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Abstract 

The contents of this dissertation may be divided into tw-O cases. In Chapters 

2 and 3 ive constriict robiist designs for pol-nomial regression functions that  

ni- be contaminateci by higher degree polynomials. T h e  contaminating space is 

denotecl by F. In this setting we find minimas designs with a minimal niimber 

of support points. Siicti designs m- not have enough support points to fit the  

niodels ügainst which o u  wish to protect. CVe provide some guidelines to the  

esperinienter who looks for good clesigns that also protect against the alternat ive 

niodel. 

In C'tiapter -1 we consider approsimately polynomial regression models u-here 

the  t r ~ w  mode1 is unspecified. The iinspecified contaminating spüce is an Li-trpe 

space and denoted by f i .  For siich problems. Wiens ( 1990. 1992) estends Hu- 

ber ( 1975)'s m i n i m a  approasti to simple Iinear regression as well as to bivariate 

lincar regressiori. Al t tioiigh C\'iensss m i n i m a  approach is not so s t raigh t foriviird 

to estenci to liigher clegree p o l ~ o m i û l  regression functions. we constriict a mini- 

m a s  design for an approsiniately quaciratic polynoniial regression model withoiit 

constant terni. For higher clegree polynomial models we rcst rirt to densit ies t ha t  

are easy to work with and constriict optinial designs. C i e  compare t hese optimal 

c l ~ i g n s  to the niininiax clesigns t hat are coristri<cted by \Viens ( 1990) and to 

the optimal cksigns for a n  approsimately quadratic regression model wi t lioilt 

constant tenn. 
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Convent ions: 

With the exception ol  the introduction and chapter 4. in our thesis the in- 

dependent variable x for the regression probleni assumes values anywhere in the 

interval [-112. 1/21. For a- choice of design points (x,),~, in this interval. the 

corresponding design meastire is defineû as (lin) x:=, d;,. However. our loss 

lunctions and optimization problem extend in a natural way to arbitrary distri- 

btit ions on [- L /2. 1/21. and so we define a design meusure to be a- probabilitj- 

nieasiire < over [- 1/2. L/2]. O i u  point of view is that t tie design is only a g~ i ide  

as to the placement and relative frequency of the design points. In practice. any 

design f will have to be approximated by an implementable design of t h e  type 

( l / n )  x:=, &, . via randomization for esample. An important result of otir con- 

vention is ttiut the n~imber of observations n und the design are independent. 

and so n m e  be treated as a constant in the minimization over 6. 

Notation: 

1. u'nless ottierwise noteci. IL and E denotc arbitra- probability nieastires 

on [- 112. 1/21. and al1 integrations in the x variable are over the range 

[- 1/2. 1/21. T h e  nionients of sny mcasiire will be denotecl iising siibscripts. 

tliat is. E, = J r' <(dr) and = J x' p(dx) for a11 i 2 0. 

2. For a ftinct ion / : [- 11'2. 1/21 - R. LW \vil1 sometimes ilse t, he short hand 

EJ = J j(z) E(clx). In dicldition. the symbol x ma'; occasionlilly denote the  

identity fiinction on R: for esampie. rf refcrs to t tic Fiinction .r - s / ( x ) .  

3 CVe ma- use eit her tr(--1) or trace(-4) to denote the  trace of a niatris. ahile  

ciet(.-1) or 1-41 means its determinant. Tlie eigenvalues of .-l are denoted X 

and X,,(A) nieuns the largest eigenvdtie of -4. 



Chapter 1 

Literature review and objectives 

1.1 Introduction 

In the st~icly of a dose-response relationship. it is common for a n  esperinicnter to 

apply eq~iallx spüced dosage levels in his experinient. But if he  knows t tiiit I lie 

relation of dose and response is linear. then it rvoiild be more effective to upply 

niininiiini ancl maximum dosage only To linderstand ihis. we niust carefiilly 

distingiiisli bctween two types of error tliat can occiu in such esperiments : b i s  

error. cliie to inatleqiiacy of the modcl. and variance error. due  to sanipling. .-ln 

ecliidly spaced clfsign is optimal w hen ive are only concernecl wit ii t lie biris error. 

wtiile the clifisici~l optimal design. which mekes observations at the niinirniim 

and maxiniuni values only. is optirrial when we are only conccrned about the 

t'c-~rimcc crror. In practicc. it is rcalistic to assume that t hc niodel fiinction is 

known only approsimûtely ancl to use a design ttiat miriimizcs a. combination of 

these error ternis. Tlic goal of t his thesis is to provide guidelines on choosing 

siich designs. 



1.2 Classical optimal designs 

Many prairie famers  in Alberta have traditionally stocked dugouts with trout 

to  provide siininiertime fishing and fun. biit now a few are attempting to make 

u biisiness out of cultiiring fish indoors. year-round. One problem that these 

famiers are facing is limited water supplies. so it is economical if the fiumers can 

recycle waste writer For raising fish. Most solids in wastewater from troiit-rearing 

h i l i t i m  settle readily. but a siispension of fine material remains. Several stiidies 

have shown tha t  fine particcilute adversel- &xts fish heidth and prodiictivity. 

The  wi-astewirter engineering reseich team a t  Alberta Environniental Centre 

concliicttul il bench-srale eliperiment to find oiit the amoiint of total siispended 

solicl (TSS) after applying ozone application rates (O:i) ranging from O to 2 mg/ L. 

(see Cleo and Janies ( 1995)). Btrcliise ozonation is to be used for disinfection 

and the assoc*iatecl capital cost is Iiigh. the team wants to determine 0:i rate in 

a n  optinid nianner - niininiizing the worst cost. tf the rcsearcti teani knom 

bj* tlieir previoiis esperiencc that TSS and OR rate are linearly related. the team 

only needs to apply the lowest rate (no ozonat ion) hall of the t imes ancl t tic 

hightst rate half of the  tirries in orcler to obtain the  optimal design. This is qiiite 

itnexpected to the  Iayrnan who woiild normally cspect t hat one stioiild apply 

rates spreacl everily over t h e  range O to 2 mg/L. U+hen observations (TSS) arc 

siibject to esperimcntal error. the TL observations are given b ~ -  

~vtiere .cl is thc O3 rate and !/(xi) is the amount of' TSS at rate :ci E [O. 21. C h  

asstinie  lie crror terms c, are iincorrelatcd with meÿn zero and variance a'. The 



parameters Bo and B I  are iinknown regression coefficients. We will use the least 

squares estinlates O[ = Z(L., - B)(!ji - J ) /  I ( x i  - P)' and Bo = jj - 0i3. Our 

problem is to choose r,'s to irnprove the quality of this estimate 0 = (40.61 ) T -  

One meristire of h o ~  r-well t tie least sqtiares line fits is t he integrated mean squared 

error ( IMSE) . 

To niinimize [.LISE. the r,'s oiight to be as spread out as miich i f i  possible. in 

ot tier words. haif of them at  the lowest x-v,zIiie and the ot hcr half at the highest 

r-value. This esample demonstrates t hat ive c m  irnprove the qiiality of our 

est iniatt5 bj- planning the locations of t lie r-values. rat her t han just rtioosing 

t heni 1iuplia;sardlj: CVe generdize t lie above stat istical mode1 to a regression 

problem wit h n id  t iple variables as follows. 

( X  = z l (x , )O  + t,. i = l . . . . .n.  ( 1.2.1) 

wtiere the regrasor z(x) E RP is a given fiinction of x. The design points x, 

are confinecl to a s ti bse; S C IR? which we cal1 t lie design space. The parameter 

0 E RP is iin knoan. and the  error ternis 5, are tincorrelated w-i t h niean zero and 

corrinion variance 0'. 

The goal in t he  regression problem is to estinlute t tie parameter O. 

L. One part of that  problem is to select 

simply Lise the les t  squares estimator 

:3 

an est imator. Throiighotit ive will 



2- Another part of the problem is to choose the design points xi. i = 1.. . . . n 

in un optinial manncr. This is equivalent to choosing t heir empirical mea- 

l s i r e  E := dZ, on S. 

For a- potentiul design memiire <. vie define the following niatris. 

wtiirli is often called the per-observation information rnatrix of the design 6. This 

niatris is related to t tie covariance of o ~ i r  estimator by 

The clüssical optiniidity probleni is to choose < to rninimize a particiilar loss 

fiinct ion. Esamples of loss fiinct ions incliide the cieterminant. the trace. and the 

largest eigenvaliie of the mat r i s  -4; ' . and t hese give the  D-. A- . E-opt imality 

criterion. respectively. [ri the fisli erample above. wliere aT(x) = ( 1. x) and 

S = [O. 21. WC have 

Using tliese expressions it is not liard to sec that the design witli tiiilf its design 

points at O and the  other half a t  2 is D-optimal. but not A-optimal. 

I t  t ias  b c ~ n  observeci by At kinson ( L982) t hat althoiigh the loss fiinctions for 

D-optimalitj- and IMSE-optimality are invariant iinder scale changes in the .r: 



variable. botti .-1- and E-optimality sifier from the ttieoretical disadvantage that  

they are not invariant. Severtheless it is usual to scale quantitative factors to 

lie between - L  and + L .  In orir work. we will a l w q s  assume that the t h t a  have 

bcen scalecl so that x lies between - 112 and + 1/2. In our notation. this means 

tüking S = [- 1/2. 1/21. 

CVith S = [-1. II .  and r T ( x )  = (1.s ..... 4). Hoel (1958) shows that the D- 

optinid design puts eqiial rnass a t  the zeros of the polynoniial ( l - xc') PL(x). 

where PL(x) clenotes t lie clerivat ive of the kt h Legendre polynornial Pk(s) on 

[- 1. 11. If ttie esperimenter wants to investigate z T ( x ) O .  t h e  performance of a 

design < can be nieiwircd by t he  standardized variance d(x: <) := zT(.r)--1; ' r(r ) 
of ttic optirlia1 cstiniator zT(.r)ê. A design is called C:-optimal if it rnininiizes 

 nias,,^ d(s: c). Kiefcr and Wolfowitz ( 1960) proved t hat n design is D-optinial 

if ancl only if it is G-optirnal. For the readers who are interestcd in the classi- 

cal optinial clmigns. LW refer to Fdorov ( 1 0 2 ) .  Silvey (1980). ancl Piikelsheim 

( lc)%<). 

1.3 Mode1 robust designs 

In t lie fish csaniple. the experirrientcr :fisilmes t tiat TSS ancl arc linearly 

rclatlul. Ci,liat i f  he is niistaken aboiit t his relation'? If TSS and O:{ are not esact ly 

lineirrly relattul. t lien t h e  oplinid design canno t possi bly detect ttie presence of 

an! non-lincar term in t, he regression fiinction. no mat, ter how Iürge the sarnple 

sizc. 



The classical optimal designs have the disadvantage that they are extremely 

niodel dependent. These designs provide no opportiinity to  check the niodelk 

aclec~iiacu. Bos ancl Draper ( 1959) seern to have been the first to be concemed 

about the dangers of assiiniing that ttie niodel is known exactly when clesigning 

a regession esperiment. Th- stiidiecl the case where t h e  esperirnenter fits a 

polymniial of first clegree whereas t he true response is quaciratic. The estimate 

is siibject to bot h .*bis error- dile to the inadgiiacy of the linear function. as 

well as "variance error" diic to sanipling. They reach a sornewhat unespected 

concliision t hat t tic dcsigns mininiizing bias aIone are closer to minimizing bot h 

bias ancl variance than the designs niinimizing variance alone. 

In manu prar t ical si t iiat ions. the model fiinc t ion is known only approsiniately 

so it is niorc redistic to consider a pcrtiirbed model 

nlierc / is an iinknon-n pertiirbation fiinction that lies in a contaniinating space 
- 

3. The estimaior û is no longer iinbiiised. and t lie niean sqiiared error niatris 

is. witii b ( j .  <) = J,. z ( x ) / ( x )  < ( d ~ )  = ( l / n )  Z z ( x ~ ) ~ ( x , ) .  giwn by 

Tlic m e m  scliiaretl error ( L.3.2) çonsists of two terms - t h e  first is a variance 

error and the seconcl is a bim errer. 

i\n optiinai design obtained iinder the model ( 1.2.1) no longer is appropriate 

iinckr the pert urbecl model ( 1.3.1 ). The design for t lie first problem makcs the  



variance term (u2/n). l; '  smilll but not the bias term - - l ; 'b( / .<)bT(i .<) .~l; ' .  

For any contaminating hinction / we could construct a design t hat minimizes 

IISE(1. E) for ttiüt specific /. However we are not looking for a design wtiich is 

optimal for one 1. but ratlier we are looking for a design ~ h i c h  is reasonable for 

al1 j E F. in otlier wortls. a robwd design. A design is said t o  be optimal for the 

pert iirbed niodel ( 1.3.1) if it rninirnizes the rnuluiniiim loss over f. Beginning wit h 

Bos and Draper ( 1959). designs for versions 01 (1.3.1) have been constriicted in 

a large nimber of papem. These tliffer in the class 3. the design space S. the 

regressors ~ ( x ) .  and in the  loss lunctions iised. in the following sobsections. rve 

review sonie of these papers t het  have bccn classified into three groiips for oiir 

convenience. Tlic first tivo groiips discuss L2 type designs and L,  type designs 

~vhich are n a n i d  alter the n o m s  ~ised in t h e  boiinci on the disturbance term j. 

Prior to riinnirig the esperiment. it is very cornnion t hat  t lie esperimenter lias 

littlc infonriation about the regression model. z - ~ ( x ) O  + j ( x ) .  The esperirnenter 

riiight have. l~owcver. sevcral possible niodels for the regression Iiinction. so it 

is pluiisible to put a weight on the  different models. Lauter ( 1974. 1976) took 

t tiis into accoiint. proposed t h  genera l id  D-optimality cri terion and proved 

ari ccpivalence t tieorem siniilar to that of Kiefer-Uolfowitz. T h e  rhircl grotip 

consists of articles in which Liiuter's idea m s  appliecl. and lience these tlesigns 

arc callecl Liiiiter type clcsigns. 



1.3.1 4 typedesigns 

Chiber ( 1975. 1981) and Wiens ( 1990. 1991. 1092. 1993. 1994. 1996) take the 

cont uniinat ing spuce 

F2 = { f :  

where the radius rl is 

I I~II :  = J f (r)' d z  5 i'. r ( z>  f (r) d+ = O}. ( 1.3.3) 
s 

ttssiiniecl knowri. T h e  tirst condition in the dcfinition of 

.& allows for finite bias und the  second condition ensures the identifiabili ty of 

O. Chiber rest,ricts to synimetric designs on [- 1/21/21 and obtains the m i n i m u  

tlesigns for the integrated hISE as a loss fiinction. His optimal design measore 

< has: a clensity of the forni <' = (ax2 + b)+. where a > O and b depend on the 

ratio (02/nrl'). As (cr'/nr12) - O. the limiting distribution is iiniform (E' = L ) 

and as (c~'/nq') - x. the limiting distribution is a m e s u r e  tha t  puts al1 its 

nius  at the estreme points. i.e.. < = (b-l12 + +)/2. 

Wiens ( 1990) estends Huber's result to the case of rn~iltiple linear regression. 

~ ( x )  = ( 1. . T I .  . . . . whcre S is a spliere of unit volome in IRP. He also gave 

T robiist tlesigns for a bivnriate mode1 witli interaction. r ( x )  = ( 1 . q  .xi. xl.c2) . 
s = [- l/2* 1/21 x [- 1/2. 1/21. 

