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ABSTRACT

We introduce and study a class of rank-based estimators for the linear model. The estimate may
be roughly described as being calculated in the same manner as a generalized M-estimate, but with
the residual being replaced by a function of its signed rank. The influence function can thus be
bounded, both as a function of the residual and as a function of the carriers. Subject to such a
bound, the efficiency at a particular model distribution can be optimized by appropriate choices
of rank scores and carrier weights. Such choices are given, with respect to a variety of optimality
criteria. We compare our estimates with several others, in a Monte Carlo study and on a real data
set from the literature.

RESUME

Nous présentons et étudions une classe d’estimateurs fondés sur le rang pour le modéle linéaire.
Les valeurs estimées peuvent €tre décrites sommairement comme étant calculées de la méme
maniere qu’un M-estimateur généralisé, mais avec le résidu remplacé par une fonction de son rang
avec signe. La fonction d’influence peut ainsi €tre bornée, tant comme fonction du résidu que
comme fonction des porteurs. Avec une telle borne, nous pouvons optimiser 1’efficience pour une
distribution particuliére du modele, en choisissant de fagon appropriée les scores des rangs et les
poids des porteurs. De tels choix sont donnés pour un éventail de critéres d’optimisation. Nous
comparons nos valeurs estimées avec celles de plusieurs autres estimateurs, a I’aide d’une étude
de Monte Carlo et d’un ensemble de données réelles de la littérature.

1. INTRODUCTION AND SUMMARY

Jaeckel (1972) proposed a class of rank-based estimates, robust against heavy-tailed
error distributions, for the linear model

yi=X0,+e, i=1,..,n (1.1)

Efficiency at an ideal distribution and robustness against alternative distributions may be
balanced against each other by appropriate choices of rank scores—see Wang and Wiens
(1992). The estimates, however, are not robust against outlying values of the carriers, as
is evidenced by the fact that the influence function is unbounded as a function of x.
Tableman (1990) studied a class of bounded-influence rank estimates for the model
(1.1). She established asymptotic normality for a one-step version of these estimates, and
implemented an algorithm to calculate the estimates, using Wilcoxon scores.
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In Section 2 of this paper, we define a class of one-step, bounded-influence, rank-
based estimates which is somewhat broader than that considered by Tableman (1990).
This class includes Tableman’s estimates and, as a limiting case, Jaeckel’s estimates.
The influence of the residuals is bounded by appropriate choices of rank scores, and the
influence in the factor space is bounded by placing weights on the carriers.

In Section 3 we choose scores generating functions and weight functions which are op-
timal according to various criteria. In two cases, we minimize the trace of the asymptotic
covariance matrix, subject to a bound on the influence function. We do this first without
prior restrictions on the weights, and find that weights of the Schweppe type are optimal.
We also optimize within the class of Mallows-type weights, since the corresponding
estimator is more robust against asymmetric error distributions. We then specialize to
carriers with spherically symmetric distributions, and are thereby able to extend the above
optimality, in each case, to minimization of the asymptotic covariance matrix itself, with
respect to the ordering by positive definiteness.

In all four of these cases, the distributions of the errors and carriers are held fixed.
In a final case, for Mallows weights, we obtain scores which minimize the maximum
asymptotic covariance matrix, as the distribution of the errors varies over a particular
class of distributions.

In Section 4, using the optimality results of Section 3 as a guide, we implement
two modified versions of the estimator. They may be roughly described as the optimal
estimates under the assumption of spherically distributed carriers, with the following
important difference. Rather than applying weights to the carriers themselves, we apply
them to the transformed carriers

% =S"}(x —m), (1.2)

where S [= S%(Sil)T] and m are the minimum-volume ellipsoid covariance and location
estimates (see Rousseeuw and Leroy 1987). In this respect, our estimators are sim-
ilar to those of Simpson, Ruppert, and Carroll (1992), who study a class of one-step,
bounded-influence M-estimates, starting with an initial estimate with high breakdown
point. Weights are applied to X as at (1.2).

We compare our estimates with several others, in a Monte Carlo study. An application
to a particular data set is considered in Section 5.

