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ABSTRACT

We consider the problem of obtaining static (i.e., nonsequential),
approximate optimal designs for a nonlinear regression model with
response E Y jx½ � ¼ expðy0 þ y1xþ � � � þ ykxkÞ. The problem can be
transformed to the design problem for a heteroscedastic polynomial
regression model, where the variance function is of an expo-
nential form with unknown parameters. Under the assumption that
sufficient prior information about these parameters is available,
minimally supported Bayesian D-optimal designs are obtained.
A general procedure for constructing such designs is provided; as
well the analytic forms of these designs are derived for some special
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priors. The theory of canonical moments and the theory of continued
fractions are applied for these purposes.

Key Words: Canonical moments; Continued fractions; Nonlinear
regression.

1. INTRODUCTION

1.1 A design problem for a nonlinear regression model. Consider
the design problem for a nonlinear regression model, in which one
observes, with additive, independent, homoscedastic errors, a response
variable yðxÞ with expected value

gðx; yÞ ¼ expðy0 þ y1xþ � � � þ ykxkÞ; ð1Þ

corresponding to an input variable lying in an interval ½a; b�,
�1 � a < b � 1. The parameters yj are unknown, and are to be
estimated.

We construct optimal designs for model (1), restricting to approxi-
mate designs, that is, discrete probability measures on the design space.
Methods of implementing such approximate designs are discussed in
Pukelsheim (1993, Chapter 12). Given a statistical model, the loss for
choosing the optimal design is usually defined in terms of some scalar-
valued function of the information matrix. Then the optimal design is
the one which optimizes such a criterion among a class of candidate
designs. When the model is nonlinear, the design problem becomes much
harder than that for a linear model because the information matrix
depends on the unknown parameters. In the case that sufficient prior
information is available, one common way to handle this difficulty is
to assume a prior distribution on the parameters, thus to seek Bayesian
optimal designs.

Let x be any design measure. For the nonlinear model (1) the
information matrix of x, whose inverse is proportional to the asymptotic
covariance matrix of the parameter estimates, is given by

Z b

a

@gðx; yÞ
@y

� �
@gðx; yÞ

@y

� �T

dx:

With fkðxÞ ¼ ð1; x; . . . ; xkÞT , this information matrix is the same as
that of a heteroscedastic kth degree polynomial regression model
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with efficiency function expð2fTk ðxÞyÞ; this is since @gðx; yÞ=@y ¼
expðfTk ðxÞyÞfkðxÞ. Thus, designs for (1) can be obtained from those
for a heteroscedastic polynomial regression model.

1.2 A design problem for a heteroscedastic polynomial model. In
this paper, more generally, we assume the polynomial regression model
with

E yðxÞ½ � ¼
Xn
j¼0

bjx
j ; ð2Þ

where x 2 S ¼ ½a; b�, �1 � a < b � 1, and varðyðxÞÞ ¼ l�1
k ðx; yÞ for

the efficiency function lkðx; yÞ ¼ expðfTk ðxÞyÞ. The information matrix
of any design x for the model (2) is given by

Mðx; yÞ ¼
Z
S

fnðxÞfTn ðxÞlkðx; yÞx dxð Þ;

which depends on the unknown parameter vector y. When the efficiency
function is independent of x the information matrix is proportional to

M0 ¼
Z
S

fnðxÞfTn ðxÞx dxð Þ:

Given any prior distribution pðyÞ of y on the parameter space
Y ¼ Rkþ1, a Bayesian optimal design is the one maximizing

CðxÞ ¼
Z
Y
log jMðx; yÞj dpðyÞ ð3Þ

among all designs x. If pðyÞ places unit mass on some known vector y�,
this reduces to the D-optimality criterion for weighted polynomial
regression with a specified weight function. See Chaloner and Verdinelli
(1995), Chaloner and Clyde (1996) for further discussion about the
motivation of this criterion.

Bayesian optimal designs for different nonlinear models (for
example, exponential growth models) are addressed in Chaloner (1993),
Mukhopadhyay and Haines (1995), Dette and Neugebauer (1996,
1997), Dette and Wong (1996, 1998) and others. Alternative methods
to construct optimal designs for nonlinear models are also available
in the literature. One of them is to adopt a maximin approach, which
maximizes, over designs x, the minimum of the determinant of the
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information matrix over y 2 Y. Imhof (2001) obtains maximin D-optimal
designs for different models. See Sinha and Wiens (2002) for robustness
aspects of this problem.

