\varepsilon}^{2} t r \mathbf{R}^{-1}\left(\boldsymbol{\xi}
ight) + \ au^{2} \boldsymbol{c}_{\psi}^{\prime} \mathbf{B}\left(\boldsymbol{\xi}
ight) \boldsymbol{c}_{\psi}
ight\},$$

where none of \boldsymbol{c}_{ψ} ($\|\boldsymbol{c}_{\psi}\| \leq 1$), $\mathbf{R}(\boldsymbol{\xi})$, $\mathbf{B}(\boldsymbol{\xi})$ depend on τ , and

$$\max_{\Psi_{\tau}} \mathcal{I}(\psi, \boldsymbol{\xi}) = \frac{1}{n} \left\{ \sigma_{\varepsilon}^{2} tr \mathbf{R}^{-1}(\boldsymbol{\xi}) + \tau^{2} ch_{\max} \mathbf{B}(\boldsymbol{\xi}) \right\}.$$

Fix σ_{ε} and define $V(\boldsymbol{\xi}) = \sigma_{\varepsilon}^{2} tr \mathbf{R}^{-1}(\boldsymbol{\xi})$. For given τ define $B_{\tau}(\boldsymbol{\xi}) = \max_{\Psi_{\tau}} \left\{ \tau^{2} \boldsymbol{c}_{\psi}^{\prime} \mathbf{B}(\boldsymbol{\xi}) \, \boldsymbol{c}_{\psi} \right\}$ = $\tau^{2} ch_{\max} \mathbf{B}(\boldsymbol{\xi})$. The minimax (over Ψ_{τ}) design $\boldsymbol{\xi}_{\tau}$ minimizes $V(\boldsymbol{\xi}) + B_{\tau}(\boldsymbol{\xi})$:

$$\boldsymbol{\xi}_{\tau} = \arg\min_{\boldsymbol{\xi}} \max_{\boldsymbol{\Psi}_{\tau}} \mathcal{I}\left(\boldsymbol{\psi}, \boldsymbol{\xi}\right). \tag{1}$$

Consider the problem

(B): Minimize $V(\boldsymbol{\xi})$ in the class Ξ_b of designs for which $B_{\tau}(\boldsymbol{\xi}) \leq b^2$.

Theorem 1 If there are (unique?) τ and $\boldsymbol{\xi}_{\tau}$ satisfying (1) such that $b^2 = B_{\tau}(\boldsymbol{\xi}_{\tau})$, then $\boldsymbol{\xi}_{\tau}$ is the solution to (**B**).

Proof: We have that $\boldsymbol{\xi}_{\tau} \in \Xi_b$. For any $\boldsymbol{\xi} \in \Xi_b = \Xi_{b_{\tau}}$ we must have that $\sigma_{\varepsilon}^2 tr \mathbf{R}^{-1}(\boldsymbol{\xi}) \geq \sigma_{\varepsilon}^2 tr \mathbf{R}^{-1}(\boldsymbol{\xi}_{\tau})$, since otherwise

$$\begin{aligned} \max_{\Psi_{\tau}} \mathcal{I} \left(\psi, \boldsymbol{\xi} \right) &= \left\{ \sigma_{\varepsilon}^{2} tr \mathbf{R}^{-1} \left(\boldsymbol{\xi} \right) + \tau^{2} ch_{\max} \mathbf{B} \left(\boldsymbol{\xi} \right) \right\} / n \\ &< \left\{ \sigma_{\varepsilon}^{2} tr \mathbf{R}^{-1} \left(\boldsymbol{\xi}_{\tau} \right) + b^{2} \right\} / n \\ &= \left\{ V \left(\boldsymbol{\xi}_{\tau} \right) + B_{\tau} \left(\boldsymbol{\xi}_{\tau} \right) \right\} / n \\ &= \min_{\boldsymbol{\xi}} \max_{\Psi_{\tau}} \mathcal{I} \left(\psi, \boldsymbol{\xi} \right), \end{aligned}$$

a contradiction.

To establish the existence of τ and $\boldsymbol{\xi}_{\tau}$ it suffices to show that $B_{\tau}(\boldsymbol{\xi}_{\tau})$ ranges over $[0, \infty)$ as τ does. That $B_0(\boldsymbol{\xi}_0) = 0$ and $B_{\infty}(\boldsymbol{\xi}_{\infty}) = \infty$ seem pretty obvious, so that if $B_{\tau}(\boldsymbol{\xi}_{\tau})$ is continuous then existence will follow; if it is strictly increasing then uniqueness will follow as well.

¹Department of Mathematical and Statistical Sciences; University of Alberta, Edmonton, Alberta; Canada T6G 2G1. e-mail: doug.wiens@ualberta.ca