Uncler the  approsiniately linear regession mode1 . rT(x)O = Bo +x:=, OjxJ + 
f. wit h t he  contaminating spiice .F2 in ( 1.3.3). Wiens ( 1992) constructs designs 

t hat rnininiize the masimum loss over /. He consiclers an- loss fiinct ion L(/. <) 

snt isfying 

(i) .\Ionotonicity: tf  IISE(Jl. <) - .LtSE(Ji. () is norinegative definite. then 

Wi 9 E) L w 2 .  €1: 



(ii) Unbountledness: L(/,. <) -+ m. if Xmm(blSE(Jn. c))  j x. as n - x. 

He searches for a design <' that satisfies 

- where = is the spüce of al1 probability measures on S. He also proves that in 

o r c h  that siip, - L( f. <) be finite. < must be absolutely continuoiis. 

In t h e  c-ase that the fitted response is a plane. and the design space is a 

sphere of unit volume in RP. Wiens presents explicit designs corresponding to 

the follou-ing five loss hinctions: 

Co = det(MSE( f. c))  D-optimality. 

L;, = trace(.\ISE(f.<)) A-optimality. 

LE = Xmax(-LISE(/ <)) E-optimality. 

CQ = Js d(x:  J. E )  dx Q-opt imality. 

LC = SIIPZES d ( x :  j. <) C;-opt imality . 

Sec Figure 1.1 for the  optimal design densities in the  case of D- ancl -4-optirnality 

rriteriü nit11 p = 1 and Y := (d /nr12)  = 1. 



Figure 1.1: D- and A-optimal design densit ies for straight line regression, min- 

i m a ~  in contaminating space .F2 as in (1.3.3) with u = 1: (a) D-densi@= 

5.12x2 + 0.573; (b) A-density= (2.345 - 0.07/x2)+. 



1.3.2 L, type designs 

Marriis and Sacks ( 1976) and Li and Sotz ( 1982) made the crit icism t hat using 

the contaniinating space .Fi means that no discrete design. and hence no imple- 

nient,able design. c m  have finite loss. They. as well as Sacks and Ylvisaker ( 1078). 

Pesotchinsky ( KM) .  Li ( 198-1). Liu and Wiens ( 1097). take a smaller contami- 

nating space 

F = { f : ( x  o .  for al1 x E S}. 

wit h varioils z~issumptions about O. 

hlarciis and Sacks (1976) take S = [- [. 11 and t r r ( x )  = (1. r ) .  and let o be a 

given funrtion on S wit h o(0) = O. They then look for designs ttiat minirnize 

sup E[(& - $)' + h(& - 0 ,  )']. 
33: 

wliere & and 6, denote the estiniates of O. and 0, .  and b is a specified constant. 

For instance. if o(r)  2 mz. then tlie ilnicllie optimal design tias support onlx on 

t lie points { -  1.0. 1). I f  o is conves. t h e  best design is siipporteci on two points 

(- 2. z ) .  where z depends on o ancl b. 

Li and Sotz ( 1982) extencl the work of Marcus and Sacks ( 1976) to the 

nidtivariate cüse where z ( x )  = ( 1. si. s-.. . . . x,)~. anci 

When ttie estiniates & are linear (but are  not neccssarily tlie LSE) and  the 

designs are restricted to have finite support. they show that  the designs tha t  



minimize the weighted .LISE. with weights ( b J .  

have support on the estreme points of S C RP. 

Pesotchinsky ( 1984) also estends the resu1t.s of S [arcos and  Sacks. He consid- 

ers ( p +  1 )  dimensional Iinear regession and for the constriict ion of the opt irnality 

criteria he uses the OB-family More precisely. 

wliere x ,  = (:r,,. . . . . x,,). o is a convex fiinction. ancl lie assumes tliat 1 f (x) 1 5 

O ( )  For O < k < x. his opt iniaiity fiinctionals Qs( f. <) are derived lrom 

the SISE matris via 

Q X ( j . < )  = Iim Qi(f.E) = nias { A j (  f.<)} = X,(S[SE(f-<))- 
k-CC O ~ < P  

Tliits Qo. Q I .  and 9, give the D-. -4-. and E-optimality criteria. respectively- 

Pmotchinsky applies a mininias approach and clefines a Qk- optimal design G(o) 

as one thnt minimizes the supremum of @k(f .  E) Owr { j  : [/(x) 1 5 ~ ( l l ~ [ l ~ ) } .  
- He proved the following two facts in the  class =(m) of all symmetric designs E 



wit h fixecl E<(Z:) = m. First. any s>nmetric design < E S(m) siipported only 

bj- the points of the sphere Sr of radius r = JmP is D-optimal in 3 . m )  if 

o(ll xll" is conves. Secondly. A- ancl E-optimal symmet ric designs are ~iniqiie 

and correspond to the iiniforrn cont iniioiis meastires on appropriate spheres. 

Li ( 1984) st iidies robust regression iising a design space S consist ing of finitel- 

niany points. q-mmetrically distribiited on the inteml [- l/2. 1/21. 

Liu and CViens ( L997) stiidy the regession niodel E(Y 1 L) = E~,P=: Bjd + 
xPm(x). Here S = [- 1. I j and w is iinknowm but 1 ~ ( x )  1 5 4x1. where o is known. 

Witti three criteria 

( 1) Choose < to ma'timizc det(;lc). siibject to bounding the normalized bias. 

(2) C'hoose < to niininiize the niaximum b i s .  siibject to boiinding the variance. 

( 3 )  C'hoosc < to minimize t h e  niminium detemiinant of the hLSE matris. 

t lie optinial clesigns are given for p = '1.3 for general o and for p 3 I if O is 

constant. When p = 2 and o ( x )  1 the optinial design corresponding to (3)  

is 1 .n,Ai;;i + d-min(i. u i d n ) ) / 2 .  Ttie L, designs arc getierallj- siipported on a 

snidl nimber of points a n d  thlis do not allow t h e  exploration of rnodels lürger 

t han the fit tecl oncs. 

1.3.3 Lauter type designs 

Drt t e  ( 1990. inct 1. 1992) workecl cstcnsively on polynomial rnodels iincler t lie 

Liiiiter type of criterion. Before reviewing his papers. we necd to  introduce the 

D,-opt inia1it.y criterion. which is iisefiil when only a siibset of the  paranietcrs is 

of interest. CVe first need to look at  the papers writ.ten earlier by Stigler (1971). 

Atwood ( 1971). Stiidden ( 1982). and Cook and Sachtsheim ( 1982). 



Let zT(r)O = (zr(r)Bi. z : (x)&) .  

teres t. The corresponcling information 

where 82 contains the parameters of in- 

niatris --le is split into block matrices 

. where .-L2 is s x S. ( 1 .:3-5) 

Thc covariance rnatris 01 O2 is proport ional to C-I . where C = ;L2 - --IF; --1 12- 

-4 D,-optimal design rnasimizes det(C). But det (-4) = det (A l l  ) det (l). t hiis 

t his mrrcsponds to rnasimizing the ratio det (A)  /clet (Al 1 ). 

Since the classical designs and the minimiim bias designs do not allow for 

niodel acleqiiacy checking. Stigler ( 19'7 L ) soiight a criterion which enables 11s 

t O r1it.c-k IL- liet lier t tic niodcl is appropriate. and  to provicle efficient in ferences 

about the rnotlel if it is appropriate. He introduced C-restricted D-optimal 

designs i d  C'-restriçted Chptimal designs. for kth tlegree polynomial regression 

or1 [- 1. 11. Ttie Cf-rcstricted D-optirilal design for ttic kth clegree polunoniial is 

one which niasiniizes det[--ICI among al1 the designs E satisfying clet[--le(k)l 5 

C'dei [--le (k +- 1 ) 1. Ttie Cf-rcstricted C:-opt imal design For the kt h degree polynomial 

is one wtiich niininiizes niils-i d ( x .  <) among d l  the designs < satisfying 

tlet[;lC(k)] 5 C'det[At(k + 1)I. For C' 2 -4. the Cf-restricted D- and Chpt imal  

designs for the linear niode1 is @-en b -  

We split the regression Iiinction z T ( x ) 8  into two parts as we did in (1.l3.5). 

zT(r)O := i[(.r)BI + z;(r)~~ = x:=, Oi .rl + ~ f = , + ~  Bt .cl. The objective of At- 

wood ( ln7 1 ) is to clerivc gooocl estiniators and designs for estirnating the regession 



fiinction zT(x)O.  As an estirnetor. he ~ised a weightd average of the best linear 

unbiüsed est iniators of the degree s polynomial and the degree k polynoniial and 

as ta design. tic iised a combinat ion ( 1 - a )  <(.Y) + a E(k)  of t . 1 ~  known opt irnal 

dtsigns E ( s )  and <(k) for the polynomials of degree s and k. respectivelq: In 

his clerivation. when C = s + 1 or k = s + 2. Atwood applied the fact t hat the 

best tlegree s polynornial approximating the tegression fiinct ion zT(x) 8 is the 

C'hcbyshcv (or Zolotarev) polynoniial of degree k. 

S t iiciclen ( 1982) applies Stigler's technique in a general set t ing. The  rnodel 

is assiinid 10 be an rtti degree polynorniiil but the coefficients of t h e  higlier 

powers niigbt not be zero. So the regressor z T ( x )  is decomposed into two parts. 

7' z, ( . r )  = ( 1. .r. . . . . .rr ). z~: (L)  = (Yçi. . . . . xm ). SO tlien the covariance mat r i s  of 

O,,,. . . . .O ,  is proportional to C-l. He fomulated the D ,  probleni which is to 

masiniizc ciet(All) subject to a boiind on the determinant of C. The D l ,  and 

&,-opt inial designs are obtilined in ternis of t lie cünonical nionients. 

The work of C'ook ancl Sachtsheim (1982) was rnotivntcd by a problem con- 

ccrriirig t lie est iniat iori of iiraniiini content in cali brat ion standards. The re- 

gression fiinction can be approsimateù by a polynomial of a finite degree. but 

tlir degrcc is riot known in ativance. Sinre the experinienter LVIS certain tliat a 

polynoniial of clegree Ics t han eqiial to sis: would be an adeqiiate model. t hey 

appliecl LHiiter's iclea to t lie in teptecl  variance cri terion and presentcd t he i ter- 

at ive niet hocls for design cons truc tion. 

Det'te (1990) assumed that 

mi& Pr. = { gj igj =  CI,^ 

the unknom model belongs to the class of polyno- 

x'. j = O.. . . . k } and detemiincd designs that do 



well for each member of Pk. He not only considerd al1 the information matrices 

(.-le (j)))=,. biit he also introdiiced a fnmily of priors w = ( w ~ ) J = ~  

A design < is optimal for Pr. with respect to the prior ui if < ma~irnizes the 

Iiinct ion iIr,,(E) = ~ f = ~  5 log[det ( - - I E ( j ) ) l .  The support points of the  optimal 

designs are given by 311 and the zeros of a .lacobi polynornial. Thc masses a t  

t tie interior support points are equal but the niasses a t  the boundary points &1 

are somenhat larger. T h e  D- and Di-optimal designs arc identifid as special 

casa. The one dimensional resitlts are generdized to multivariate polynornial 

regression on t tic q-cube. 

In polynoniial regression niodels wi t h Lauter's opt imality criterion. Dette ( 199 1 ) 

iclentifies robiist clesigns giwn by Stigler ( L971). Sttidden ( 1982) and Cook and 

Sachtsheim ( 1982). as D-optimal designs in the sense of Lauter. 

Dette ( 1992) dealt wit h a situation where extra inforniation about the mode1 

coitlcl be given. For instance. t h e  esperinienter is quite siire that thc degree of 

the polynoniial niodel which has to be fitted is even (or odd) and coiild provide 

the iipper t~oiintl of t h e  cleg~ee. k = 2r (or P = 21- - 1).  say. He chooses ttie 

l o s  fiinîtions to be EL=, mi log[det .-lli(<)/det .42i-l (<)] in the case of polynomial 

rnoclcls of even degree and Ci=, i ~ ~ i  log [det .-121-i(E)/det .-\2i-2(<)j in ttie case of 

polynoniial rnotlels of ocld clegree. For the class of odd tlegree polynomials. u-ith 

uy = i/r. the Di-optiniai design piits eqiial masses at the zeros of the polynomial 

t(3/2) (3/2) 
( 1 - ) [ C r  ( )  + C r  (T'(x))I. where C$")(s). n > - 1/2. denotes the l th  

iiltrasptierical polynoniial which is t hc 1 th orthogonal polynomial wit h respect 

to the nieasure ( i - x2)"-'/' dx and c ( x )  denotes the It h C:hebyshev polynomial 



of the first kind orthogonal with respect to the rneasiire (1 - x2)-'/'dx. He also 

consiclerecl the case of polynomials wit h only even (or odd) powers. For the even 

powers of pol-oniials. Pr = { C;=, ni, ra 1 i = 1. . . . . r }. the D-optimal design 

(3/2) piits q u a 1  masses l/(2r + 2) at the  zeros of the polynomial ( 1 - x2)C;-, (-(X)) 

and n i a s  l / ( r  + 1 ) at the point O. 

T lie papers involvd w i t h Lauter type designs apply estensively the t h e o -  

of the canonical moriients baseci on the work of Skibinsky ( 1968). The  interestecl 

rcaders are referred to Dette ( l9W). Lau and Stiidden ( 19%). and Lauter ( 1976). 

1.4 Summary of results 

In this dissertation ive ronstriict optimal des igs  for approximately polynomial 

regression fiinct ions. In C tiapter 2 and C'hapter J LW construct m i n i m a  designs 

u-hen an esperimenter fits a polynornial of degree p alt hough the  true mode1 is 

a polynoniial of dg ree  q .  cl > p. In pobnomial regression t he supremiim of t he 

Ioss fiinction cicpends ori E only throiigh its first p + q moments. Searching for 

an optinial set of set of monients is qiiitc cornples. so we look only üt discretc 

rricasures rvitli the minimal niiniber of siipport points. 

LVe rcview a resiill bj- Cl-ald ( 1939) which says t hat for a-- probability mca- 

siire on [O. 11. t liere is a probability rneasiire ivit h [ (s  + 2)/2I or fewer siipport 

points. with tlic sanie first s monients. In Chepter 3 we offer an  independent 

proof of this resiilt. In fact LW show that for anj- mesiire { L  on [a. hl not siip 

port ecl by p or fewer points. t here esists a measlire < on [a. 61 \vit h p + L support 

points. for wliich p and < have the same first 2 p  + 1 moments. 



Ryhlik  ( 1987) constriicts Q-optimal designs for a linear regression fiinction 

t ha t is contaminat ed by higher degree polynomials. Apply ing RychIi kk  üpproach 

to cases iindcr D- and .-1-optimality criteris. ive constriict optimal designs in 

C'tiap ter 3. 

Tlie optimal design depencls not only on the form of the  loss function but 

also on tiom- u-e define -original part" and --contamination part". In Chapter 2. 

ive consider t. liat. even t hoiigh the esperinienter has misjudged the exact nature 

of the response function. he wants a fitteci response function that will be iiseful 

in prtclict ing response valiies in the future. Ln Chapter 3 we consider t hat the 

original niodel fiinction. a pt h order polynomial. Iias becn contatriinated by the 

acldition of sonie higher order ternis only. W e  want the fittcd response fiinction 

to est imate the original motLe1 as closely as possible. The tu;o different situations 

are dist ingiiis liecl by denoting t heni polynomial nioclel I and polynoniial niodel 

t 1. 

In t liis polynomial regression set t ing the main drawback is t liat the designs 

don't ~~~~~e crioiigh siipport point,s to fit the niodels against u-hicli iw wish to 

protect. In Chapter 2 we provicle a giiideline to rernedy this situation. 