2. BOUNDED-INFLUENCE R-ESTIMATION

Let (x;,y;) € RP*!, i = 1,...,n, with empirical distribution function Fp(x,y), be i.i.d.
observations from the model (1.1). For any 0 define

ei=e0)=y,—x]0.
Let R; = R;(0) be the signed rank of e;:
R; = (rank of |e;|) - sign(e;).

Let v(x), w(x) be nonnegative functions, and let y(¢),y(#) be nondecreasing, absolutely
continuous functions of ¢+ € R and u € (—1,1). (If the error distribution is symmetric,
then the optimal choices of y and y turn out to be odd functions of ¢ and u, respectively.)

Define
S.(08)=n"" Z v(X;)y (M) X;. 2.1
i=1

w(X;)
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The estimate ), is defined to be a one-step (of a modified Newton’s method) approxi-

mation to the solution of
S.0)=0 2.2)

starting with a y/n-consistent estimate of 0,. See Section 4 for the computational details.
Special cases:

(1) If w(t) = y,(t), where
W, (#) := max( — r, min(t, r)), r>0, (2.3)

is Huber’s y-function, then (2.1), (2.2) define the estimates of Tableman (1990) for a
particular choice of v(x) = w(x). In her implementations, Tableman takes y(u) = u
(Wilcoxon scores).

2) If y(r) =t, w =v = 1, and the errors are symmetrically distributed, then (2.1)
and (2.2) define estimates which are asymptotically equivalent to those of Jaeckel (1972),
who uses the ranks of the e; themselves.

Assume now that the carriers and errors are independent, with d.f.’s H(x), G(e). Let
F(x,y) be the joint d.f. of x and y = x'0 + e. Define

w(x)

G(e) — G(—
N6(x, €) = vy (Y( (©) — G=e)) )

S0; F) = Er[xng(x, y —x'0)].

Define a functional 0 ( F) by
S(0(F); F)=0.

[The uniqueness of 8 (F) = 0, is shown below.] Then 0 (F,) is an M-estimate, defined

by
0=5@; F)=n") v(x)y (Y(G"(e‘) . G"(_e"))) X

P w(x;)

-1
— ! ZV(Xx)\I’ ( w(x ))/n)) x:.

The arguments of y in (2.1) and (2.4) differ by at most (n + 1)~!. Under appropriate
conditions—see, e.g. Bickel (1975) and Maronna and Yohai (1981)—it follows that é,, and
0 (F,) are \/n-equivalent. Standard theory of M-estimation then yields that 1/n(0, — 0,)
is asymptotically normally distributed, with mean zero and covariance matrix

(2.4)

C=M'QM}, 2.5)

where

Q = Er[xx'ni(x, e)],
M= ‘EF[XXT(-%T]G(X, o)l

For a direct proof of asymptotic normality, see Tableman (1990). See also Coakley and
Hettmansperger (1993).
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The influence function of @ (F) is
IF(x, y) = M~ xng(x, €), 2.6)
withe =y —x'0,.
The uniqueness of @ ( F) is proven in Zhou (1992) under the following conditions:

(1) G is symmetric;

(2) H is absolutely continuous, and the density of H is symmetric in each of its
arguments;

(3) v(x), w(x) are symmetric in each of their arguments.

If the model contains a constant term, then even if G is not symmetric, the bias may be
transferred to the intercept estimate. That is, we have
0(F)=0,+a(1,0,...,0)7
if a satisfies
Er[xng(x, € +a)] = 0. 2.7

For Mallows weights [w(x) = 1], (2.7) is clearly possible. Schweppe weights [w(x) =
v(x)] generally preclude (2.7)—see the discussion in Carroll and Welsh (1988).
3. OPTIMALITY THEORY

In this section, we assume

(A1) The d.f. G(e) is symmetric [so that G(e) — G(—e) = 2G(e) — 1] and strictly
increasing, with finite Fisher information I(G).