2. PRELIMINARIES

We briefly review the concepts and some basic properties of the
canonical moments of a probability measure. These will be utilized in
Sec. 3 for constructing Bayesian optimal designs. We adopt notation as
in Dette and Studden (1997), henceforth referred to as DS. For an
arbitrary probability measure x with support S, let cj ¼

R
S x

jxðdxÞ,
j ¼ 0; 1; . . ., be the ordinary moments of x. Denote by cþj (c�j ) the
maximum (minimum) value of cj, given c0; . . . ; cj�1. Then the canonical
moments are defined as pj ¼ ðcj � c�j Þ=ðcþj � c�j Þ; j ¼ 1; 2; . . . ; whenever
c�j < cþj . The correspondence between sequences fcjgj�1 and fpjgj�1 is
one-to-one. A probability measure x has finite support if and only if
the corresponding sequence of canonical moments terminates, that is,
pn ¼ 0 or 1 for some integer n.

For any x, with canonical moments p1; p2; . . . ; set qj ¼ 1� pj and
z0 ¼ 1; z1 ¼ p1; zj ¼ qj�1pj ; j � 2. Then (DS, p. 149)

jM0ðxÞj ¼ ðb� aÞnðnþ1ÞYn
j¼1

ðz2j�1z2jÞn�jþ1: ð4Þ

The Stieltjes transform of x on S ¼ ½a; b� has the continued fraction
expansion (DS, p. 89)

Z
S

xðdxÞ
z� x

¼ 1 j
jz� a

� z1ðb� aÞj
j 1

� z2ðb� aÞj
j z� a

� � � �

¼ 1

z� a� z1ðb�aÞ
1�z2ðb�aÞ

z�a����

; ð5Þ

for any z 2 CnS, where C denotes the complex plane. If x has finite
support, with support points fx1; . . . ; xnþ1g, then z2nþ1z2n ¼ 0 (see for
example Theorem 2.2.3 of DS). Then the above expansion has at most
2nþ 2 terms and can be expressed as the ratio of two polynomials. The
support points of x coincide with the zeros of the polynomial in the
denominator of this ratio. Furthermore, if Dnþ1ðzÞ is the polynomial in
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the denominator, then we can write

Dnþ1ðzÞ ¼

z� a �1 0 � � � 0 0

�z1ðb� aÞ 1 �1 � � � 0 0

0 �z2ðb� aÞ z� a � � � 0 0

..

. ..
. . .

. ..
. ..

.

0 0 0 � � � z� a �1

0 0 0 � � � �z2nþ1ðb� aÞ 1

���������������

���������������

¼ znþ1 � nþ 1ð Þaþ
X2nþ1

j¼1

zjðb� aÞ
" #

zn

þ
"
nðnþ 1Þ

2
a2 þ naðb� aÞ:

�
X2nþ1

j¼1

zj þ ðb� aÞ2
X2nþ1

i<j

zizj �
X2n
j¼1

zjzjþ1

 !#
zn�1 þ � � � :

Thus, in light of Newton’s identities relating the zeros and the coefficients
of a polynomial (MacDuffee 1962, Theorem 48), we have the equations

Xnþ1

i¼1

xi ¼ nþ 1ð Þaþ
X2nþ1

j¼1

zjðb� aÞ; ð6Þ

Xnþ1

i¼1

x2i ¼ nþ 1ð Þa2 þ 2aðb� aÞ
X2nþ1

j¼1

zj

þ ðb� aÞ2
 X2nþ1

j¼1

z2j þ 2
X2n
j¼1

zjzjþ1

!
: ð7Þ

3. BAYESIAN D-OPTIMAL DESIGNS

Assume the model (2) and a prior distribution pðyÞ on y. We seek the
Bayesian optimal design, which maximizes the criterion CðxÞ given in (3).
In order that the regression parameters fb0; b1; . . . ; bng be estimable, a
design x must have at least nþ 1 support points. To reduce the algebraic
complexity, while maintaining adequate generality for most applications,
we assume k ¼ 2.
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There is no restriction on the number of observations to be collected.
However, the number of levels of x will be restricted to nþ 1. This is
motivated by the following property, which as pointed out by Dette
and Wong (1998) can be established by an argument similar to that in
Theorem 5.1, Karlin and Studden (1966).

Property 1. If the prior pðyÞ places unit mass at y� 2 Y, then the
Bayesian D-optimal design has nþ 1 support points.

Denote by Xnþ1 the class of all designs with nþ 1 support points.
In this paper, we construct Bayesian D-optimal designs within Xnþ1 for
any given pðyÞ.