It is not straightfonvard to apply thber 's  or Wiens's niininiax technique to 

a n  approsiniatcly qiixirat ic polynomial regession fiinct ion. In C'liapter -4. iising 

an ad-hoc approacti. ive constriict optimal designs for approxirnately polynomial 

regrtssion moclels. C\.é compare these designs to the rninimas dcsigns for biwri- 

ate linear mode1 obtained by CViens (1990). CVe obtain a minimas density For an 

üpproxiniat el? qiiüdrat ic regression modei wi t hout constant term and compare 

t. tic niininiax design to t lie ad-hoc optimal design. 



Chapter 2 

Mode1 robust designs in 

polynomial regression 1 

Siipposc t tiat an esperimenter fits. by least squares. a lineirr regression niodel 

E( Y 1 2) = + O ,  .r. but is concerneci t tiat triie mode1 might be contaminated by 

sonic iinknoan fiinction f .  t h a t  is. E ( Y  1 s) = O. + O t  r + /(x). In t his sitiiation 

thp esperinienter woiild like to choose design points .cl that  yield good estimates 

of Q0 and 0, wtiile offering some protection against the possible contaniination. 

Tlic opiinial placenient of design points uris foiind bj* h i b e r  (1975. 1981) ancl 

V i s  ( O .  1992 ) iincler t h e  assiinip t ion t h a t  t he contaminut ion f~inct ion f 

belongs to the L2 type spaw 

For t his contaniinat ing space. FI iiber (Q-optimali~y ) and Wiens ( D -  and -4- 

optimalit') constriict robust designs by minimizing. over a space of designs. the 

maximum Ioss as f ranges over f i .  However. a criticisrn of this approach is that 



the space .F2 is so wide t hat any discrete design. and hence any implementable 

design. has  infi nite rnaxiniiim loss over 6. One possible remedy is considered by 

Rychlik ( 1%;). who restricts the c lu s  of contamination functions to t h e  space 

IF. which consists of ail qtli order polynomials in .F2+ Rychlik then constriicts 

a niinimas syrnmetric (liscrete design for Q-optiniality case for the contaminat- 

ing spare 3. Ttie niein resiilt in Rychlik ( 1987) is t hat any synimetric design is 

minimu if its even moments are identical to ttie corresponding even moments 

of Hiiber's niininias continuoiis design. 

in t his rhapter we work with three different tjpes of loss functions based on 

the D-. .-1-. and Q-optiniality criteria. Since the normalized Legendre polyno- 

mials form a n  orthonornial basis in Ly .  WC ciln re~vrite Ryctilik's contamination 

where !, is the nornializecl Legendre polynomial of degree i .  in otticr n-ords. 

the fitteci mode1 is E ( Y  1 x) = Bo + 0 ,  x. but the trrie mode1 is of ttie forni 

t r i  polyrioniial regressiori. ttie siipreniiim over F of t,he loss fiinc-tion depends 

on the design nieasiire only throiigh its first ( q  + 1)  moments. This mems t h a t  

oiir scardi for an optimal design measiire is rerrlly a search for an optimal set 

of rrionicnts. This dlows ils to csploi t Wald's ( 1939) resiilt giving the mininiiim 

niimber of support points for a probability measiire witli a fised set of moments. 

Oiir minimization problem is therefore recluced to a search over a finite dimcn- 

sional siibspacc of design meastires with sniall support. In Section 2 we prove 



thnt for D-optimality. the optimal design is nlways symmetric. For the Q- and 

-4-optimality cases. it is not k n o w  whether the optimal design is symmetric or  

not. but a.e prove the existence of an optimal design in the clms OF symnietric 

designs. 

hclapting Ryctilik's met hod WC obtain the mininiax symmetric design under 

t lie D- and A-optiniality criteria. 

There are two niain results in section -5. The first. Theorem 2.5.1. rephrases 

Ryctilik's niain tticoreni and s a y s  that a- synmetric design nieaslire < is min- 

i m a ~  if the espectations n in der < of the fi st [ (q  + [)/-] even-order Legendre 

polynoniials are the same as [or CViens's design measure. This is tlie same as 

s q i n g  ttiat < and Wicns's design share tlie first [ ( q  + 1)/2] even nionients. Since 

t lie monients in Theoreni '1.5.1 are generated by il cont inuoiis densi ty. t hey be- 

long to the interior of ttie nioment space. Applying Coninient 3 in ttiis chapter. 

the optimal design ,C c m  be rhosen to tiüve [ (q  + 1)/VI  + 1. 

As we nientiond in Chapter 1. the niinirnas design depends on t h e  ratio 

11 = <r2/nrj2.  Ci-heri il = O. only the .*bias" t e m  is involvecl in the niininiization. 

and so the iiniform density is optinial. On the other tiünd. as v approaches 

infini ty. t lie .'variance" term swanips everyt hing else. and we espect the optimal 

clensity to resemble the classical design. t tiat is. al1 the m a s  is on t lie boiindary. 

Ttie seconcl niain resiilt of section 5 is Tlieorem 1.5.2. which says t hat for large 

11 t h r  optinial design coincides exact lu \vit h the classical design (6- ;- + cil /?)/2. 

Tlic proof of Tlieorem 2.5.2 needs only simple algebra but is v e p  length.  One 

of tlic reasons for the length of the proof is t hat the cases where q is even or odd 

nitist. be t rmted scparat ely 



2.1 Introduction 

Iri t tiis cliapter. we consider the case where the esperimenter fits a polynomial of 

orcler p. but wtiere the triie model fiinction is only approsiniately a polÿnoniial 

of order p. .\[ore precisely. we set r (3) = ( 1. x. . . . . XP)? where the regessor x 

ranges over the interval [- 112. 1/21. The esperimenter fits. by les t  sqiiares. the 

niodel 

E(Y 1 X )  = Z : ( X )  e. e E R+. 

al t liough the t riie mociel is 

E ( Y  1 .r) = L ; ( X )  û + /(s). j is iinknown . ( 2 . 1 2 )  

For anu ciloicc of design points (x,) y=, oiir observations will be given by 

y = ( . O + ( ) + .  i =  1 ..... n. 

diere ive assiinie additive. iincorrelateù errors E ,  with common variance 02. 

Oilr fit ted response fiinct ion 

given by the ~ L S L I ~ I I  l e s t  sqiiares 

is a pth orcfer polynomiul whose coefficients are 

est imate 

n 

Here < = ( i /n )  x:=, &, is t hc design mcasiire. ancl Ac = J z 1 (z)r:( .r)  ~ ( d x )  is 

t tie rorresponding inforniat,ion matris. 

The clefinition of optimal design depends on the criteris used to jiidge the 

q u l i  ty of t lie est.iniate 9. This clepentls not only on the form of the  loss fiinction 



biit also on how we define *-original model" and --contaminationy. There are 

niany wys to split the trice response function E(Y 1 c) into a lower order p u t  

and a remninder: this choice reflects the piupose of the estimation. Different 

choires. siich as ive make here and  in Chapter 3. will lead to similsr but different 

optiniat designs. 

Here in Ctiapter 2 we imagine that.  even though the experimenter has mis- 

jiiclged the exact nature of the response fiinction. lie wants a fitted response 

function thet will be ~isefiil in predicting fiitiire valiies of y. Accordingly. ive 

define t hc triie coefficient vector Bo to be the vector 6 E DZW1 t hut minimizes 

DifFerentiilting wit h respect to 0 WC! are lecf to 

(So tc  t tiat al1 integrations in the .r variable arc assiinid to  be  over the  range 

[- 2 .  2 )  The iiniqueness of Bo depends on the invertibility of the matris  

J zl (.i)z:(:r) (lx rvliicti is giiüranteed by Lemma 21.1. 

Dcfine the  function / ( s )  to  be E ( Y  1 x) - Z * ; ( X ) ~ ~ .  and rtssiinie as well t hat 

J is a polynomial o l  degree q 3 p. T h e  t riic response E( Y 1 x) in (2.1.2) t tien is 

a polynomial of clegree q. 

Ttim using t his fact in eqiiation (2.1 4. 



Splitting the vector z(x) into two parts. zl (x) = ( 1. x. . . . . X P ) ~ .  and z2(z) = 

(xp+' . . . . .x4). t.he contamination fiinction /(x) c m  be r e w i  t ten as follows. 
- 

LI-e nooa rollwt t h e  non-zero components of the  right hand side of the  equütion 

(2.1 5 ) .  t hc f~inct  ion /(.c) can be wri t ten 

wit h B E I R q - P .  Defining the h n c t  ion 

we ran n-rite the truc mode1 as --pure part" plils -c:ontaniinated part" in t he  

following wq-. 

The qiiality of the l e s t  squares estimate 6 will depend on the  size of the con- 

taniiriation terni u7(r )p  and on the  plarenient of the design points. U'e assume 

t lie contaniinat ion is sniall. in t h e  sense t tiüt for some knou-n r j  2 0. the  fiinc t ion 

u'@ belongs to 

[t is easy to see frorn the eqiiat ion (2.1.6) t hst  J z (x) J(2) dx = O wliich ensures 

the ideritifiability of 0". For a given loss fiinction L then. ou r  problem is to  

clioose design points t hat are robust ûgainst the worst possible cont,aniiniit ion 

24 



iri F. that  is. to minirnize sup& Our loss function will always depend on 

the support points (x,):=, only through the  design measure 5 = ( l / n )  x:=, 6,, . 
so we recast oiu problem in terms of measlires on [- 112. 1/21. Setting Ck = 

J rl ( x ) u T ( r )  < ( d ~ ) .  ive can rewrite the estimate as 

Taking espertations gives E@) = Bo + --I;'c(B. so we get a bias error due to 

the inappropriateness of t lie mode1 function zf (x) Bo. The covariance n i i i t r i~  of 
- 
O is given by 

cov(e) = -A;'. 
n 

ancl so for a giveri design < and contamination terni u T ( x ) P .  t hc mean square 

error of û is the matris 

WC uill consider eacli of t h e  three loss functions 

LD(P- <) = determinant [lISE(/3. <)]. (21.12) 

&(p.<) = trace [.\ISE(P. <)]. (2.1.13) 

( P .  = S E (  = / E ( (  - ( Y  1 ) d (9.1.1-1) 



ancl oiir problem becomes that  of obtaining optimal designs in the  sense of min- 

iniizing sup, &. sup, &. and slipF &. We close t his section by proving 

Lemma 2.1.1 The rnatrk .-Il, is szngular ifl the measure p has p or fenwer s u p -  

port poi71 L.s. 

Proof: If A, is singiiiar. let c be a non-zero vector so that  cT--L,c = O. Then 

wtirre b= ( 1 . .  . . . . rp)?  The me,ure I L  must then be supporteci on the points 

wliere (c'b)' = O. ancl since cTb is a polynoniial of degree less tlian o r  eqiial to  

p. there are at niost p siich points. 

On  tlic other tiand. if the points (L,):=~ support p. where r 5 p. define 

o(.r)  = n:=,( . r -1 . )  =co+clx+---+c,xP. Herewcset c, = O  f o r i  = r + L  . . . . .p. 

Lct c btx t h  vwtor  (q. ri.. .r,)T. then 

-r 
--I,C = ( ( ( d ) .  J ( ) d  . . . . ) . 

Btit o = O IL-a.e. and so --L,,c = 0. u-liicli shows t ha i  -4, is singiilar. 

2.2 Suprema of loss functions 

In t liis section we will fintl forniiilas to express the sliprenia of the  loss hinciions 

owr 3 in terms of the design measiire <. Recall t h a t  for an' probabilitÿ measure 



For the special case rvhen < is the Lebesgue measure. ae ose the notation -40 

and  Co. CVe also define a (q  - p )  x ( q  - p) mat ris Bo = / u(.x)uT (x) ch. 

a = @ , ' ' ' ~ / r ~  and v = a2/nrl'. 

CVe note t tiat the rnatris Bo is invertible. Each component of the  vector 

u(.r)  is a polynoniial. so for any vector c E Rq-P  SUC^ that BOc = O .  we have 

O = cSrBoc = J IIu7cII%d-r. This implies thet  the polynoniial uTc vanishes almost 

everyatiere on [- [/o. 1/21, which can only happen if c = O. so Bo is invert ible. 

2.2.1 D-optimality criterion 

LLc hegin tp- rewriting the  loss ftinction in terms of --lc and Ck. 

pi- 1 L n 
-( 1 + ,P'C :.-IF' C ~ P ) .  

0- 

The siipremum over F can be  written as 

- - siip ( [  + 

ara=1 



wtiere CC = E B ~ " ' c ' T . - L - ~ c ~ B ~ ' / ' .  c Applying the fact that  for An,, and Bp,, 

niatrices. t hc non-zero ciger,values of A-IB and B-4 are the same and have t h e  s sme  

- 1  /ZC* B-1  Pg- l f i ) .  niiiltiplicities. ive write = A,,(--IE when q 3 2 p  + 1. 
so thiit it is clear there are p + 1 non-zero eigenvaliies in the matrix CG- 

C\é claini t tiat the niininlas design exists and is symnietric under the D-opt imality 

criterion. This is not t lie cilse for the A- and Q-optinial designs as ae d l  see in 

t lie nest siihswt ion. 

To prove the rlaini in Tlieorem 2.2.4 below. we need a few definitions and 

leninias. Let denote the spacc of probability mesures  on [- 112. 1/21. and 
- - 

eqiiip i. with the topology of weak convergence- CCé also let = {< E = : 
- 

I:lc 1 > O} arid =i; = {< E Eo : ( is symmetric). For an? pro tmbility nieai ire < on 

[- 112. 1/2]. np let <- denote t hc image of iinder t he  mapping x H -r. The 

syninietrized version of < is defineci to be the rneasure = (< + <-) lu- Thus < is 
- 

syninietric if ancl only if < = <- = <. 
- 

Define g : = - R u {x) hy g ( < )  = siipFCD(/3.<) if \.-LE/ > 0. and g(<)  = x 

O t hcrwisc. 

Proof: Ué start by noting that the matris Ac is macle iip of nionients of <. 
t ha t  is. (4) ,, = <&+,-:! for 1 5 i. j 5 p. Since the map .c - .cLi~-' is boiinded 

ancl continuoiis on [- 1/2. 1/21. Theoreni 25.8 (see page 3-14 of Billingsley ( 1986)) 

tells iis that < t. is continiious. Sow the determinant of a rnatris is a 

pol~moniial in its romponents. so < +, I.-lcI is also rontinuous. Similar argiinicnts 

stiow t hat < - C> is continiio~is. 



Scippose now { ( n )  -+ E ~ i t h  l;lEl > O. Since )-l,=E(,l - we have I - & ( n > l  > 

O for large TL so wit tiout loss of generality ive will sissume t hat A,(,, is invertible. 

Tlic inverse niap is continuous on the space of nonsingiilar matrices. so that  

1 A:;, -+ -4; and tience C;Etn) - CiE elernentwise. This  convergence d o n g  wit h 

the estiniate 

t hen convinces 

Suppose. on the  other hand. that ( ( n )  + < witli IA,I = O. Since g ( c ( n ) )  is 

botincled belon- by u constant times (.-1€(,, 1 - ' .  we have g ( ( ( n ) )  - x = da LE 

n - x. so !/ is continttotis ut <. I 

C C é  recall a leninia which was stated and proved in W e n s  ( 1993). 

Lemma 2.2.2 If C- und U' are matrices each of whose elements is a l inearfunc- 

tion of a r d  uwiuble 1 .  and if U' i.5 positiue definite. then o( t )  = aTC"rIV-'Va 

is u conwex function of t for each a. 

LVe note that  by Lenima 2.22. G< is conves in < if IAc1 # O. and  it is easy t o  

sec t hat t  lien ~ l i ~ ~ ~ ~ ~ ~ ! = ~  aTGE a is also a conves fiinçt ionül of <. 