By (Al) and Theorem 4.2 of Huber (1981), G has an absolutely continuous density g

such that )
I(G) = / (%(e)) g(e) de < o0,

—00

and g(x) — 0 as x — F00. Define

Eee) = %@),

and assume
(A2) &,(e) is absolutely continuous and nondecreasing.
We will exhibit choices of the functions v, w, 7, and y which are optimal according to
various criteria.
3.1. General Weights.

Recall the form of the asymptotic covariance matrix C at (2.5). We first consider the
problem

(P1) For fixed distributions G and H, choose functions v, w, ¥, ¥ so as to minimize
the trace of C, subject to
sup ||IF(x, y)|| <ec. 3.1
Xy
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It follows from Proposition 2, Section 6.3 of Hampel et al. (1986) that a solution to the
problem will be attained if ng can be put into the form [recall (2.3)]

n6(x, &) = [Ax] . (|AX[E (), (32)
where the matrix A satisfies A = ML

To complete the solution to (P1) we must put M into the form (3.2). This is done by
choosing

1
v(x) = w(x) = ||Ax|| ", V=V, Yu) =&, (G_l (u;— )) . 3.3)

Thus Wilcoxon scores, as used by Tableman (1990), are optimal in this sense if G =

logistic; normal scores )
w-e(53)

are optimal if G = @, the normal d.f. Tableman uses weights v(x) = w(x) different
from those given here, as hers were derived with respect to a bound on self-standardized
sensitivity (Hampel et al. 1986, p. 228).

Under additional assumptions, we can attain a much stronger optimality property and
a precise existence result. In addition to (A1) and (A2), assume

(A3) The distribution of x is spherically symmetric.

A consequence of (A3) is that x/||x|| is distributed independently of ||x|| =: Z. Assume
also

(A4) The functions v, w depend on x only through z.

We shall write v = v(z), w = w(z). Define, for O<u <1,

2u—1
3z, u) = 2v(2)¥ (Y—(u——)) ~
w(z)
Let the r.v. U be uniformly distributed on (0, 1), indepenently of Z. Then from (2.5) and

(2.6),
pE[&(Z, U)]

T {28z V% (GTONE "

p|8(z, G(e))|
E[ZY(Z, U)Eg (G-1(U))1

34

IEGx, y)l| =

We consider the problem
(P2) Minimize C, with respect to the ordering by positive definiteness, subject to (3.1).
Equivalently, we minimize the scalar functional in (3.4). For

P

2 ROEZ] (35)

there is a solution given by

86(z, ) = y, (26,(G™' (w)), (3.6)
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with r > 0 chosen to satisfy (3.1), i.e.

£ = slze (6 W) I{iz8 (6 )| > 1))

(3.7
+ E[r 22 (G W) {|Z&, (G (W) | < r}.
If G = ®, the right-hand side of (3.7) becomes
E(r ' 22{20(r/2) - 1}1. (3.8)

Corresponding to (3.6),

1
w@)=v@)=2z", Y=y, Yw) =§& (G‘1 (u; )) . (3.9

To see that (3.6) and (3.7) give the solution, note that by (3.7), 8¢ satisfies
E(Z8(Z, U (G (U))] = pr/e. (3.10)
Since any & may be divided by an arbitrary positive constant without altering the problem,
it suffices to consider only those §’s satisfying (3.10) and |3| < r. Note that then

E{dzZ, U)—2& (G N = E[8%Z, U)] - % +I(G)E (2%, (3.11)

and so we may instead minimize (3.11). But on each set z&, (G“(u)) € (—o00,—r),
[—r,r], (r,00) the integrand in the left-hand side of (3.11) is minimized pointwise by
d¢.

The existence of r satisfying (3.7) follows from (3.5) and the fact that the right-hand
side of (3.7) varies from 0 to E [|Z&, (G~!(U))] = 2g(0)E [Z] as r varies from oo to 0.

3.2. Mallows Weights.

As at the end of Section 2, our estimator has more favourable robustness properties,
in the presence of asymmetric errors, if Mallows weights are used. In this case (2.1)
depends on Wy and 7y only through their composition. Define

Jw) = y(y(2u—1)), O<u<l;
M, = Exx'vx)], Q, = Exx" ()],
C, =M 'QM; .