For any x 2 Xnþ1, with design points fx1; . . . ; xnþ1g, let F be
the square matrix with ith row being ð1; xi; . . . ; xni Þ, i ¼ 1; 2; . . . ; nþ 1.
Then, by Corollary 1 in Fedorov (1972, p. 84), we have

jMðx; yÞj ¼
Ynþ1

i¼1

xðxiÞ
( ) Ynþ1

i¼1

l2ðxi; yÞ
( )

jF j2: ð8Þ

From this it follows that the Bayesian D-optimal design within Xnþ1

concentrates equal mass on each of its support points, that is,
xðxiÞ ¼ 1=ðnþ 1Þ for i ¼ 1; 2; . . . ; nþ 1.

The following theorem shows that the Bayesian D-optimal design
within Xnþ1 depends only on the first marginal moments of pðyÞ. Denote
these by Ei ¼

R
Y yi dpðyÞ for i ¼ 0; 1; 2.

Theorem 1. Assume the model (2) and any prior pðyÞ. Let q�1 ¼ 0 and
q0 ¼ 1.

(I) If E2 < 0 and E1 þ 2aE2 � 0 then the Bayesian D-optimal design
within Xnþ1 has canonical moment p�2nþ1 ¼ 0, and

(CM1) Canonical moments p�1; . . . ; p
�
2n 2 ð0; 1Þ determined by

the 2n equations

n� jþ1

p2j�1q2j�2
¼�ðb�aÞðE1þ2aE2Þ�2ðb�aÞ2

�E2½q2j�3p2j�2þq2j�2p2j�1þq2j�1p2j�;
j¼n;...;1; ð9Þ
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n� j þ 1

p2jq2j�1
¼ �ðb� aÞðE1 þ 2aE2Þ � 2ðb� aÞ2

� E2½q2j�2p2j�1 þ q2j�1p2j þ q2jp2jþ1�;
j ¼ n; . . . ; 1; ð10Þ

if the system has a solution in the interior of ½0; 1�2n.
Otherwise,

(CM2) Canonical moments p�1; . . . ; p
�
2n�1 2 ð0; 1Þ, p�2n ¼ 1

determined by the 2n� 1 equations

n� jþ1

p2j�1
� n� jþ 1

q2j�1

¼�ðb� aÞðE1þ 2aE2Þðq2j�2� p2jÞ
� 2ðb� aÞ2E2½q22j�2p2j�1� q2j�1p

2
2j þ q2j�3p2j�2q2j�2

þ q2j�2ðq2j�1� p2j�1Þp2j � p2jq2jp2jþ1�;
j¼ n;n� 1; . . . ;1; ð11Þ

n� j þ 1

p2j
� n� j

q2j

¼ �ðb� aÞðE1 þ 2aE2Þðq2j�1 � p2jþ1Þ
� 2ðb� aÞ2E2½q22j�1p2j � q2jp

2
2jþ1 þ q2j�2p2j�1q2j�1

þ q2j�1ðq2j � p2jÞp2jþ1

� p2jþ1q2jþ1p2jþ2�;
j ¼ n� 1; . . . ; 1: ð12Þ

(II) If E2 � 0 and E1 þ 2aE2 > 0, then the Bayesian D-optimal
design within Xnþ1 has canonical moments p�2nþ1 ¼ 1, and

(CM3) Canonical moments p�1; . . . ; p
�
2n 2 ð0; 1Þ determined by

the 2n equations

n� j þ 1

p2jp2j�1
¼ ðb� aÞðE1 þ 2aE2Þ þ 2ðb� aÞ2

� E2½p2j�2q2j�1 þ p2j�1q2j � q2jq2jþ1�;
j ¼ n; . . . ; 2; 1; ð13Þ
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n� j þ 1

q2j�1q2j�2
¼ ðb� aÞðE1 þ 2aE2Þ þ 2ðb� aÞ2

E2½p2j�2q2j�1 þ p2j�1q2j � p2j�3p2j�2�;
j ¼ n; . . . ; 2; 1; ð14Þ

if the system has a solution in the interior of ½0; 1�2n.
Otherwise,

(CM4) Canonical moments p�1; . . . ; p
�
2n�1 2 ð0; 1Þ, p�2n ¼ 1,

determined by (11), (12).

Proof. From Eqs. (4), (8), if x 2 Xnþ1, we have

jMðx; yÞj ¼
Ynþ1

i¼1

l2ðxi; yÞ
 !

jM0ðxÞj

¼ ðb� aÞnðnþ1Þ exp ðnþ 1Þy0 þ y1
Xnþ1

i¼1

xi þ y2
Xnþ1

i¼1

x2i

 !