Lemma 2.2.3 For any E E f. iue have g(f) <_ g ( E ) .  

Proof: Witliout l o s  of generalitj- ive may assume that g(<)  < x. tliat is. .-le 

is invertible. 



The memiires 6 and <- share the same even moments. while the odd nio- 

nients of E- c m  a reverseci sign. that is. 6 = (- L)'(<-),. Therefore we have 

P = di&(- l ) ?  . . . . (- 1)P). An immediate consequence 

. The convesity of t he  map < ++ 109(1--i~1-~) implies that 

og(j--lel-' ) + ( 112) log((.-le- 1 - '  ) = 10g(l.4~l-'). It follows that 

Mé nest show that = A,,C+-. Similar to the matris P. we define 

the  matris Q = diug((-1)e' ..... (-1)'). Note that P = PT = P-' and Q = 

Q * ~  = Q- ' -  First. we see that z I  (-.r) = Pzl (x) and z2(- . r )  = Qz-(x). There- 

fore zI(-.c)z:(-.c) = PI~(x)z~( .E)Q.  and so Ck- = Jzl(x)z$(x)<-(dx) = 

J Pz ( . r ) z z ( . c )Q ;(cix) = PCéQ. Applying t he  eqtiat ions Ac- = PAE P and 

CE- = PCéQ wtien E is Lebesgiie measlire. we can show that u( -r) = Q v ( . r )  as 

fol loivs: 

* T u - r )  = a ( - . r )  - C O  ;i;IzI(-.r) 

= Qz2(x) - Q ~ P P . - I ~ '  PPZ ,  (x) 

This now sliows ttiat Bo cornmutes with Q since QBoQ = J Q u ( ~ ) u ( r ) ~ Q  dx = 

Ju(-.r)uT(-L) dx = BO. Conseqiiently we have 



This proves X,,C:€ = X,,C+-. ancl t herefore 

Theorern 2.2.4 Ther-e exists a D -optincal design < E E;. 

Proof: Let .CI = infzg(<) < x and let {<(n)} be any sequenre in E with 
A .  

g(<(n ) ) - .CI. Since ; 1s compact. t tiere esist a siibsec~iience {<(n j )  } and < s~icïi 
- - 

t hat çC(n,) - E .  Bt~u.atise < ( ~ j )  - < iniplies < ( n j )  - i. and sinre is weiikly 
- 

coritinuoiis. g(<(n,)) - &. On the other hand. :CI 5 &$(n,)) <_ g(<(n , ) )  and 
- - - - 

g ( < ( r i , ) )  - .LI so g(<(rl,)) - .CI. Hence g(<) = M. so < is optirrial and < E 

rn 

2.2.2 .4- and Q-optimality criteria 

Rcwri t ing t lie loss Iunrt ion L,, in terrns of .-le and C i  gives 



So. we get 

Seçondlj- ~ v e  consicler the loss fiinct ion LQ. 

Sihst i t iitirig t h e  expression for t he  MSE ancl taking t tie siiprcniiini over 3 gives 



Remark For the D-optimdity case. ive have shown that the optinial design 

exists and is synimet.ric. For ttie -4- and Q-optinialit- cases. the l o s  is not 

conves and t h e  question of wtiether or not the optinial tlesign is symmetric 

reniains open. Severt heless ive c m  prove the existence of an  optiniül design in 

the class of symmetric designs. The proof is essentid- same as in Lemma 2.2. L 
- ancl Theorem 1.2.-1 except that the space is replaced bx 3". 

- 
Define a fiiriction / L  : =-' - R LJ {x) by h(<) = supF&(&<) if IAtl > O. 

and h(c)  = x otherwise. As we proved in Lenims 2.2.1. the fiinction h is 

wcddu continiioiis. Only one thing ive need to pay attention to is ttie Fart that 

whcn c(n) + < with J;lE( = O. h(<(n))  - =c üs n - x. since h(É(n))  2 
CT- 
t c ,  ). Lié now prow thc existence of an optimal tlesign < E z;. Lct 

:II = h(<) < x and let { < ( r ~ ) }  be ar1y sequence in Es witti h(Ejn)) - M. 

Sincc 3" is compact. t tiere esist a siibseqiience {<(n,)} and < siicti that <(n,) - <. 

Sincc IL  is ~veakly contin~ious. h(E(n,))  - h(c)  and so h(<) = M. and < E :O. 

2.3 Number of support points 

Having foond a t rnc t able rormiila for t lie masimum loss arising froni varioiis 

loss hinctions. we tilrn oiir attention to finding thc optimal design. tliat is. the 

probabilitj- nieasiirc < tliat rninimizcs slipF L(P. <). A closer inspection of the 

loss fiinc-tion reveds thnt. since ive are doing polynoniial regression. supF L(P.  <) 

depends on < only through its first p + q moments. This shows ils that t here 



is no iiniqiie optinial meilsiire. but rather an optimal set of nionients. which in 

general may have several different corresponding rneasures. Therefore. in order 

to sirriplify the searcti for the optinial set of monients. we begin by looking only 

at tliscrete nieaslires with the mininial niiniber of support points. This section 

is clediçated to proving a niodification of a resiilt C.\e-ald (1949) which says 

that for an3 probability nieasure on [O. II. there is a discrete probability nieasure 

wit ti [(s + 2)/21 or fewer support points. r i t h  the sanie first s moments. where 

the scprrre briickets [ 1 mein the integer part of a riiimber. Bq. tbis recliiction. 

we hope tjo siniplify the problern and get concrete information on the optimal 

solution. 

Moment space 31,: Let :Cf, be the .sth nionient spwe. that is. Jl, is the 

image of the space of probability mesures  ,u on [O. 11 iinder the niapping 11 - 
(J .r dp. . . . . J .T" dp ) .  Then -CI, is a c.ompct. convcs sirbset of R" and its cstrenic 

poirits are t lie image of {d; : t E [O. I I } .  t h  is. the estreme poirits of IK are 

{ ( t . r 2  ..... t s )  : O 5 t 5 1). 

;\ r i i i t  iird qiicst ion arises: Whnt is t hc minimum niiniber of support points 

nc~dcd t O altain any possible set of moments'? In ot her worcis. fi nd the miriiniuni 

value of k so ttiat for every ( / c l .  . . . . p,) E :\f,. there cxists a probiibility nieasiire 

of t he fomi p = x;=, a,&, wliere a ,  3 O. xf=l ci, = 1. ancl ( i i )  l c t l k .  sucli t tiat 

/Li = X' ~ / L ( x )  for 1 5 i 5 .Y- 

LCé s~iicly nionierit spüce .\[, in tlctail tmcl ansver the abovc cltiestion in t tiis 

scct ion. 

Definition 2.3.1 The degree O/ a distribution, jimction F uri-th jump points 

t 1 .  . . . t ,  in  [O. 11 is defilzed as the n.wmber of interior jnmp points. i.e.. those in 



the open interual (0. 1). p h s  one-half the n m b e r  o f jump  points ut the endpoints. 

Le.. those ut O or 1. In other words. 

where the bars 1 / denote cardinality. 

Theorem 2.3.2 Wald (1939) 

Let F be a  discrete di.~tnbution jimction on  [O. II. and G an crrbitrarp distribution 

fmction on [O. 11. if F has degree d .  then the wumber of changes i7t sign of !: - G' 

1.5 less than or  e p a l  to 2d - 1. 

Proof: Lct F have jiinips at t h e  interior points O < t , < t2  < - - < t,. < 1. 

Since F is constant on each of t lie siibintervals ( I I .  t - ) .  . . . (ta-, . Id.). the functiori 

F - C: is nionotone and so it c m  have at most one change of sign on earh of 

t ticse cl' - 1 intervals. Besides that. F - Ci may have a change of sign üt iiny of 

the endpoints t i .  ti.. . . . tdr. giving 2df - 1 potential changes of sign. 

I t  rrrri;iins to check F - C: on the  intervals (O. t ) and (ta. 1 ). L i é  consider 

t hree tlifferent cases. 

1. 1 = 1 )  In this case. F has no jornps a t  either O o r  1. Since -C: 5 O and 

L - C: 2 1. t here is no change in sign of F - C: in eit Lier (0. t 1 ) or ( 1 4 .  1). 

So the total number of changes is less than or  eqiial to 2d' - 1 = 4d - 1. 

2 .  ( d  = d + ( l /2 ) ) .  if F has a jiirnp at O (resp. st 1). ttien there müy be a 

change of sign in the  interval (O. L i  ) (resp. (tb. 1)).  SO the total niimber of 

changes is less than or  equal to 2 8  = 2d - 1. 

:3 5 



3. ( d  = clf + 1 ) .  Since F has a jump both a t  O and 1. the  sign of F - G mq- 

change on eit her of (O. t ) or ( ta .  L). The total nurnber of changes is l e s  

than or wual ta  '2df + 1 = 2d - 1. 

Theorern 2.3.3 Wald (1939) 

Let F. C: be discrete distrïb*cction /unctions on [O. 11 with degrees less than or erpal 

to cl. and both havirq j u m p s  at 1. Then the nwnber of changes in s i g n  O/ F - C: 

is 1e.s.s than or e p a l  to 2d - 2. 

Proof: Siippose t hat one of the fiinct ions hÿs degree strict ly less t han d. and 

wittioiit loss of generality suppose that it is F. Then degree (F) = m 5 d- (I/ 'L) 

ancl so 1- Tlieorem 2 - 3 2 .  ive find t hat the niimber of changes in sign of F - G' 

is l e s  than or eqiial to  2m - 1 <_ Z(d - 1 / 1 2 )  - 1 = 2d - 2 .  

So to prove t tic t heorern. ive may assiinie t hat degree (F) =clegree ((2) = d. 

MÏ t hoiit loss of generali ty. ive may assiime t hat t s .  the largest interior jiinip point 

of F. is g e a t c r  rlian or  eqiiul to the last  interior jiimp point of C;. Thcrefore 

!: - C; is constant on ( t < r .  1 ) . so no ctiange in sign c m  occiir over tliis interval. 

II r- is a n  integer. t hen bot h F and G Iiave jiimps at  O and d = d - 1 interior 

jiinip points. As in case 2 of t h e  proof of Theoreni 2.3.2. the  niirnber of changes 

in sign of F - C: is las than  or cqual io '2df = 2d - 2. 

On the other hand. if q is not an  integer. then neither F nor G have jiinips 

üt 0. and th- both have df = d-  (112) interior jump points. Since there are no 



junips at 0. t he  function F -G is equal to -G on (O. t l  ). and so no change in sign 

is possible on either (O. t ) or ( ta .  1). As in case 1 of the proof of Theorem 2.32. 

the  n imber  of changes in sign of F - C: is less than or eqiial to 2 6  - L = Zd - 2. i 

Theorem 2.3.4 Wald (1939) 

Let F. G be ( l i s t r i b ~ t i o n  functions on [O. 11 with the same first s moments. then 

either F = C;. or F - C: has ut least s changes in sign. 

and so rising integrution k+- parts. 

Sow suppose tliat F - G only changes sign at O < t l  < 1- < - - - < t k  wticre 

k < S .  Put ak-.l = - - - = a, = 0. and consider the k equations 

Let n i .  al.. . . . un.+[ be a non-trivial soitition to tliis system of eqiiütions and define 

a polynomial Q byQ(1) = a [  +2n2t+---+.sa,tS-' = al +2al t+-  - - + ( k + ~ ) u ~ + ~ t ~ .  

:3 7 



The  polynomial Q c m  have a t  most k roots. and since t l  < t2  < - - - < l k  are k 

distinct roots of Q. these a11 must be simple roots. Thiis the fiinction Q changes 

sign a t  each t i  and so t h e  product Q(F - G) does not change sign. However. 

J Q ( F  -C;) = O  a n d s o  F = G. 

Theorem 2.3.5 I fx  is a boundaq point o f h f , .  then there exists a discrete prob- 

ability rneasum p uhose f i s t  s moments are given by x and iuhose distn'bz~tion 

ftmction F h m  degree 1e.s.s than or e p a l  to s/2.  

Proof: Let P be a supporting hvperplane of :CIs at  x. That is P = { z  E IR" : 

(a .  z )  = r }  for some c E R and n E P. so t h  (a. 2 )  3 c for al1 2 E :II, 

mcl cqiiality is acliieved at L. Sow .r can be u-ritten as u conves combination of 

estreme points of :Us n P. that  is. of extreme points of :CC, that also lie in P. in 

ot lier words. t liere esists rn E N. t l . .  . . . t, E [O. 11.  and cri. . . . .a, E [O.  1 1 .  so 

that ai = I .  .c = EL, ai(/,. !p.. . . .lm:). and x:=, a,t:-c = O for i = 1.2.. . . . m. 

I f  11 =  pi&, then the first s nionients of p are given b ~ -  x. Lire daim that 

the corrcspontling tlist ri but ion fiinct ion F lias tlcgree less t han or eqiial to .s /2.  

The  polynomial P(t  ) = '& a,tJ - c has roots ut each of t l  . . . . . t,. The 

ineqiialitj- (a.  z ) ~ .  2 c applicd to  the estreme points in shows that 1' is non- 

ncgativc on [O. I I .  Thiis. c i d i  root of P in (O. 1 )  niiist be a doiible root. Since 

P is an  s t h  degree pol>mornial. s must esceed 2 times the number of roots in 

(0. 1 ) plus any roots at t lie endpoints O or 1 .  Dividing t his ineqiiality by 2 gives 

I{li. - . . l m }  n (O.  1)I + (1/2)I{tl.  .... t,) n {O. 1 1 1  5 $ 2 .  which is the desired 



Corollary 2.3.6 The distrib.ution jimction F of Theorem 2.3.5 is rmiq7~e. 

Proof: Let C have sanie first s moments. By Theorern 2 . 3 2 .  t he  niirnber of 

changes in sign of F - C: is less t han or equal to s - L .  By Theorern 2.3.4- eit her 

F = C: or the niimber of changes in sign of F - G is at l e s t  S .  The distribiitions 

F and C; niirst t hen coincide. 

Né are now ablc to prove the  main result of this section. which gives the 

minimum nuniber of support points of a probability m e s u r e  on [O. I l  with t he  

first. s niorrients sperified. 

Theorem 2.3.7 1/ .r E JI., . then thert. ezists a probabilztg measwe IL on [O. LI. 

urith (S + 2)/2 s u p p o r t  points or Jerwer. whose fii:st s rnonent.~ are gzven by x. 

Proof: First siippose that .r is a boiindary point of .LIs. Then by Ttieoreni 

'1-3.5 there is a ciistribution fiinction F whose first a moments are given by .c uncl 

ri-hose degrce is less than or  eqiial to s/2.  Therefore the niimber of jiimp points 

of F is less tlian or q i ~ a l  to ( s  + 2)/2. 

If  x is an  interior point of :K. tlien the set .V,+l n { (x . t )  : t E [O. I I }  
is not a single~on. in particiilar. if we let t = inf { t  : (1. t) E !&I } and 

t 2  = siip{i : (x. t )  E JLI.~,~}. then t I  < t - .  Since (s. L i )  and (r. t a )  arc on 

the hoiindary of :bfS+,. ive may apply Theoreni '2.:3.5 and obtain clistribiition 

Iiinctions FI and F2. so that  the corresponding measlires both have the first n 



moments given by x. and so that the degrees of both FI and F2 are less than 

or eqiial to ( s  + 1)/9. Since Fi # F2. Proposition 3 tells us  that FI - 5 has rit 

les t  Y changes in sign. 

Sou-. if botli F, and F2 have jiimps at L. then Theorem 2.3.3 s-s that the 

niimber of changes in sign woiild be less t han or q u e l  to 2 ( ( s  + 1) 12) - 2 = s - L. 