The asymptotic covariance matrix then factors as
C=V({, GC,,
where

1
2 / Jz(u) du
VU, G) = E[J (G(e))] _ o

('E [;1‘-16-1(6(6))])2 [ fo IJ(u){:,g (G'(w) du]z.
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Similarly,
M; 'xv(x)J (G(e))

- :
fo J (W& (G~ (w)) du

IFx, y) =

We consider the problem

(P3) Determine J and v to minimize the trace of C, for fixed G and H, subject to
3.1).

By the above, we can choose J and v separately. We first find J; minimizing V(J, G),
subject to
17 (G(@)]
Sup —5
/ JW)ty (G (w)) du
0

We then find v minimizing tr C, subject to

<b. (3.12)

sup ||M;'xv(x)|| < c/b. (3.13)
X

We can find an optimal J for
b> {250}

It is given by
Jo() = v, (& (G w)), (3.14)

with r > 0 chosen to satisfy (3.12), i.e.

1
/0 ¥, & (G (1))E (G™'(w)) du = % (3.15)

If G = ®, (3.14) and (3.15) become

r

Jo) =y, (@ 'w), b

See Wang and Wiens (1992) for details.
Although y and y are not determined uniquely by (3.14), a natural choice is

1
v=vy, Yw=§ (G“ ("; )) (3.17)

Optimal weights v(x), subject to (3.13), may be obtained as in Section 6.3 of Hampel
et al. (1986). They are given, for sufficiently large c, by

_ veps(lBxl)
v(x) ||Bx|| s (3.18)

where B satisfies B = M, .

(@

Under assumption (A3), we can solve
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(P4) Minimize C, with respect to the ordering by positive definiteness, subject to
(3.13).

The solution is given by (3.18) and the condition that B = kI, for some k > 0.
Equivalently,

v(x) = [Ix]| " wesw(Ix), (3.19)
p = kE[||x]lwe/w(||x[D]- (320
Equation (3.19) has a solution k > 0 as long as

c P
- . 3.21
b E(N ©.21)

Equality in (3.21) corresponds to k = oo.

(b)

The function Jg at (3.14) is optimal, subject to (3.1), when only infinitesimal deviations
from the model are allowed. An alternative approach is to seek a minimax solution, i.e.
a solution to the problem

(P5) Determine J to minimize the maximum of V(J, G) as G varies over a given class
of distributions.

Since V(J,G) is identical to the asymptotic variance functional of an R-estimator of
location, the results of Wiens (1990) apply to (P5). In most cases, such applications result
in estimators whose influence functions are bounded as functions of the residuals. They
may then be bounded as functions of the carriers as in (3.18) or (3.19).

In particular, for the class

G(e) = (1 —e)D(e) + eK(e)

of e-contaminated normal distributions, the minimax solution is

_1
Jo(u) =y, (qr‘ (% + ‘; _:)) , (3.22)

€ o(r)

=2 (7).
=g r o
[In (3.22) we take @~ !(r) = %00 if |f| > 1.] See Wang and Wiens (1992) for details of
the solution to (P5) in this and other examples.

Corresponding to (3.22) is

with € and r related by

_ — B! l u
vV =y, Yu) =@ (2+2(1—€)).

4. MONTE CARLO

We adopt the view that the optimality results of Section 3 should serve as guides in
the choice and implementation of estimators, rather than as a set of exact prescriptions.
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In particular, the weight functions should be modified so as to make the corresponding
estimators affine equivariant. We thus propose to apply the weight functions to X, as in
(1.2), rather than to x itself. If the model has a constant term, then it is to be understood
that the first element of x is removed before (1.2) is applied. Here we follow Simpson,
Ruppert, and Carroll (1992), who find in their study of high-breakdown generalized M
-estimates that “the x-dependent weights associated with the GM iteration need to be
based on high breakdown point location and scatter estimates rather than the customary
multivariate M-estimates”.

After the transformation (1.2), we anticipate that the vectors X may resemble a sample
from a spherical distribution. We will thus study estimators similar to the solutions to
the optimality problems (P2) and (P4) of Section 3.