�
Yn
j¼1

ðz2j�1z2jÞn�jþ1:

Then, in light of (6) and (7),

CðxÞ ¼ d þ
Xn
j¼1

ðn� j þ 1Þ logðq2j�2p2j�1q2j�1p2jÞ

þ ðb� aÞðE1 þ 2aE2Þ
X2nþ1

j¼1

qj�1pj

þ ðb� aÞ2E2

X2nþ1

j¼1

ðqj�1pjÞ2 þ 2
X2n
j¼1

ðqj�1pjqjpjþ1Þ
" #

is a function of ð p1; . . . ; p2nþ1Þ, where d ¼ ðnþ 1Þðn logðb� aÞ
þE0 þ aE1 þ a2E2Þ does not depend on x. To see the existence of
the Bayesian D-optimal design within Xnþ1, consider the problem of
maximizing CðxÞ over ð p1; . . . ; p2nþ1Þ. Since the objective function is a
continuous function on the compact space ½0; 1�2nþ1, there are solutions
to this problem. Let ð p�1; . . . ; p�2n; p�2nþ1Þ be one solution. It is obvious
that 0 < p�i < 1 for i ¼ 1; . . . ; 2n� 1 and p�2n 6¼ 0 since otherwise
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Cðx�Þ ¼ �1. So the design x� corresponding to ð p�1; . . . ; p�2n; p�2nþ1; 0Þ
must have nþ 1 support points.

(I) When E2 < 0 and E1 þ 2aE2 � 0, it is obvious that p�2nþ1 ¼ 0.
Assume p�2n < 1. By differentiating the objective function with respect
to pi; i ¼ 1; . . . ; 2n, we have that ð p�1; . . . ; p�2nÞ is the solution set to the
system consisting of the equations

1

p2nq2n�1
¼ �ðb� aÞðE1 þ aE2Þ

� 2ðb� aÞ2E2 q2n�2p2n�1 þ q2n�1p2n½ �; ð15Þ
and (11), (12). Similar to the arguments in Dette and Wong (1998), we
obtain the system stated in (CM1) by sequentially inserting (15) into
(11), the resulting equation into (12), and so on.

If p�2n ¼ 1, then by differentiating the objective function with respect
to p1; . . . ; p2n�1, we obtain the system stated in (CM2). So ð p�1; . . . ; p�n�1Þ is
the solution set to this system.

(II) It is easy to see that p�2nþ1 ¼ 1 under the assumed conditions.
Equations (13) and (14) are obtained by arguments similar to those used
to establish (CM1). &

Remarks. 1. From the examples presented next, we observe that for
the case in Theorem 1(I), given E2, there exist a function gðE2Þ, such
that if E1 < g1ðE2Þ then the canonical moments of the Bayesian D-
optimal design within Xnþ1 can be found by solving the system in
(CM1) of Theorem 1. Otherwise, they are solutions to the system in
(CM2). In fact, from the last equation in (CM1), one can see that
p�2n < 1 is equivalent to

E1 < � 1

q�2n�1ðb� aÞ þ 2E2 ðb� aÞðq�2n�1 þ q�2n�2p
�
2n�1Þ þ a

� �� �
;

which partially verifies the observation. The explicit expression for
gðE2Þ remains outstanding except for the simplest case when n ¼ 1 (see
Example 1). Similarly, for the case in Theorem 1(II), given E2, there exists
a function g2ðE2Þ, such that if E1 > g2ðE2Þ then the canonical moments of
the Bayesian D-optimal design within Xnþ1 can be found by solving
the system in (CM3) of Theorem 1. Otherwise, they are solutions to
the system in (CM2).

2. The above theorem considers only the cases when E1 þ aE2 and
E2 have the same sign. If E1 þ aE2 � 0 and E2 > 0, then p�2nþ1 ¼ 0 or 1.
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Other canonical moments can be found by (I) if p�2nþ1 ¼ 0 or (II) if
p�2nþ1 ¼ 1. When E1 þ aE2 � 0 and E2 < 0, there exists the case that
p�2nþ1 2 ð0; 1Þ. Note that if p�2n; p

�
2nþ1 2 ð0; 1Þ, the design x� corresponding

to canonical moments ð p�1; . . . ; p�2nþ1; 0Þ is minimally supported. Further-
more, these canonical moments can be obtained by (9), (10) and

ðE1 þ 2aE2Þ þ 2ðb� aÞE2½q2np2nþ1 þ q2n�1p2n� ¼ 0:

3. It is easy to solve the equations in the theorem by using the
built-in functions NSolve or FindRoot in Mathematica. With terminating
sequences of canonical moments of a design, there are standard methods
to locate the support points of the design. See, for example, Theorem
3.6.1 in DS, which states that if a design x has nþ 1 support points
and canonical moments pj and zj, j � 1, then these support points are
zeros of a polynomial Wnþ1ðxÞ, defined by the recursive formula

Wjþ1ðxÞ ¼ ðx� a� ðb� aÞðz2j þ z2jþ1ÞÞ
�WjðxÞ � ðb� aÞ2z2j�1z2jWj�1; j ¼ 0; 1; 2; . . . ; ð16Þ

with z0 ¼ 0 and W�1ðxÞ � 0;W0ðxÞ � 1.