As t tiis cont raclicts the fact t hat Fi - F2 tias a t  l e s t  s changes in sign. ive conclude 

tliat one of Fi or 6 has no jiimp at I. For such a distribiition function. the 

niirnber of jiimp points is a t  most the degree plus onchzilf. that  is. it is less than 

or qua1  to ( s  + 2 ) / 2  

Comment 1. Theorem 2.3.7 s q s  t hat e v e -  .r in :LI, gives the first s monients 

for some dismete distribution function with [(.s+2)/2l or fewer jump points. This 

is. in fact. the best result possible for x in tlie interior of :Cf5. Ttiat is becailse. 

For siich r. the proof of Theoreni 2.3.7 gives two distinct discrete distribution 

hrictions Fi and fi wliose first s nioments are given by .K. if F is m o t  her siirh 

fiiriction. thcn it miist difler from one of FI. F?: withoiit loss of generality suppose 

tliat F # FI. Then Ttimrem -1.3.-1 says that F - F; has a t  l e s t  s changes in 

sigri. arid so by Ttieorem 2.3.2 ive find that s 5 2 degree (F) - 1. In other worcls. 

( s  + 1)/2 5 degree (F) which implies that the noniber of jump points of F is 

greater than or eqiial to (s + 1)/2. But the nomber of jiirnp points is an integer 

so i t also is greirtcr t han or eqiiul to [ ( s  + 2) 121. 

Comment 2. Suppose x E int(~L[~). Let FI # F2 and the first s moments of 

F, = .c. i = L.2. The Theorem 2.3.7 says that deg(Fi) 5 ( s  + 1)/2. i = 1.2. On 



the ot her hand. the comment above irnplies thüt deg(Fi)  = deg(fi) = ( s  + L)/Z 
and F2 hüs jiimp at  1. but FI does not. We want to prove a result corresponding 

to Theoreni 2.3.7 that deals with symnietric rneasures on [-1. 11. 

Theorem 2.3.8 If x E -\tg. then there ezist.5 a symmetn'c pmbabilitg meassre 

f i  on [- 1. 11. wilh s + 1 support points or fewer. whose /irst s efuen moments are 

gkwn b:r/ x. 

Proof: If u is a probability meastire on [O. L] whose first .Y moments are gh-en 

by .r. and if { L  is the image rneasure of v under the mapping x -+ r2. then the 

first -9 even moments of [ L  are given by r. Xlso. the degree of t h e  corresponding 

distri but ion funct ions are the same. 

If p- is the image of IL iinder the map s - -x. then f i  = ( IL + I L - ) / ?  giws a 

syninietric probability rneasiire on [- 1. 11. Also. t lie even monients of p and 

coincide ancl t lie nimber of support points of f i  is 2 x clegree (F). plils one if 11 

has a jtinip at 1. Here F is the  distribution ftinction corresponding to p. 

'iow. if .c is a boiindary point of A[,. ttiere is a probability measiire 11 on 

[O. II  hos se first s moments are given by x. and whose distribution fiinction h a  

clegrw less ttian or qtlal to s/2. if r is an interior point of :Us. the proof of 

TIiwreni 2.3.7 gave 11 wtiose clistri but ion funct ion's first .s moments are given by 

r. ~ v l i i d i  clocj not liave a jump a t  1. and which has degree less than or q u a 1  to 

( s  t L ) / 2  In both cases. the niimber of jiimp points of Fi is las than or eqiial to 

.Y + L. I 

Comment 3. If x is an interior point of :LIs. then Theorem 2.3.7. combined 



a i t  h the first comment. shows t hat the degree of F is eqiiai to (s + L)/2. and so 

the number of support points of fi  is eqiial to s + 1. Therefore if s is even. the 

syninietric measiire j5 must have û support point at zero. 

Our  objective in this chepter is to obtain optimal designs minimizing the siipre- 

niuni of cucti IOSS function itncter the three criteria. In the second section. ive 

obtained the siiprema of three loss functions over F in terms of the design nieü- 

siire <. In polynomiül regession the siipremiim of the Ioss fiinction depends on < 
only througli its first p + q moments. Searciiing for an optimal set of moments is 

qiiitc coniples. so a e  iooked only a t  discrete meastires with the minimal niimber 

of support points. In the rest of this chapter. n-e apply the resiilts froni this 

section to polynoniial regression. We will be seürcliing for a design mcasiire that 

niininiizes the siiprenilini of each loss Iiinction. It is of special interest with a 

interior point of Adq. LVe sunimarize above resrilts in t.his setiip. 

Theorem 2.3.9 Suppose ure fit u pol:ynomial of degree p although th,e t n r e  mode1 

is  n polynomid of degree q. q > p. Each loss f~rnction depends on  Me design < 
thro.ugh its even rnoments. &. . . . . Cs. urhere s = [ ( p  + q ) / Z I .  If the vector 

(&- Et. . . . . &)  belongs to the interior of the moment space Al,. then an opti- 

mu1 design is of the fonn < = a&. x k  E [-L/V. LI21 urith (ak.-rk)*;z\ 

C determm cd  bg EZ <.i . . . . %.,, . 

In t lie follotvirig t hree sections. we apply the resiil ts  from the previoiis sections 

to solve oiir niinimization problem iinder three optimality criteria. Following the 

groiincl work laicl by Hiiber (1975). Rychlik (1987) obtsined minirnax designs for 

pol~mornial regrasion. W start  the foiirth section by reviewing Rychlik's work. 



2.4 Q-optimal designs for approximately linear 

models 

2.4.1 Huber's minimax design for simple linear regression 

A s  ive nientioned in Section 1.3.1. Hiiber obtains the minimas design by fitting 

the linear mode1 althoitgh the triie response is only approximately linear. We 

recall the fitteci niodel. the truc rriodel and the contaminating space. 

Fitted Model: E(Y 1 x) = + O l r .  (2.4.1) 

True Model: E(Y 1 x) = 0" + 0 , x +  f(r). (2.4.2) 

ri-hcre t lie contaniination fiinction f  lies in the rontaminating s p x e  

& =  { j :  / f ' f . c ) < I r ~ ~ ' .  / f ( c ) d 2 =  / S f ( 2 ) &  = O } .  (2.4-3) 

Under t tic Q-optiniality criterion wit ti t lie contaniinat ing space .F2. Chiber's min- 

i m a  design depends on the parameter u = 0 2 / n ~ j 2 .  If O < 11 < L62/25. t hen for 

t  = t ( v )  E (1.9/5] siich ttist 

I f  11 2 162/25. tlicn for c = c(i1) E (O. 1) siich thnt 



2.4.2 Rychlik's optimal design for SLR 

Ttie contaniinating spoce .F2 used above is so wide that the  maximum loss is 

infinite. So Rychlik restricts t he  contaminating spacc to a finite dimensional set 

of disturbances. that is. the interjection of F2 and a finite dimensional siibspace 

of L2( -  112. 112). He takes 

Xpplying t lie fact t Iiat t h e  Legendre poljnoniials orthogonal to 1 and x forni an  

ortliogonal basis of the space spanned by F. Rychlik proves that  for O 5 u 5 

lf2/2.5. ;in\. syrnnietric design is min imu  if irs even nionients are identical to the 

rorrcsponcling evcn nioments wit ti respect to Hiiber's cont iniioiis cksign m( l :  r ) . 
wli(~re m(t: .r) ancl 1 are defined in (2.4.4) and (2.4.5). For v 3 l62/25. lie proves 

t tiat t lie niininias design h a s  extrenie support points. t ha t  is. < = (6-1 j,+61/1)/?- 

A s  ari esaniple. we provide Rjrchli k's optimal design <* for fit t ing a linc alt liough 

ttic truc response might be a ciibic or quartic. 

wtiere a E 10.7-L2. 11 is the root of the eq~iation (3 Ka2/  16) ( 105a:' - 1352-  + 5 l n  - 

5 )  = 11. Thc design point c ( l )  is defined as ( 1 / : 3 )  I ( - t 2  + 181/7 - 3/35) '12.  At 



this point vie note tha t  there are four support points when 11 < 1-5.15 in the 

eximiple above. Cté apply the Rychlik's approach to D- and A-optimality cases. 

in fact we will improve his resiilts in terms of the niirnber of support points - 

oiir minimas design will have leiver support points. 

2.5 D-optimal designs for approximately linear 

2.5.1 Wiens's minimax design for SLR 

Wiens ( 1992) obtairis niininias designs for SLR wit h the contaminat ing space F2. 

iinc1t.r various optimality criteria. He estends these ideas to  multiple regession 

as well. C\.Ïens proves ttiat in order that slip, L(1.c) be  finite. it is naessa- - 
t h  < be absoliitely coritiniioiis. Froni now on we will consider nieaiires < 
wit h clensity C1(x)  = rn(.r). d e s s  ot  hemise mentioneci. Under the D-optimality 

rriterion. hïens 's  ( 1992) niinimas density clepends on Y. 

i f  O < 11 5 1-115. 

I f  11 3 l-115. then for &(il) such that 

I /  = 
25 [( L - J ~ ) J ( & :  h )  - Jbl 

- .J(c2: b ) .  (2.5.3) 
( 1  - Jb)c2 - (1 /12)(1  - b3/') 



t h e  density is 

where K ( b )  = ( 1 - h )  - (2 /d)  ( 1 - b3/'). and b is determinecl by the eqiiat ion 

2.5.2 Minimax design based on Rychlik's approach 

Using \:Viens's minimas density we constriict the optimal density baseci on Rych- 

lik's iclea. L\,-e recall t hat the fitted model (2.4.1) and the  triie model (2.4.0) are 

Fitted Model: E ( Y  1 x) = O0 + O ,  s. (2-5.8) 

True Model: E ( Y  1 x) = no + 0, .r + f (.c). (25.9) 

~vlicre / belongs to the contaminating space 3 in (2.4.8). Again applving the 

faci t tiat the Legendre polynoniials orttiogonal to 1 and x lorm a n  orthogonal 

hasis of the space spanned b -  F. ive express this conteniinating space as 

wtiere 1, is t h e  itti normalized Legendre polynomial. tha t  is. li(r) = ('Li + 
1 ) ' /' Pi (Zr). wlierc Pl is the it  li Legendre polynoniial on [- 1. 1 j. For instance. 



The true niodel can be espresseci as 

wtiere .-lc and C i  are as in (2.2.1) and ( 2 . 2 2  j wit h uT(z)  is replaceci bu lT(x) = 

( L ( x ) .  . . . . l , ( x ) ) .  By virttie of Ttieorem % . L I .  we assume t hat  < is symmet ric 

and  so the mat  rices a bove are 

\iVe observe t hat C f  (<) c2 (<) = O. since Zj is an odd Iiinct ion for odd j and xlj  is 

a n  odd fiinc-tion for even j. CL-e find t hat 



S o t e  that.  for fised second moment &. the loss lunction depends only on CE and 

not --IE. Mé nest want to find <* minimizing the supreniiim of L(a.  <) : 

MC state ancl prove a resiilt t h a t  is similer to Rj-chlik's   in der Q-optimalit- In 

thc  t htoreni belo~v we prove t h a t  for sniüll v any design measure is mininias if 

its (xpectations of evcn Legendre polynoniials are identical to the corresponcling 

e s p t ~ t a t  ioris for W iens's cont iniioiis design (2 .5 .2) .  

Theorern 2.5.1 Cthen O 5 if <_ 1-115. ang .symmetn'c design rneasrre < is min- 

inru iJ the eqec ta t ions  trrrder of the first s := [ (q  + l)/'LI even-order Legendre 

po%/nomial.s are the sume as for GViens :s ùesign (2.5.2). Momover. there ezis ts  

a min in lm design with s + L design points on [- 112. 1/21. The design points and 

point muS.ses are calculated. /or j = L. . . . . S .  b;y 



Proof: LVe first assunie X i  (<) = mÿx{XI ( E ) .  A?(<) }. and prove the first part of 

ttiis theoreni in Four steps. 

1. Find an absolutely continiious measiire 

2. Choose d* to minimize :(L + ~ x I ( M ( ~ ) ) ]  

3. Verify that A t  (<*) 3 A-(<*). 

M ( d ) .  with density m(d). that 

)' subject to c2 = d. 

and put cf = M ( d * ) .  

I .  Verif? that m.(@) is indeed a density. Le.. is non-negative with a total mass 

of iinity 

These four steps iniply then ttiat <* is minimas. The reason is that  for an? 

mcasure <. t hc  niasimiim loss is proport ional to 

Thiis any distribution < witti Ck = Ci. is also mininiw. CVe now solve our 

niinirriization probleni step bj- step. 

Thc first. step is to minimize X I ( < )  = (EF[lil)' subject to <- = d. It is 

natiiral to conjertiire t hat a minirnizer is given by m(x: (1) = 1 + c 12(x). (SO then 

Ebr(d)([i) = 0 i f  i > 2 )  where c = c(d)  satisfies d = x2(l + c 1 2 ( x ) )  dx. This 

iniplies c = ( & / 2 ) ( ~ 2 d  - 1). On the other hand. c = Ew(n[121 = Jx,(?Gl(d)). 



This shows t hat M (d) is the minimizer because if < is any distribution function 

with c2 = d. then 

Ttie second step is to find d niinirnizing the loss. (L/d)(l + ~~~(iCl(d))). It tunis 

oiit t hat t lie niinimizer d* is [(-Li/ + 5)/72011/'. so thût 

Ttic t hird siep is to verify t tiat XI (Cu) 2 A?(<' ). We have celciilated X i  (<*) above: 

A ,  (<') = (:il.[)( L W  - 1). wit h d' = [(-lu + 5)/7201? Wc recall tha t  t h e  second 

eigcmvaliie is given IIc2(<' ) II2/<; = (,&( EE- rlj)-)/<;. b k  observe t tiat if 1 

is evcn. t tien Ec= (ri,) = O. since 21, is a odd function and E* is symmetric. When 

J is otltl. 2k + I. say. r12k,l c m  be espressed as a liricar combinat ion of t,he even 

Legendre poly noniials. t hat is. 

wtiere the  coefficients al; and 6~ are 

Esrept for the first terni. a11 ot tier terms alter taking espectations in (2.5-13) 

wi Il clisappear: 



Then (EE-  (~1,))' = a: [/ 12(x) ( 1 + c%(x)) dx]'? = (91 1-IO)& where c' = 

f 6 1 2 )  ( 12d' - 1). Substituting d'. the second eigenvalue becornes 

The right I i d  side of the equation (2.5.14) is less than c". which is XI ( E ' ) .  This 

proves t hat X i  (<') is indeed larger t han X2(<*). The final step is to show that  

n~(r l* )  is in fiict a dens i t .  Since rn(z: d*) takes its minimum a t  r = O. it siiffices 

to slioa that rn(0: d* ) 3 O. Simple ralciilations stiow t hat this holds provided 

O 5 1) 5 1-1/5. 

For t h e  second part. we notice that when j 2 2. the expectations of the even 

Legendre polynoniials with respect. to <* are q u a 1  to zero. A straigtitforward 

calc-dation provides. for j = 1. . . . . S .  

und any syninietric rneasirre < sliaring these moments will also be min ima .  This 

corripietes t lie proof. 

Sincc the moments in Theoreni 2.5.1 above are generateti by a nieasiirc with 

a density. they belong to the intcrior of the  moment space. Thiis by applying 

Theorcm 2.4.9. we characterize the optimal solution for arbitrary q in t h e  Remark 

below . 

Remark IF F e  fit a linear rnodel where the triie response is a. polynomial of 

degrce (1 2 2. then for O 4 11 5 1-115 t h e  erists an optimal design < of the 

5 1 



form < = x:=f: n,dzC. where x, E [- 112. 1/21. a ,  3 0. and cri = 1. The  design 

< contains iinkriown parameters: the point masses cr, and the design points r,. 