RS3 (“Schweppe weights”): This is the three-step estimate 05, starting with the least-
median-of-squares (LMS) estimate 8 [see Rousseeuw (1984) and Rousseeuw and Leroy
(1987)]. A step-by-step description of the ensuing algorithm is as follows. Suppose for
definiteness that the regression response contains a constant term 0. After the application
of (1.2), the model becomes y = % 70 +¢, where

8-v6 wih U=(_ (;:T)T)

For k = 0,1,2,3 define M; = n~' 3" d;;x;x], where

_ v(x) _12 Y(Rjx/(n+ 1)) 8(y; —X,-Tek)
T ow(x;) w(X;) o(Y (Rjx/(n+1))
and g(-) is a kernel density estimate [see Silverman (1986) and Wegman (1972)] computed

on S-Plus. Let M, and fi,-yk result from replacing x; by X; in these definitions. Note that the
ranks R;x = R;(0) are invariant under the transformations (x,8) — (%,0). The iterates

are now defined by 0. = ék +Mk_l§,,(6k), where S,(0) is given by (2.1) with y = vy 5,
Y() = @ '((u+1)/2), v(x) = w(x) = ||x|~!, and with x replaced by % throughout. The

. . R ~ -l o]
asymptotic covariance matrix C of 03 is estimated by C3 = M; Q;M; , where

., —l ,3/(n+l))
Z {v (x,)\;f (—T) } x,x,..

The covariance matrix C of 05 is then estimated by C; = U 'GUu .

RM3 (“Mallows weights”): This estimate is computed in the same manner as RS3,
but with B
V(%I

wX) =1, v(X) = K]

The rank scores (3.14) are given by

J(u) = 15 (cb—l (‘;“))

Following a suggestion in Tableman (1990), the choices r = 1.5, and ¢/b = 1.6 are
made in order that the average weight

Ri/(n+1 ,.
aver{V(ii)\lfr(Y( 42,; ) )/Y(nli 1) }
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Fiure 1: (@)0 —0p) + (6] — 0;) vs. normal quantiles: 1000 simulated samples.

be about 0.95 in each case.

We compare our estimates RS3 and RM3 with:

T3: The three-step estimate of Tableman (1990), with Wilcoxon scores and tuning

constants as described there.

SRC3: The “Newton-Raphson”, “nonexchangeable” version of the Simpson-Ruppert-
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TABLE 1: Biases and standard deviations of 8¢, 8;.

Bias Standard deviation
0o 0, 6o 6,
Estimate n =20 n =40 n=20 n=40 n=20 n=40 n=20 n=40
B3 0.188 0.021 2.03 0.306 0.518 0.073 2.037 0.384
LMS —0.0015  0.032 —0.0008 —0.0025 0.095 0.141 0.108 0.063
SRC3 —0.0027 —0.00052 —0.0002 0.00031 0.061 0.038 0.120 0.040
T3 0.015 —0.027 0.050 0.0048 0.097 235 0.088 121
RS3 0.0024  0.00079  0.065 0.028 0.068 0.042 0.094 0.050
RM3 0.0056  0.0020 0.089 0.040 0.069 0.042 0.112 0.058

TaBLE 2: Coverage properties of 90% confidence intervals on

90 + 61 .
Coverage Mean width Lower?
Estimate n=20 n=40 n=20 n=40 n=20 n=40

B3 0 2.1 1.50 0.230 100 979
T3 752 326 0291 0.282 216 357
SRC3 84.0 86.4 0.264 0.171 84 6.4
RS3 86.0 912 0336 0.225 134 8.0
RM3 78.2 85.7 0322 0.214 212 13.7
Upper® Estimated s.d°  Sample s.d.4
Estimate n=20 n=40 n=20 n=40 n=20 n=40
B3 0 0 0.457  0.069 0.451 0.255
T3 32 31.7 0.088  0.085 0.120 3.27
SRC3 7.6 72 0.080 0052 - 0.140 0.056
RS3 0.6 0.8 0.102 0.068 0.096 0.059
RM3 0.6 0.6 0097 0.065 0.096 0.059

#Percentage of times that the entire interval lay below 6 + 0;.
bPercentage of times that the entire interval lay above 6 + 6.
cStandard deviation of 8y + 6,, as computed from the asymptotic
covariance matrix.

dSample standard deviation of the 1000 estimates of 8 + ;.