Example 1. Simple linear heteroscedastic regression models. Let n ¼ 1.
We assume that E1 þ 2aE2 � 0 and E2 � 0 (other cases can be addressed
in the same manner). Then p�3 ¼ 0. Simple algebraic operations show that
if E1 < �ð2=ðb� aÞ þ 2bE2Þ, we have (from Theorem 1(I))

p�1 ¼
�ðE1þ2aE2Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE1þ2aE2Þ2�16E2

p
8ðb�aÞE2

; when E2 < 0,

� 1
ðb�aÞE1

; when E2 ¼ 0,

8<
:

p�2 ¼
p�1

1� p�1
:

Otherwise, we have (from Theorem 1(II))

p�1 ¼
1

2
; p�2 ¼ 1:

Thus, we have z�1 ¼ p�1 ¼ z�2; z�3 ¼ 0. So (16) gives

W2ðxÞ ¼ ðx� a� ðb� aÞp�1Þ2 � ðb� aÞ2ð p�1Þ2
¼ ðx� aÞðx� a� 2ðb� aÞp�1Þ:
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This implies that the Bayesian D-optimal design within X2 for the
simple linear heteroscedastic regression model puts equal mass on each
of two points

x�1 ¼ a; x�2 ¼ aþ 2ðb� aÞp�1:

One can see that when p�1 ¼ 1=2, then x�1 ¼ a; x�2 ¼ b. Thus, if the prior
has first moments E1;E2 such that �ð2=ðb� aÞ þ 2bE2Þ � E1 < �2bE2

and E2 � 0, the Bayesian D-optimal design within X2 for the linear
heteroscedastic regression model puts equal mass on each of the two
end-points of the design interval, which concurs with the D-optimal
design for the simple linear regression model.

Example 2. Quadratic heteroscedastic regression model. Let n ¼ 2.
For simplicity, we take a ¼ 0; b ¼ 1. If E1 < 0;E2 < 0, then p�5 ¼ 0.
The top part of Table 1 lists the canonical moments and corresponding
design points of Bayesian D-optimal designs within X3 for some negative
E1;E2. We observe that given E2, if E1 is small, the vector ð p�1; p�2; p�3; p�4Þ

Table 1. Some numerical examples of the Bayesian D-optimal designs within X3

for the quadratic heteroscedastic model.

E2 E1 ðp�1; p�2; p�3; p�4Þ ðx�1; x�2; x�3Þa

�0:25 �10 ð0:196; 0:243; 0:130; 0:114Þ ð0; 0:125; 0:463Þ
�4:3 ð0:424; 0:719; 0:754; 0:902Þ ð0; 0:277; 0:995Þ
�4:2 ð0:427; 0:725; 0:775; 1Þ ð0; 0:281; 1Þ
�0:05 ð0:494; 0:667; 0:524; 1Þ ð0; 0:482; 1Þ

�1 �10 ð0:186; 0:225; 0:120; 0:110Þ ð0; 0:121; 0:438Þ
�3 ð0:430; 0:692; 0:688; 0:814Þ ð0; 0:305; 0:985Þ
�2:9 ð0:437; 0:710; 0:740; 1Þ ð0; 0:311; 1Þ
�0:05 ð0:481; 0:671; 0:577; 1Þ ð0; 0:442; 1Þ

0:25 10 ð0:806; 0:242; 0:872; 0:110Þ ð0:540; 0:878; 1Þ
4:7 ð0:581; 0:736; 0:207; 0:965Þ ð0:001; 0:743; 1Þ
4:6 ð0:580; 0:736; 0:204; 1Þ ð0; 0:739; 1Þ
0:05 ð0:506; 0:667; 0:474; 1Þ ð0; 0:519; 1Þ

1 15 ð0:879; 0:139; 0:930; 0:064Þ ð0:713; 0:924; 1Þ
4:6 ð0:591; 0:754; 0:181; 0:961Þ ð0:002; 0:771; 1Þ
4:5 ð0:590; 0:755; 0:173; 1Þ ð0; 0:769; 1Þ
0:05 ð0:524; 0:673; 0:403; 1Þ ð0; 0:573; 1Þ

aDesigns place mass 1=3 at each point x�i .
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of canonical moments is the solution of the system in (CM1) of Theorem 1
and the support points of the Bayesian D-optimal design x� within X3

includes only one (left) end point of the design interval, otherwise, it is
the solution of the system in (CM2) of Theorem 1 and the support points
of x� include the two end points.