Wtien s is even. since zero is a support point. tbere are 4 2  point masses and 

s / l  tlti;ign points. When s is ocld. there are ( s  - I ) /% point masses ancl (s + 
1 ) /2 clesigri point S. Whet tier s is even or odd. t here are s tinknorr-n parameters 

to he cletermined. Biit eqiiation (Xi. 12) gives s eqiiations and thus we can 

t ticwret ically determine al1 ~inknown pcammeters. 

For ve- large 11. we show t hat the optimal design lias two design points which 

are separated as widely as possible. 

The proof of Theoreni 2.5.2 is not complicated but is very long. Ué need to  give 

a proof separatel>- when q is even or odd. CC'e prepüre sonie preliniinary work to 

siniplify the proof. The first t hing ive need to do is to write the eigenvaliies X I  (É) 

and X2(<) in ternis of the moments <,. It tiirns out that it is miicti e=sier to esplain 

the following proof if we w i t e  the eigenvalties in ternis of w, := J ( ' ~ s ) ' l < ( d x )  = 

-p - <,, insteacl of the moments ci. Sincc < is syrnmetrir. writing the eigcnvaliies 

in terms of (il, will capture only the even Legendre polj-nomials. Mé dealt u-it h 

the Legendre polynoniials More.  but now we nexd to  write iip the coefficients 

esplicitly in the notation. We denote the (2  j) t ti Legendre polynoniial on [- 1. LI. 
by PL, (.c) = x:=O k l , 2 i  x2'. The  espectation of this polynoniial is denoted by 



Qu(+) = EE[Bj (2x) l  = x:=o k j , l i  pi. As an illustration. ure show some of the 

P2,.s as ~ ~ 1 1  as the Qv(S>)'s. 

Ttic eigcnvirliia can he rewritten in terms of mi- & 

-1 -5-1 

- - - 2; + 1 ;+ 1 
U,  Zbdm Q2j(d~Sr) + d m -  Qz(j+ll(@)l2 



Secondly. we define a polynomial R2, in the variable tbl by taking QYj(+)  and 

replacing t tie w,'s in the lollowing manner: if the preceding coefficient is positive 

we replace wi by w;  but if it is negative we replace (u* by V I .  Some of the RZj's 

are 

ancl ive notice t hat r.( 1 ) = XI  ( 1 ) .  where 1 is the .Y + 1 dimensional vector of ones- 

Let g(+) = +{ l + :XI (qb)}. CCé are now reaclv to prove the tlieoreni when q is 
l 

Proof: L\'c \vant to prove t h a t  for sufficiently liirge 11. g ( $ )  2 g(1) for al1 +. 
t I c w  ire tiavc i ~~ i in i e< l  tliat X 1 (1) 3 X2(l). This is truc becaiisc 

s - l  r 



The inqiiality g(+) 2 g(1) is eqiiivalent to 

The following lemma finds the  masimilm of (e r lXI  (1) - Xl(+))/(l - U I )  over tC>. 

Assiiming ttiis lemma for the moment ive finish iip the proof for the t heorem and 

ive will prove the lemnia [ater. 

Lemma 2.5.3 For each s 2 1. there ezists w ;  < 1 s ~ c h  that 

Tliis 1cnim;i irnplies 

The niinlerator of right hand side in the above ineqiiality vlXI(l)  - r(u1). is a 

polynoniial in wl whirh vanisties at. wl = 1. tience t i a s  a factor ( 1 - wi ). Thlis 

P., 1 (IL!;) < x for cadi G J ~ .  On the ot lier tinrid. for O 5 wi 5 w;  we /lave 



Taking u., = niüs{umSl. y,.?} gives g(+) > g(1) for al1 q!J whenever 11 2 Y,. Con- 

seqiiently (6-1/1 + bin)/2 is minimas for v 2 u.,. This proves the t heorem for q 

even. I 

Proof: (of Lemnia 2.5.3) 

CCé niiist siloir. that 1C> with ul E (er;. 1). 

But n.e niiist take rare of t lie case when Q2, (+) and R, (wl ) are n g a t  ive. Since 

R2,irj.,) is c-ont,iniioiis in m i  and & ( L )  = 1. for each j = 1.2.. . . . S .  there esists 

1~5, sudi tlii~t H2,(u1 ) 2 O for d l  el1 E , . i ) For esample. set cf;, to be t h e  

largest. root of R2,(ul) .  Taking w; as the masimuni of {wJl : j = L...-.s} gives 

Ttic ineqiialities (2.5.16) and (2.5. Li) implj- t tiat 

arici lience t h i s  shows Al(@) 2 r (w l )  for al1 q!~ with wl E ( w ; .  1). 

I t  remains to find s ~ i p , ~ ~ , , ~ , ~ ,  (cul X(1)  - r(riil))/(l - iÿ l  ) := o,l and d e t e m i n e  

u * ~  A(1)-r(u-1 ) wlicther or not v , ~  < opl Ttie maximum of l-,r, occurs at = 1. and 



we can fornidate v.,, in terms of s and the coefficients prj..>i of Qv( lC>)  We wite 

out the fornida for vsl in the folloaing lemma and give a proof. 

Proof: The proof is a collection of four facts. 

Fact 1 r ( w l )  = XJ,, (-Lj + ~ ) R ; ~ ( u ~ )  is conves for al1 w~ E ( w ; .  1). 

c' 'xci)-rcu'i ' is an an  increasing iiinction of wl E ( u;. 1 ) .  Fact 2 h ( v 1 )  := I-,(., 

Fact 3 %,( 1 j = ( i j ( ~ j +  - 1). where we define S2,(wi ) := P 2 , ( f i ) .  For esample. 

Fact 4 For j 2 :3. we have 

C k  esplain why t liese f x t s  will provide the  proof. Since X I  (1) = r (  1). we reur i te  

~ l r ( l ) - r ( ~ l ) .  Bu Fact 2 .  h h l )  in ternis of r. h(wi )  = 
l-lL,l 



13 tu Ci. 



d g -  [R2,(wl)]" = 2[R$ Rij  + R2,Rij] 2 O for al1 U J ~  E ( q ! ~ ;  1). Remember that $J; 

WLS clefined in siich a way that Ru(cui) 3 O for al1 cl E (v;. 1). and R ; j ( ~ , )  2 O 

for d l  wl since al1 the negative terms in R2;(rui ) are linear in wl . Consequently. 

R$(wl ) is convex and so is r(wi ) for al1 ru, E ( U T .  1 ) .  

2. The convesity of r irnplies that rt{pi ) < (r (wi  ) - r( l ) ) / (uI  - L). nliich is 

quivalent to hf( i i t i )  > 0. and this shows thüt h (Qi)  is an  increasing ftinction. 

3. Taking the transformation 01 = y'. we have 

wtic:re fi, is tlic (2j) t t i  Legendre polynomial. Using the properties (y' - 1)P; = 

j ( g l :  - P,',_\) and !jPJ = ;Pj + Pi-,. we obtain 

T h .  &5'-:, ( 1 ) = ( j / 2 )  (2 ;  + 1 ). 

4. Fact -4 is ii simple observation and so t h e  prool is omit tetl. Clé ivrite oiit t tie 

values of vS for even q. in Table 2.1. 

S o  Lir ae tiavc beeri c-onccrned with only when q is even. HOK- clo wc prove 

Theoreni 2.5.2 for odd q'? The proof will be parallet to thc case o l  evcn q. and we 

arc able to obt,ain a formula siniilar to Lenima 2.5-1. The only differenccs are in 



T l  1 :  Values of u;. vSt.v,2 and v, = mÿ?<{vsl. usa} as in Theorem 2.5.2. 

Fitted response is a straight line: true response is ü polynornial of degree even 

h - r a  s = ( q  + L)/L and we are assiiniing thüt  X 2 ( 1 )  2 X I  (1). This assurnption 

is verifid t ~ y  rioticing t tiat, 

Ttic only tliEciilt~- is to prove tliat r (wl )  is conves as ive proved in Fart 1 for t h e  

previoiis case. Here r ( w l )  is not so simple as before. and it is tielpfiil to follow 

t lie proof if LW rewrite A?($) in terms of t he  coefficients of the odd Legendre 



LW ran rewrite t lie second eigenvalue in terms of Q2,- (+). 

LIS a n  iliristration. LW mention a few terms ubove 

Sorri~ of t tic (ui ) *s  are 

We state a sinii1ur resiilt to Lemma 2.5.-l and give a proof. 



Proof: WC first determine tha t  h(wi) := V I  r( 1 1-r (w } 
1 -V I  

is a n  increasing fiinction 

for 5 V I  < 1. This is Lriie as long as r (w i  ) = ( L/wl ) (-1; + :{)R;,+, (wl  ) is 

conw-cs wtien ul lies betw-een ru; and 1. b'e clairn it is convex and prove it by 

sliowing t h  G(wl) := ( l /w l )R~ ,+ ,  ( w i )  is conves. CVe will show that C Y ( w l )  2 O 

for al1 w ;  <_ tyi <_ 1. 

A simple calciilation shows that C I ' ( ~ J ~  ) 2 O iff 

Sihstit iitirig H2,,i ( 1) = 1 and iisirig the definition of 0;. vie fincl t hat Rt(wl ) > 0. 

for I l  t 1 1. Ollr task is riow to show t tiat ( v i  fi'(uI ) - 2R(w1 ) )  3 O. I t  

is wsicr t o see i f  we. in R2,, ( t , ~  ) . groiip t h e  high powcr ternis and linear ternis 

scpratrly. 



We look only at the  case when j is odd. as the other case is very similar. The 

reh t  ionship 

implies t hat 

i n  qiiation (.L.S.L8). it is clear that the first term is positive: the  second term is 

ne~ativt?  because t lie coefficients plji ..li-:l are negat,ive. T t ~ u s  the left hand side 

of ( 2 5  18) is positive. so tkiat r ( q  ) is conves ancl h(ui ) is an increasing fiinction 

of (21 for al1 w;  5 (9, 5 1. So the rnasirniim of h(w1) occiirs at L. That is. 

[ t  reniains to deterniine r f (  1).  Differentiating r(wl  ) wit ti respect to ai gives 

To c-dciilatr rr( 1 ). it is iiseftil to define S2j+l (wI ) similar to tvhat ive did for ewn 



CVe are now in a position to  conclude 

Li> preserit some values of II., a h e n  q is odd in Table 2.2. 

Tiihlc 2.2: Virltirr: of c>;. i / , i .  II.,? ancl II., = nia~{i~. ,~ . r / ,~} iw in Ttieoreni 2-52.  

Fittecl response is a straigtit linc: true response is ü poiynomial of tlegree ocld q- 

For il 2 v., t hc niinimas design is 6*1/2. 

So far ~ v e  tiil~c analped and obtnined the optinial clesigns for sniall 11. (O 5 11 5 

( 1 )  or I r  11. (v 2 u.,). What are the  optimal designs for (L4/5) 5 11 5 u,:> 



If v E ( 1-I/5. y,) .  the optimal solution lies on the bo~indary of the nionient space 

II,. irncl so by C ' o r o l l ~  2.3.6. the design distribution is imicpely determined. 

Before giving csarriples. rve take a look at t lie eigenvalues X i .  A-. when 2 5 q 5 6. 

CVP niake two observations. First. when g is odd. the  second eigenvaliie A?(@)  

lit ilizes one niore moment. Secondly. the eigenvaliies repeat . The first eigenvaliies 

X I  (q6) are the same when q = 2 and 3. q = -1 and -5. the second eigenvalues are 

t h e  same a-lien q = 3 und -1. (1 = 5 and 6. Hé close this section by iiliistrating 

how we ob tain the optimal designs for the cases q = 2.3. -1.5. and 6. 

T i  3 :  Eigenvaliim w tien true response is Legendre polytioriiial of clegree q 



Example 1: q = 2. 

Ttie esperinienter fits a Iinear model. alt hoiigti the true niodel might be qiiridrat ic. 

it is siniple enough to obtüin the optimal design by a direct calciilation. 

hé riot,ice that vl also equals 10 in the table of the esamples of y,. 

In this  case t h e  are 3 support points incliiding zero on [- L/Z. 1/21. for sniall 

il E (0. 1-1/5). From Table 2.1 and Table 2.2. we have v, = 35 when q = 3 .  and 

v., = !Il wtien (1 = -1. The optinial solution in terms of the moments r ÿ i  and w ~ : - .  

is given below. Uc state it for q = 3. wit h the relevant changes for q = -1 in 

wlicrc c' is ii rriininiizer in [O. 11 of t h e  loss Iiinrtion. ignoring the constant terni. 

I(c) = ( i /c)(v + nias{Xi (c). XZ(c)}). wliere c = (c. 2) and c E [O. I 1. Thiis the 

optinial design is 



w tiere 

Example 3 : q is .5 or 6. 

There are -1 support points. f xi and k q .  s a -  From t h e  tables. we have u ,  = 

38 1.5 or 8632.88. The optirrial solution in terms of nionieiits. y>[ .  Q. and w3. is 

I t  is riot easy to clescribe the boiinclarÿ of .CI:{. biit a portion of it is given by 

( V I .  a;. wf ) ancl t his provides an optimal solut ion 

ii-livre r' is t lie niininiizer of the loss fiiriction l(c) = ( l/c) (il+rnas{XI (c). X2(c)}). 

' >  . 
ivliorc c = ((B. r. r.'). For sniall 11. t lie t tirce paranieters a. XI. and L- are deter- 

niiiied by the t h e  ecpations 



2.5.3 Suggested minimax design for arbitrary q 

Instead of presenting the mininiax design for each q. we concliide this section 

by providing somc guidelines wlien we fit a linear mode1 but we are concerned 

thst  the trtie response is a polynomial of some iinknown but arbitrary degree q. 

There will be three different cases cfepencfing on the s i x  of 11. 

1. The niinimas design for O 5 11 5 (1415) : 

Tlie optimal design is of the form c' = ~-~~~ a,&, wtiich consists of s 

iinkxiowris. TIiese iinknowns are determincd by the s equutions (2.3-12). 

2 .  minimas design for medium size of v. (1-115) 5 u 5 v, : 

The  optinial solutions in tems of moments are on t lie boiindriry of t lie 

moment spacc :Us. whicti is not so easy to describe. But a part of the 

boundary can be exprcssed by (ci>[. q~:. . . . . mf) and ttiis siiggests that for 

wcki 11. the optimal design <* is determineci the niinimizer c' of the  l o s  

fiinct ion I (c )  = ( L / c )  (11 + mas(,\, (c). ,\?(c))). rvhere c = (c. c2. . . . . c') and 

c E (O. 1).  tliat is. c' = 6kJ;;/1 This niininiization can be easily solvecl 

nimierical Iy. 

3. Ttie niinhius design for large u >_ I / ,  : 

By Tlieorcni 2..5.2. the mininiÿs design consists of t tie estrenie points 5 1/2 

wi t 11 tuliid niriss. 



2.6 A-opt imal designs for approximat ely linear 

mode1 

[t  is not as straightfomard as for the D-optimal case to obtain the -4-optimal 

niinirnas clt-ign. In the proof of Theorem 2.5.1 we set iip the problem in four 

steps. In the first step. ive üssumed that the  first eigenvaliie Xi is larger than 

the second eigenvaliie A-. In the t hird step we verified t hat the first eigenvalue is 

indeecl llrrger at the niinimas density. For -4-optimality t his t hird step fails to be 

satisfied for srnall u. Wiens ( 1992) suggests that  one m- constriict a minimax 

design bj- niinirnizing the loss fiinction while one of two eigenvalues is tield fixeci. 