TaBLE 3: Parameter estimates and standard errors for the example of Section 5.

Using the whole data set Excluding observation 5

Variable RS3 RM3 RS3 RM3

AC 0.0184(0.0020) 0.0182(0.0023) 0.0176(0.0011) 0.0178(0.0012)
FR 0.0032(0.0012) 0.0031(0.0011) 0.0026(0.00073) 0.0027(0.00061)
UR 0.148 (0.042) 0.153 (0.0104) 0.168 (0.0228) 0.162 (0.0129)
Other 0.0218(0.0078) 0.0220(0.0070) 0.0244(0.0042) 0.0240(0.0036)
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Carroll estimator, with tuning constants as described in Section 5 of Simpson, Ruppert,
and Carroll (1992).

B3: Bickel’s (1975) three-step Huber estimate, using ¢ = Y 345.

LMS: Least median of squares.

For T3, as with RS3 and RM3, we calculate three-step estimates starting with LMS.
The iteration procedure for T3 is given in Tableman (1990). For SRC3 and B3 three
steps are used, starting with LMS and the minimum-L;-norm estimate, respectively.

We simulated 1000 samples of size n = 20, and 1000 samples of size n = 40. Outlying
observations and high leverages were modelled by sampling from two data structures. In
structure 1, ¥ =2+ 2X +¢, with X ~ N(0, 1) and € ~ 0.9N(0,0 = 0.2) + 0.1IN(0, 1). In
structure 2, X ~ N(10,0.2), Y ~ N(0,0.2). For n = 20, 90% of the observations were
drawn from structure 1, with the remaining 10% drawn from structure 2. For n = 40
these were instead 95% and 5% respectively. The results are shown in Figure 1.

Table 1 gives the biases, and sample standard deviations, of the various estimates.
In Table 2 the coverage properties of nominal 90% confidence intervals on 68y + 0; are
assessed. The intervals are based on the asymptotic normality of the estimates.

From Tables 1 and 2 it can be seen that the proposed estimator RS3 generally
outperforms RM3 and, together with SRC3, is a candidate for the best overall performer.
In turn, RM3 seems preferable to T3 by most measures. The estimate B3, as expected,
fared poorly in the presence of high leverage points. Equally predlctably, LMS fared
very well in this situation. Note that LMS converges only at the rate n™3, to a nonnormal
limit, and so confidence intervals were not constructed from it.

5. AN EXAMPLE

We analyze a data set collected by Haith (1976) relating land use to water quality, and
previously analyzed in Simpson, Ruppert, and Carroll (1992). The data have 20 obser-
vations on five variables: the response nitrogen concentration (N), and four independent
variables representing land use given as a percentage of total land use: active agriculture
(AC), forest, brushland, or plantation (FR), residential (RS), and commercial or indus-
trial (CI). As in Simpson, Ruppert, and Carroll (1992), we put UR = RS + CI and fit the
model N = 0;-Other+0,-AC+0;-FR+80,4-UR+error, where Other = 100— AC—FR—UR.
Observation 5 (the Hackensack River) is a severe design outlier; analyses are presented
both with and without this observation.

The estimates RS3 and RM3 of Section 4 were computed exactly as described there.
For RS3 and RM3 we took r = 3.8 and ¢/b = 5.5. The parameter estimates and their
estimated standard errors are reported in Table 3, and should be compared with those
for SRC3, B3, LMS, and OLS (ordinary least squares) as reported by Simpson, Ruppert,
and Carroll. It is seen that the parameter estimates using RS3 and RM3 are not greatly
influenced by the presence or absence of observation 5. The numbers indicate that the
new rank-based estimates should be routinely considered in robust analyses of possibly
contaminated data, either as competitors or as supplements to the usual M and GM
estimators.
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