If E1 > 0; E2 > 0, then p�5 ¼ 1. The lower part of Table 1 lists
the canonical moments and corresponding design points of Bayesian
D-optimal designs within X3 for some positive E1;E2. We have similar
observation as in the case when E1 < 0;E2 < 0, except that the designs
for large E1 include the right end point of the interval.

For a general prior pðyÞ, Theorem 1 only enables us to find the
minimally supported Bayesian D-optimal design numerically for the
heteroscedastic polynomial model of degree n ð>1Þ. However, for some
special priors, it is possible to obtain the analytical forms of the designs.
Dette and Wong (1998) consider the special case when E2 ¼ 0 and the
design space S ¼ ½0; b� and prove that the Bayesian D-optimal design
within Xnþ1 puts equal mass at the zeros of the polynomial xL

ð1Þ
n ðxE1Þ,

where L
ð1Þ
n ðxÞ is the Laguerre polynomial of degree n.

In the following theorem, we consider the special case when
E1 ¼ 0 and b ¼ �a > 0. By (8), we see that for any x 2 Xnþ1, CðxÞ is
the same as that for the model (2) with the efficiency function
l2ðx; yÞ ¼ expðy0 þ y2x2Þ. If ~xxðxÞ ¼ xð�xÞ for a design x, then it is
straightforward to show that jMðx; yÞj ¼ jMð~xx; yÞj. Hence, the convexity
of the criterion ensures that we can assume x to be symmetric.

Denote by HnðxÞ the Hermite polynomial of degree n, defined by the
recursive formula

HnðxÞ ¼ 2xHn�1ðxÞ � 2ðn� 1ÞHn�2ðxÞ; n ¼ 1; 2; 3; . . . ;

with H�1ðxÞ ¼ 0; H0ðxÞ ¼ 1. See Szegö (1959) for detailed properties of
these polynomials. Denote by r

ðnÞ
max the maximum zero of HnðxÞ.

Theorem 2. Assume the model (2) with the design space S ¼ ½�b; b� and
any prior pðyÞ with E1 ¼ 0.

ðM1Þ If E2 � �ðrðnþ1Þ
max =bÞ2, then the Bayesian D-optimal design

within Xnþ1 puts equal mass on each of the zeros of the Hermite
polynomial Hnþ1ð

ffiffiffiffiffiffiffiffijE2j
p

xÞ.
ðM2Þ If E2 > �ðrðnþ1Þ

max =bÞ2, then the Bayesian D-optimal design
within Xnþ1 has canonical moments p�2j�1 ¼ 1=2; j ¼ 1; . . . ; n,
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p�2n ¼ 1, and p�2; . . . ; p
�
2n�2 2 ð0; 1Þ consisting of the solution set

of the system

n� jþ 1

p2j
� n� j

q2j
þ 2b2E2ðq2j�2 � p2jþ2Þ ¼ 0; j ¼ 1;2; . . . ;n� 1;

ð17Þ

with q0 ¼ 1.

Proof. For any symmetric design x 2 Xnþ1, with design points
fx1; . . . ; xnþ1g and canonical moments f p1; . . . ; p2nþ1g, we have p2j�1 ¼
1=2 (Corollary 1.3.4 of DS), thus z2j þ z2jþ1 ¼ 1=2; j ¼ 1; . . . ; n. This,
(6)—note that

Pnþ1
j¼1 xj ¼ 0—and (7) imply that

Xnþ1

j¼1

x2j ¼ ðnþ 1Þb2 þ 2ð�bÞðnþ 1Þb

þ 4b2 z21 þ
Xn
j¼1

ðz2j þ z2jþ1Þ2 þ 2
Xn
j¼1

z2j�1z2j

" #

¼ 8b2
Xn
j¼1

z2j�1z2j ¼ 2b2
Xn
j¼1

q2j�2p2j :

Therefore, the objective function of the maximization problem becomes

CðxÞ ¼ d1 þ
Xn
j¼1

ðn� j þ 1Þ logðq2j�2p2jÞ þ 2b2E2

Xn
j¼1

ðq2j�2p2jÞ;

a function of p2; . . . ; p2nf g in which d1 ¼ ðnþ 1Þðn log b� E0Þ does not
depend on the design. As in the proof of Theorem 1, one finds that
CðxÞ has a maximizer, say, ð p�2; . . . ; p�2nÞ, with p�2j2ð0; 1Þ; j¼1; . . . ; n� 1,
and p�2n 6¼ 0. The design x� corresponding to these canonical moments
is the Bayesian D-optimal design within Xnþ1.