For 3 -1/9. the second eigenvalue is larger a t  the minimax density. Wiens 

obtains niininias design of the form m ( x )  = a(r2 - hl-l)+/z2. 

2.6.1 Wiens's rninimax design for SLR 

For sniall 11. CViens first constriicts a density to mininiize t lie first (second) eigen- 

value siibject to the second (first) eigenvaliie being fised. The density is of the 

wtiere the  coefficients u. 6 .  c satisfy 



One then determines ( t * .  y { ' )  to minimize the supremum of the loss function. 

Ttien if O <_ u 5 -1/9. the rninimiu density is 

2.6.2 Minimax design based on Rychlik's approach 

For sniull u. we are not able to obtain a result like Theorem 2.5.1 in this case. 

biit for large v. ive have resiilt similar to Theorem 2.5.2. That is. the optinial 

design has two design points which are extreme. The proof of this result follows 

very casily and so we present the result without proof. The eigenval~ies are 

wlicrc for t tic first eigenvaliie. runs from 1 to s or s - L. depending whet her q 

is rvcn or odd. We notice t hat the first eigenvalue is the same as tlie one for Q- 

and D-optimal cases. but the second eigenvaliie is not. Al1 the calci~lations are 

biaed on the fact that X2(1) > Xi@) for al1 q 1. 3. 



Theorem 2.6.1 For every s 2 1 there exists us < x sach that (6-1/2 + 6,/?)/2 

is minimajor v 2 us. The loewer bound v, is d e t e m i n e d  by us = mrilc{vsl.vs2}. 

mus 
Ul 

us1 = [ A 2 ( l )  - r ( d J 1 ) I  
c . ; ~ ~ i I l  -L( L - w , )  

Tablc 2.4: Valites of w ; .  r/,l. us- and vs = nia~{r/ ,~.  P.?} is in Theorem 2.6. L. 

Fittccl response is a straight line: triie response is a polynomial of degree even 

Q.  For 11 2 i/, tlie mininiax design is 

2.6.3 Suggested minimax design for arbitrary q 

k\,k cwnchicle t liis section providing guidelines on how to fit a linear mode1 

rvlirri WC :arc concerneci that the  triie response is a polynomial of some unknown 

but i~rbitrary degrec. There will be three different cases depending on t h e  size 

of I l .  



1. The niininlas clesign for O 5 v 5 (-419) : 

We are not able to provide an optimal design. But we look a t  t his problem 

in Chepter -I with the contaminating space FI. 

2. A minirnax design for medium size of v. (419) 5 v 5 us : 

An optinial design is of the form eu = b,fi,,. where c* is the minimizer 

o f  the loss Iiinction 1 (c) = Y (  1 + -l /c) + niax{Xl ( c ) .  A&) }. for each v. The  

vector c = (c. 2. . . . . 6 )  is as defined in the previoiis section. 

3. The n i in im~s  design for large w 2 ils : 

B -  Theorern 2.6.1. the optimal design consists of the extreme points wit h 

ccpial m a s .  

2.7 Final comment 

The clesigns WC have obtained may not have enoiigh support points to fit the 

niodc4s agairist whicti we wish to protect. and so are rlearly non-robiist in ttiis 

respect. For instance. as ive have seen in Esample 2 .  there is an optimal design 

wit h three support points wiien fitting a. linear regrcssion line althoiigh triie 

niodel niigtit be cubic or quartir. Since thcre are only three support points it is 

not possible to check whet her or  not the alternat ive mode1 is appropriate. When 

v 5 14/5. in tliis esample wc foiind an  optimal design of the form 



C'orisider the following perturbation of t tiis optimal design for some small con- 

stant c 

( I - + O&,, *,,. 

In ttiis W .  LW obtain a closcto-optimal but safer design. The best ww to 

rtioose the constant c will be  the subject of future research. 



Chapter 3 

Mode1 robust designs in 

polynomial regression II 

In C'tiapter 2 t lie esperinienter wnnted a fit ted response fiinct ion t liat wotild be 

iiseid in predicting fiitiire y-values. Here in Chapter 3. ive imagine that the 

original nioclel fiinction. a pth orcler polynomial. lias been contaminated b -  the  

acltli t ion of some tiigkier orcler terms onlu. Me wnnt the fit tecl response fiinct ion 

to ignore the vagaries of t kie contamination and estimate the  original mode1 as 

[*losc4~- iw possible. Ot licrwisc the problern is t tic same: to fincl a design t hat  

is optirrial. I t  simplifies the matheniatics to restrict our serirch to designs witti 

mininial support. This is possible by iising Tlicorem 3.3.2. which says that for 

nicasiirc I L  o n  [a. h] not siipported by p or f e w r  points. t tiere esists a iiniqiie 

nieastire < on [a. 61 wit h p+ 1 support points. for which and < have the same first 

2p+  I nionients. W k n  the original niodel fiinction is a pth order polynomial that 

niiglit be rontaminated by a p + 1 order terni on15 for the LI- and A-optimality 

cases. the maximum loss fiinctions are simplified. This simplification makes it 



easy to prove the existence of a sqmnietric optimal design for the D-optimality 

criterion. [ri Section 2.2. we nientioned t hat for the -4- and Q-opt imafity cases. 

it is not knom-ri if the optimal design is sjmmetric. When the contamination 

term is qriaclrutic while the  triie model function is linear. urc are able to prove 

t bat the opt inial designs are symrnetric. 

3.1 Introduction 

In t liis chapter the  triie coefficients of the lower order model are simply the firjt 

p + i c.oefhc.ients from the contaminated moclel. 

More precisely. we set r (2) = ( 1 .1 .  . . . . s~)' and z2(x) = (r*' . . . . . 
whierc the regressors r range over the interval [- i /'>. 1/21. The e'cperimenter 

fits. by lezut scpares. the moclel 

dthough the truc modei is 

In contrat  to Chapter 2. here the  triie coefficient vector coincides a i t h  0 , .  

arid t tic caritar~iination tcrrn is siniply r:{P. The paranieter 8 ,  is identifiable 

bwaiise any t~vo polynoniials t hat agrw o n  a neighbotirhood of zero have the  

sanie coefficients. For an)- choice of design points (x,):=, oiir observations will 

tw givcn by 

!/i = a:(xJ el + z ; ( x i )  p + E ~ .  i = 1.. . . . n. 



wtiere ive assume additive. iincorrelated errors o, with common variance o'. 

T h e  qiiality of the l e s t  sqiiares estimate 0 will depend o n  the  siIe of tlie 

contamination term ZTP and on the  placement OF the design points. We assunie 

t tiat the contaniination is small. in the  sense that for some known 11 > 0. the 

fiinct ion r:p bbelongs to 

As in C'liapter 2. the contamination space 3 defined above is a space of 

polynoniials whose degree is less than or eqiial to  q. bot it is not tlie sanie 

contamination spüce .F iised in Chapter  2. In Chapter 3 .  the notation F refers 

to t lie spacc above. 

For a given loss fiinct ion 13 t hen. oiir p r ~ b k m  is to choose design points t hat 

are robiist against ttie worst possible contamination in F. tha t  is. to rninimize 

siipr L Oiir loss fiinction will alwüys depend on t lie support points (1, ) y . ,  only 

t tiroiigti t tic. design nieasiire < = ( 1 / 1 1 )  x:=, d,, . so we recast oiir problem in 

tcrnis of meascires on [- 112. 1/21. in this chapter we let --lp and CE. for any 

nieasiire < on [- 1/2. 1/21. be given by 

This is the same as in Chapter 2 escept u ( x )  is replüced by z 2 ( x ) .  Sote that At 

is a ( p  f 1) x ( p  + 1)  niatris. while Ck is a ( p  + 1) x ( q  - p) niatris. 

The  cstiniatc 8. the mean sqiiared error of ê and t h r e ~  l o s  functions art. 

derived in Chapter 2. See t lie equrrt ions from (2.1. [ O )  to (21.1-1). We now w n t  

to ohtain optimal designs in the  sense of niininiizing suppCo. S L I P ~ ~ C . - ~  and 

S L ~ ~ J F  &. 



3.2 Suprema of loss functions 

[II t his section we review the supremurn of the loss ftinction over F in ternis of 

the design measlire <. For convenience ae define a ( q  - p) x ( q  - p) matris by 

Bo = Jr2(.r)r:(r) d r .  and let a = &/'p/rl. and v = a'/nr12. The invertibi1it.y 

of the niütris Bu follorvs froni the  same reasoning as in Chapter  2. 

3.2.1 D-optimality criterion 

We clerivecl supp  L (p. 5) in (2.2.3). here k v e  merely rewrite i t after rearranging 

the terni v = a2/nrl'. 

3.2.2 A-optimality criterion 

3.2.3 Q-optimality criterion 

Althoiigh the iclea is the same in Q-optirnality rase we obtain a little tliflerent 

forniiila ancl so ~ v e  ~ ~ i t e  i t  out properl.  We begin by cxpanding 

[ e  - Y 1 X )  = [zT(e -8 , )  - ~ 3 1 '  
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Rwall t tiat .Io and Ci, clenote the -4, and  C;, niatriccs when IL is Lebesgiie 

nieiisiire on  [- 1/2. 1/21. Then we can rewrite the loss function as 

Taking t lie siipreniiini over F gives 

Using the  results of the nes t  section we hope to get more concrete information 

on the nature of the  optimal soliition. 



3.3 Number of support points 

Huving foiind tmctable formulas for variolis loss fiinctions. we tiirn our attention 

to finding the optinial design. that  is the probability nieasisiire < that  rninimizes 

s u p ~  L(@ c). .-\ closer inspection of the  loss ftinct ion reveals t hat. since we are 

cloing polyriomiül regression. s i i p ~ L ( B .  <) depends on < only throiigh its first 

p + cl nioriicnts. 

The niain restilt of t his section is Theorem 3.3.2 which gives the  minimum 

iiiiriilier of support points necessary to  define a. meastire w hose first few moments 

are specifieù. T h e  proof depends on Lemma 2.1.1 u-hich clarifies the  relationship 

between the value of p. the  mat r i s  A,,. and the niiniber of support points of p. 

Lemma 3.3.1 If the meusure 11 has emctlg p + 1 .support points. i-e.. 11 = 

x:==,, n,d,, . then clet -4, = n:==n ai ni+, (xi - xj)'- 
Proof: C\-hen IL has esact ly p + 1 support points. t hen we ni- rewrite .LI, as 

Tlic rriatris on  t h  left is a Vandermoncie niutris. and so its determinant is giwn 

- n,&, - x,). The resiilt now follows easily 

Theorem 3.3.2 For any measare p on  [a. b] not supported b y  p or fezwer points. 

there eîists a m i q u e  rneasure É on  [a. bl urith p + 1 sr~pport points. for which p 

a7d < have the same  f i s t  2 p  + 1 moments. 



Proof: We begin by defining 

where the invertibilit- of the  matrir of moments is giiarmteed by our  assurnption 

on  Cr and Lcmnia 2. L. 1. Set  t ing o ( t )  = c,çP + - - - + cl r + CO. we rnay r e w i  te the  

niatris eqiiation above as the system 

Sett.ing ~ ( r )  = .c*' - o(x). this systern tells LE that  

in ottier words. thüt  J c>r d p  = O for any polynomial r of degree less than o r  

qiial to p. In particular. if can be f ac to rd  non-trivially as iit = rs.  ttien 

U c  rlaini t tiat t h e  polynomial ci has p + 1 distinct r d  roots (r,)r=, lj-ing in t hc 

interval [CL. bl. First of d l .  if w tiad a coniples root ive coiild find a factorization 

of the t y ) ~  c( .c)  = r ( x ) ( x 2  + d2) with d # O. Then (3.3.9) implies t h  I L  is 

siipportcd t)y t lie p- 1 or  fewer roots of r. whicii contradicts our assiimption about 

p.  Siniilarly. a multiple root imuld allou- a factorization w ( x )  = r ( r )  ( J :  - d)'. 

wiiicii Ica& to the same contradiction. Finally. for an? root d of u tve have 

U ( . I - )  = r( . r )  (.r - d)  and so 



Sincc p is not supported by the  roots of r. it follows that  x - d must vmish 

soniewhere in the interval [a. b] .  in other words. a 4 d 5 b. 

T h e  points (x,)f', will be t h e  support points for our meastre <. h*e  End the 

niasses by solving the eqiiat ion 

S o t e  that since the xi's are distinct. the matrix above is a Vandermonde matris 

and hence invertible. Define the  measure = xf==o aiha.  Clearly. U(X) = 

n;='=(>(.r - it) van i sks  <-idmost everywhere and so 

By constriirtion. < lias the sanie first p moments a s  IL. and so setting i = O in 

(:3.;<.2) ancl (3.3.4). we get 

whicti nieans t tiat the  ( p  + 1) th moment is also the sanie. C'ont iniiing in t his 

way for i from 1 to p. we conclude that < has  the same first %p + 1 moments as 

L U -  non. prove t hat the weights cri are positive. Since 11 and E share the same 

first 2 p  + 1 moments. t hey give the same integral for an? polynomial of clegree 

2 p  + 1 or less. For any i between O and p. define r , ( x )  = n,& - x,). Then r, 

is a polynoniial of degree p. so  r: lias degree 2 p  and ttiiis 



where the strict ineqiiality follows from our assuniption on the  support of p. 

The only tliing left to show is ~iniqueness. Let 6 be a meÿsure with p + 1 

support points at xo < x i  < - - -  < x, and T any other meastire with the same 

first ' I p  + L moments as <. CVe consider the  following polynomials. each of which 

hüs degree of ' l p  + 1 or less. 

Figure 3.1 Sonie of w fiinct ions. 

, = ( - ) - x,) (x - L$ 

z # J - ~ . J  

CVe have a, = O. E-alrnost everywhere. i = O. 1.. . . . p + 1 and by the  shared 

nionients J w, d r  = 0.i = O. 1.. . . . p  + 1. Suppose r ( R  \ {xo.. . . .xp}) > O so 



that none of wi is identically equal to zero r-a.e. Then r must assign n i a s  to the 

p + 2 disjoint intervals { w ,  < 0}c:. Conversel- t his shows t hat if T has p + 1 

support points. then they miist be precisely 20. . . . . r,. [n this case. the masses 

of r are founcl by solving 

so that r = <. This concludes the proof, 

In oiir regession setting ive work on the space of the syrnrnetric nieasiires 

and t lius we miist chri- that the above t heorern holds tliere üs w l l .  

Theorem 3.3.3 If the meusure p in Theorern 3.52 is symrnetn'c about 0. then 

su i s  6 .  

Proof: Ttie measiire 6-  has p + 1 support points and shares the first Zp + 1 

nionicrits with p. the  ocld nionients being zero. By t lie iiniq~iencss in Tlieoreni 

:1.3.2. ive have 6 -  = ,C. in 0 t h  words. is symnietric. 

Froni now <in < refers to the meastrre witli p + 1 siipport points &ose esis- 

tence is giiaranteed bx Theorem 3.3.2. We denote by Ek the kt h moment of t he  

nicasure c. 



3.4 Some results when q - p  = 1 

Suppose now that q - p = 1 so that  CE = (ewI. .  . . . & , + I ) T .  and Bo is a positive 

scalar. 

Lemma 3.4.1 If E has p + 1 .~uppor t  points (x&. then* 

w h w e  the e1ernent.s of the vector c are the non-leading coej5czent.s of the po lym-  

micd nr=>=,(s - .ri). 