We claim that p�2n must be 1 if 0 > E2 > �ðrðnþ1Þ
max =bÞ2 (it is obviously

true when E2 > 0). If p�2n < 1, differentiating CðxÞ with respect to
p2j; j ¼ 1; . . . ; n, equating these to 0 and solving the resulting system
yields

q�2j�2p
�
2j ¼ � n� j þ 1

2b2E2
; j ¼ 1; . . . ; n;
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with q�0 ¼ 1. Thus, the Stieltjes transform of x� has expansion (by the even
contraction of the continued fraction in (5))

Z b

�b

x�ðdxÞ
z� x

¼ 1 j
j z

� z�1z
�
24b

2j
j z

� z�3z
�
44b

2j
j z

� � � � � z�2n�1z
�
2n4b

2j
j z

¼ 1 j
j z þ

n=ð2E2Þj
j z

þ ðn� 1Þ=ð2E2Þj
j z

þ � � � þ 1=ð2E2Þj
j z

:

Then, the support points of x� are the zeros of the polynomial

Bnþ1ðzÞ ¼

z �1 0 0 � � � 0 0 0
n

2E2
z �1 0 � � � 0 0 0

0 n�1
2E2

z �1 � � � 0 0 0

..

. ..
. ..

. ..
. . .

. ..
. ..

. ..
.

0 0 0 0 � � � 2
2E2

z �1

0 0 0 0 � � � 0 1
2E2

z

����������������

����������������

:

These polynomials fBnðxÞgn�1 satisfy the recursive formula

Bnþ1ðzÞ ¼ zBnðzÞ þ n

2E2
Bn�1ðzÞ;

¼ zBnðzÞ � n

2jE2jBn�1ðzÞ; n ¼ 1; 2; . . . ;

with B1ðzÞ ¼ z; B0ðzÞ ¼ 1. Define Hnð
ffiffiffiffiffiffiffiffijE2j

p
zÞ ¼ 2njE2jn=2BnðzÞ. Then,

we have

Hnþ1

� ffiffiffiffiffiffiffiffi
jE2j

p
z
� ¼ 2

ffiffiffiffiffiffiffiffi
jE2j

p
zHn

� ffiffiffiffiffiffiffiffi
jE2j

p
z
�� 2nHn�1

� ffiffiffiffiffiffiffiffi
jE2j

p
z
�
;

n ¼ 1; 2; . . . ;

with H1ð
ffiffiffiffiffiffiffiffijE2j

p
zÞ ¼ 2

ffiffiffiffiffiffiffiffijE2j
p

z; H0ð
ffiffiffiffiffiffiffiffijE2j

p
zÞ ¼ 1. Thus Hnþ1ð

ffiffiffiffiffiffiffiffijE2j
p

zÞ must
be the Hermite polynomial of degree nþ 1 and its zeros concur with the
support of x�. Since the design space S ¼ ½�b; b�, we conclude that
E2 � �ðrðnþ1Þ

max =bÞ2. This is a contradiction and so proves the claim. Thus,
under the condition in (II), canonical moments ð p�2; . . . ; p�2n�2Þ is the
solution set to the system obtained by differentiatingCðxÞjp2n¼1

with respect
to p2j; j ¼ 1; . . . ; n� 1, which is the system in (M2). &

We present some numerical examples of Bayesian D-optimal designs
within Xnþ1 in Table 2. Here, we only consider the case when E2 < 0
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(the case when E2 > 0 is very similar). When jE2j is small, the design
points include 	1 and are obtained by calculating the zeros of the poly-
nomial in (16) (case (M2) of Theorem 2). &

4. CASE STUDY

In modelling allometric growth curves, attention focuses on
applications in which the ratio between increments in, typically biologi-
cal, structures remains approximately constant. A log–log transformation
may then yield a linear relationship between mean logged response and
logged regressor, at the cost of destroying the original additive error
structure. See Griffiths and Sandland (1984) for a discussion. Prange
et al. (1979), in an experiment described also in Sokal and Rohlf (1995,
p. 553), study the relationship between body mass (Y ) and skeletal mass
(Z) for both birds and mammals. Since the animal must be destroyed in
the experiment, an efficient design is called for. For the birds, previous
data indicate that logE Y½ � and X ¼ logZ are linearly related over
x 2 ½a; b� ¼ ½�5; 3�, with intercept y0 
 0 and slope y1 
 1. We thus take
E0 ¼ 0, E1 ¼ 1 and E2 ¼ 0. The preceding theory (Theorem 1(II)) applies
and shows that the canonical moments p�1; p

�
2 of the Bayesian D-optimal

design x� within X2 are the solutions to

1

p2p1
¼ 8;

1

q1
¼ 8:

Table 2. The maximum zeros of Hermite polynomials and the support points of
Bayesian D-optimal designs within Xnþ1, with S ¼ ½�1; 1�.
n r

ðnþ1Þ
max E2 ðx�1; . . . ; x�nþ1Þ

1
ffiffiffi
2

p
=2 �1 ð� ffiffiffi

2
p

=2;
ffiffiffi
2

p
=2Þ

�0:4� ð�1; 1Þ
2 3=2 �3 ð�1=2; 0; 1=2Þ

�2� ð�1; 0; 1Þ
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3þ ffiffiffi

6
p Þ=2

q
�3 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3þ ffiffiffi

6
p Þ=6

q
;	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� ffiffiffi

6
p Þ=6

q
�1 ð�1;	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7� ffiffiffiffiffi

41
pp

=2; 1Þ
�0:5 ð�1;	 3� 2

ffiffiffi
2

p� �
; 1Þ

Note: The designs remain unchanged when the values of E2 with a ‘‘�’’ change,
as long as b

ffiffiffiffiffiffiffiffijE2j
p

< r
ðnþ1Þ
max .
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Thus p�1 ¼ 7=8; p�2 ¼ 1=7. By (16), we have that the Bayesian D-optimal
design within X2 is x�ð1Þ ¼ 1=2 ¼ x�ð3Þ. The practical interpretation
is that half of the animals are to be chosen with log skeletal mass as
close as possible to x ¼ 1, with the other half being as close as possible
to x ¼ 3.

How does such a design compare with more ad hoc designs?
To answer this we have computed values of the efficiency function
CðxÞ for x� and for three other designs: x1 ¼ 1

2 ðd�5 þ d3Þ (the classical
D-optimal design), x2 ¼ 1

3 ðd�5 þ d�1 þ d3Þ (the uniform design with three
equally spaced support points) and x3 ¼ 1

4 ðd�5 þ d�7=3 þ d1=3 þ d3Þ
(the uniform design with four equally spaced support points). The prior
distributions considered all have E0 ¼ 0, E1 ¼ 1 and E2 ¼ 0, and are
p1ðyÞ ¼ 1

2 ðdð0;0:2;0Þ þ dð0;1:8;0ÞÞ, p2ðyÞ ¼ 1
3 ðdð0;0:2;0Þ þ dð0;1;0Þ þ dð0;1:8;0ÞÞ, and

p3ðyÞ ¼ 1
5 ðdð0;0:2;0Þ þ dð0;0:5;0Þ þ dð0;1;0Þ þ dð0;1:5;0Þ þ dð0;1:8;0ÞÞ. The efficien-

cies are exhibited in Table 3, and reveal the substantial savings in
resources to be realized by the optimal design.

Table 3. Comparative values of the efficiency function for various designs.

Prior

p1ðyÞ p2ðyÞ p3ðyÞ

x� 4 4 4
x1 0:773 0:773 0:773
x2 3:126 2:966 2:901
x3 3:561 3:309 3:217

Table 4. Some examples of the Bayesian D-optimal designs within X3 when E2 is
small and positive.

E2 ð p�1; p�2; p�3; p�4Þ ðx�1; x�2; x�3Þa CðxÞ

0:01 ð0:744; 0:351; 0:803; 0:153Þ ð�1:879; 1:740; 3Þ 2:829
0:04 ð0:699; 0:486; 0:715; 0:163Þ ð�2:974; 1:708; 3Þ 3:958
0:045 ð0:616; 0:772; 0:236; 0:499Þ ð�4:839; 1:626; 3Þ 3:976
0:046 ð0:609; 0:800; 0:118; 1Þ ð�5; 1:622; 3Þ 3:978
0:05 ð0:610; 0:802; 0:116; 1Þ ð�5; 1:634; 3Þ 3:978
0:1 ð0:616; 0:819; 0:100; 1Þ ð�5; 1:790; 3Þ 3:969

aDesigns place mass 1=3 at each point x�i .
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The experimenter may well wish for the protection of a three-point
design such as x2. Such a design, which allows for the fitting of a quad-
ratic response or the testing of the fit of a linear response, is obtained if we
take k ¼ n ¼ 2 in Theorem 1. With E0 ¼ 0, E1 ¼ 1 as above, but various
non-zero values of E2, we obtain the designs in Table 4. The efficiencies
under the prior p2ðyÞ are also given. We note that for E2 � 0:04, the three
point designs are very nearly as efficient as x�.
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