Proof: Defirie o(r) = nr.o(x - xi) = co + c l r  + - - - + c,xP + x*' and note tliat 

O viinistiti; p-almost everywliere. Let ting c= (co. . . . . c,)~ and integrat ing gives 

and nitiltiplying t lie eqtiation above by A;' gives the fi rst result. .\.Iiiltiplying 

t lie tlcliiation above by q.4;' gives C'&-L;' CE = -cFc. But 



Observations when q - p = 1 

1. For any nieüsiire p. the  siipreniiim of the  loss function supp L ( P  IL) is û 

hinction of the first Zp + 1 moments of p. But spplying Theorem 3.3.3 we 

obtain a, cliscrete nieasrrre < with p + 1 support points thût shares the first 

Zp + I moments. a n d  lience gives the sarne loss. For the nieasure <. Lemma 

3.4.1 tells ils that cTA;'cÉ = and so 

SLIP CD(p. I L )  = SUP CD (p. E )  = 
IF 3 

For any measiire <. let <- stand for the image nieasure iinder the mapping 

.c ++ -.r. and  let be t lie syrnmetrized measiire ( L/2)(< + <- ). I t is known 
- 

tliat (Ac(  <_ la-\$ and since <2,+2 is the sanie for < and <. ive conclude 

t hat the D-opt imal m a u r e  miist be symrnetric. But  it cloesn't make the 

rriir1iniiz;it ion procedilre casier. 

2. CL-e not ire t ha t  for t lie .-\-and Q-opt imali ty cases the  --bias*' t erm is indepen- 

dent of point niasses. CI,. From Lemma 3.4.1. cT.-L;'cÉ = cTc and .-\;'Ci = 

-c. and the vector c depends only on design points x,. And hence the hias 

ternis FIc and .Jc beconie 

3.  For ariy niutris niap t -+ A(!) tha t  is lirlear in t .  the mapping t ++ 

tracet ;l-' ( t ) ) is conves because 



This means t liat the **variancev- term of siip, L,, (P. <) is conves. ( we 

make a note t hitt this  daim is triie for arbitrary p and q not necessarily 

( 1 - p =  1-1 

I. X coiinteresample shows t hat  **bisis- ternis of supF Le4 (P. <) as well as 

sopF LQ(B.<) are not convex. Let p = 1. q = 2 and consider the memiire 

I - 9 - < = zb-..l + This gives El = .-1100. c2 = 2-11 .  ancl &Z = .IO61 
- 

and so bias,\(C) = -1.0. biasq(<) = 0.73 whereas bias,\(<) = -1.6465. 
- + 

biasu(<) = ?.-1:Kj. wtiere < is the symmetrizecl version of <. Severttieless. 

wlicn p = 1 and q = 2 .  ive crin prove t,hüt optinial design for L.-, as ivcll as 

for 13ÿ is synimetric. 

Lemma 3.4.2 I f p  = 1 and (1 = 2. for ariy meusure 6 urith I;lel # O we can jkid 

n .sl/mmetric rneasure <* svch Ihat. for any  3. 

r ~ n d  thereJore the --\-optimal solidion und the Q-optimal solution are s ~ r n m e t ~ i c .  

Proof: Sincc p = 1 and q = 2. we have z&) = .r2. 

By Ttieoreni :3.:1.2. we rnay assume ttiat < has 2 support points on [-112. 1/21. 

si-.. < = adx + ( i - n)dy. for some x. y E [- 112. 1/21. Then Lemmû 3.3.1 tells ils 



that 

G - = a( 1 - a ) ( x  - y)'. 

First ~ v e  look at t hc .varianr&' part of Lrt ( resp. Lq). that is. trace(.-1;' )(  resp. 

trace[.-l;' --loi). This is equal to (<; + +)/(<; - cfL) .  wtiere d = 1 for A-optirnality 

and ri = 1/ 12 for Q-optimality. Therefore. 

Let tis look at the bias term in L,+ t hat is. C;--I;'CE. By Lemnia 3.-1.1. for any 

rriruure siipported two points x and y rve have. .-I;'c.E = (-I!/. x + !/). so 

Thc miriimiini of 16 - (r' - Fxy + y" ooer t h e  range - 1 / 2  5 x. y 5 119 occciirs at 

r = -1/2.!/ = 112 ancl the niininiiim value is 1-1. Sinçe ttiis is always positive. 

ancl since var(<*) 5 var (c). rve get L..t (P.  <') 5 &(p. <). 



For Q-optimality. it is useful to Lise the formula .&'CO = ( L /  12. O). then rewrite 

LQ(P.E) 

Looking only at the term involving P and subtracting ive get 

The niininiiim of2-(x2-6ry+y2) occiirs a t  .r = - 112. y = 112 and the niininiuni 

valiir is O. As for .-1-optirnalit': this  slions ttint Lq(P.  <') 5 Lg(P. <). rn 

3.5 Optimal designs 

\\i. t k . i l l  illiistrate lion LW can obtain optimal designs. Ué have proved tliat the 

U-optiniel nieutire is syninietric rvtien q - p = 1. in general. this follorvs from 

Theoreni 2.2.-I. We have also proved in Lemnia 3.-1.2 that  the -4- and Q-optimal 

nicastires are syninietric whcn p = 1 and q = 2. For t tic other cases. since we 

are not able to prove the  optimal design is symmetric. we restrict to the class of 

synirriet ric tlcsigns. 

;\pplying Theorem 3.3.3 we see that t he  mininiization problem depends on 

the design points xi and their masses ni. i = L. . . . . [(p + L)/2]. Writing these in 



To emphasize that we are  viewing the niasirnom loss as a function of x and a 

we w i t e  [(a. x) = supg L(P. xi nidJc). CVe lormtilate the  minimization problem 

as follows. 

i Osai <_ 1 

Mnimize 1 (a. x) : siibject to a, = L 

O 5 xz 5 1/2* 

Sirice ive have assiimed t ha t  < is symmctric. we only consider the design points 

r ,  E [O. 1/21: t lie reniirining ones are obtained b ~ -  reflection. The niirnber of 

support points will Vary accorcling to number of moments involved in the loss 

fiir1c.t ion. 

For sniüll \-aliies of p and cl. the niinimizatioii problern can be solved nunier- 

ically. I!nder the D- and -4-optiniality criteria we obtain the minimas tlesigns 

for iipprosimately linear. approsimütely qiiadratic and approsimütely ciibic re- 

gression models. hl1 the  D-optimal design points and their masses are in Table 

3.6. Table 3.8. Table 3. L3. Table 3.12 and Table 3.1-t. 

3.5.1 Approximately linear model 

D-optimality criterion 

Exarnple 1: p = L (linear) and q = 2 (qiiadratic). 

Ttir espeririienter fits a lincar regession althoiigli the true model miglit be 



qiiaclratic. By Theoreni 9.3.3 ancl Lemma 3.4.1. tbere exists a design with two 

support points &xi on [- l/2. 1/21 wit h q u a 1  mass and so ignoring the  constant 

tcnn in the tqtiation (3.4.2). the target fiinction beconies 

Corisqiierit ly t. tie optimal design is. wit h .L; = ( I / / x o )  '!". 

Example 2: p = I and q = 3 (ciibic). 

Tlie truc mode1 might be a ciibic polynornial. biit we fit a linear regression. 

so t lie regressors are z (x) = ( 1. r)' uncl z 2 ( x )  = (i2. The siiprerriuni of 

tlic loss fiirirtion sup7 L(P.  <) in (3 .9 .1)  is a Function of the  first 4 moments. 

So ir i  Theoreni :1.:1.3. the  niimber oi moments. 2 p  + 1 must be  greater or  eqiiul 

1. whirti iniplies that p needs to  be 2. and thiis we obtain a discrete m e s u r e  

E \vitil 3 siipport points. Since t h e  nieastire is symnictr ic  E is of the fonri 

< = ( L - <i)& + (cr/2)dz,  + (al2)d- , ,  . For t his nieaslire 

The siipreniiim of the loss function becornes 

The niinirnizer (a'. x;) is obtained by niinimizing lD(a. X I )  ovcr the doniain 

[o. 11 x [o. 1/21. 



Example 3 : p = L and q = -l (quartic). 

CVe fit a linear regression although the triie mode1 is a quartic polynomial. so 

the regressors are r (r) = ( L. x ) ~  and z 2 ( x )  = (x2. x3. x - ' ) ~ .  The siipremtim of 

the Ioss ftinction SlipF L(P.  <) invdves onIy t h e  first .5 monients. Theorem 3-93  

says t hat an optimal measiire < has 3 siipport points O and &xi. This measiire 

is of  the forni < = ( L  - a)& + (a/?)&, + (a/'L)d;-,, for some X I  E [O. 1/21. The 

niatris Ac is sarne as in Esaniple 2. The eigenvaliies of the niatris GE are -1-i8$ 

ancl 980~2 - L0080&& + 2822-1~:. Thiis the  maximum loss is 

A-optimdity criterion 

Example 4: p = L and q = 2. 

Siniilar to the D-optimal case. there rire two siipport points. f :rl . with point 

n i a s  1 .  [gnoring the  constant term. the loss fiinction in eqiiat ion (3.2.2) is. 

h- Leninia 3.4, L . 

T h s  a n  optimal design is <* = (6min(zï, i /2) +6-min(xï.l/-) 112. with 2; = (il/ 160) Il6. 

That is. 



Table 11.1: .+optimal design when p = 1. q = 2 

(design point : m a s  ) minimûx loss 

no optimal design exists 0.0000 

(f 0.4292 : 0.5) 9-14 

(f 0.5 : 0.5) IT.5 

(f 0.5 : 0.5) 30 

( & O 3  : 0.5) 5.5 

(f 0..5 : 0.5) 155 

The optinial design points arid point niasses are in Table 9.1 below- 

Example 5:  p =  1.q = 3  and p = 1.q = - I  

T h e  is an optimal memiire < [vit h t hree support points kzl and  zero. and t h e  

siiprcnia of the loss fiinc t ions are respect ively 

i ~ (o r :  + 1 )  
l , I ( ~ ~ .  J T , )  = i- mas {80n2xi .  1-182:). 

n rf 

Again t lie niinimizer (a' .  ri) is obt,szined mininiizing t,he loss funct ions above 

ovrr a square [O. 11 x [O. 1/21. We present the  optinial design for some i l  in Table 

:LL 

3.5.2 Approximately quadratic model 

D- and A-optimality criteria 

Example 6 : p = 2 and q = 3 .  

Ttie esperimenter fits a. quadratic model ûIt hotigh the t r ~ i e  model might be cubic. 



Table 3.2: -4-optimal design when p = 1. q = 8 or -4 

l 1 

By Theorcni :1.3.3 tliere is an optimal nieasure < with three support points on 

[- 1/2. 1/21 incliiding zero. so ,C = ( 1 - c l ) &  + (cr/2)6,, + (ci/2)6-,, . Thiis t h e  

Ioss fiinct ion. by (3.-4.2). bwonies 

u 

O 

1 
SUP LD (p.  <) = (V f -k-Is<fj) 
3 

CIc?ric.t% t lie op t inial design is 

(design point : m a s  ) 
no optimal design exists 

Tho niasimiini loss for A-opt,imality is. by Lenima : L I .  L. 

niinimax loss 

0.0000 

Tlic opt inial designs for some v are in Table :M. 



Table 3.3: -4-optimal design when p = 2. q = :3 
I 1 

3.5.3 Approximately cubic mode1 

1 v 
O 

The l u t  esaniple in t his section uses t hc regressors r 1 (x) = ( 1. x. .L'. r")'. ancl 

z 2 ( . r )  = .r '. Ttiat is. ~ v e  fit a ciibic regression wtiereas the true mode1 niight be 

cliiart ic-. 

Example 7: p = 3 and q = -1. 

WC consider a n  optinial design niea.siire of t h e  forni 

Tlie niasimuni loss fiinet ions are easily obtained from Lenima il.-1.1. 

(design point : nias ) 

no optimal design exists 

Tlic optiniiil design points and their niasses are in Table 3.4. 

94 

rninimax loss 

0.0000 



Table 3.4: -4-optimal design when p = 3. q = 4 

3.6 Comparisons between polynomial models 1 

11 

O 

and II 

\IC:e present nimiericiil values for optimal designs for the polynomial modcl I 

of ('tiapter 2 anci the polynomial niodel 11 of t,iiis chapter. CVe first recall the 

notation q ( . r ) .  z&) a n d  u(s) from tlic first section of Cliapter 2: 

(design point : mass ) 
rio optimal design esists 

C h  notice tliat the contaniination part u ( x )  of the  niodel 1 is a polynoniial 

containing a11 powers iip to the qtli. On t. he ot her hand. t hc contamination part 

z2(.r) of mode1 LI contains only terms of degree greater than p. The D-optimal 

design points ancl niasses for the polynoniial riiodel 1 are in Table 3.5. Table 9.7. 

Table 3.9. Table :3. L L and Table 3.13. L e  also remember that the contamiriating 

space IF in this section is same as in 2.5.10 in Cihapter 2. 

minirnax Ioss 
0.0000 



D-optimal criterion 

Example 8 : p = 1 and q = 2 .  

The regressors are r l  ( x ) ~  = (1. x). zcjx) = 2. 

i t  is ~ a s y  t o  calculate u ( x )  = (x2 - 1/12). Bo = J U ( X ) U ~ ( I )  dx = 1/180. and 

<; - -3 - ( 1 Z& - 1 )'. The supremum of the  loss fiinct ion is 

Example 9: p = 1 ancl q = 3. 

Tlie regressors are r 1 (s) = ( 1. x). rc(r) = (r2. x". The contaniinüt ion part is 

7' u ( .r) = (.r2 - l/ IV. 2% - 3x/L)O) - The niatrices are ralciilated as follows 

t i c w - v  n.c. c h t  ai ri t tic masinimi of t. hc loss ftinct ion 

Tticre are 3 siipport point inciiicling zero. and the opt irr iai  design is of the forni 

<' = ( 1 - ci8)d;o + (CI*/?)(&.; + S-,;). whcre ci.' ancl 1.; are the  rnininiizer of the 

niasiniiini loss. 



Example 10 : p = I and q = -1. 

The regressors are r (x) = ( 1. x )  . zq(x) = (x2. x3. x5) - 

The cont aniinat ion part consists of t hree polynoniials. 

Tlic niatris Bo = Ju( .r )uT( .c)  clr is a 3 by 3 matris 

LI180 O L 18-10 

Bo = ( O "2800 O ) . 
1 / M O  O 1 /3600 

Ttvo cigenvaliies of the matris C+ are 

Again there are t hree support points ancl so the opt imal  design is o f  t lie form 

<' = ( i  - a*)& + (cY ' /~ ) (& ;  + 6 4 .  ntiere a' ancl x; are t h e  minimizer of the 

niasinirini los.  

Example 11 : p = 2 and (1 = 3. 

Tlw rvgressors are zl (.rjr = ( 1. x. .i2). z [ ( x )  = x". 

The contamination is a polynomial of degree t hree. u ( x )  = r3 - 31/20 .  The 

coristmt rnatris is Bo = 1/%80. ancl the bias terni lias a single eigenvalue. 

GE = $20~.1 - :Y2)'. The rnaximiini of tlie l o s  fiinction is of the fonri 



Ttw optimal design is of the form <' = ( L - a')&-, + (a'/Z) (CS=; + 6-,; ). wliere a* 

and ri are  the minimizer of the maxirniim loss. 

Example 12 : p = 3 and q = -1. 

The regressors are z ( x ) ~  = ( 1. x. r'. 1). rr(x) = x4. 

The contamination is a polj-nomial of degree Four. u ( x )  = x" - :lx2/ 14 + 3/560. 

The constarit matr is  is Bo = 1/44 100. The maxinicini of the loss function is 

\\-P provitle t tie optinisl designs For the pol~nomial  mode1 1 ancl the polyno- 

niial mode1 I I  in the following tables. 



Table 3.5: D-optimal design for mode1 I when p = 1. q = 2 

(design point : rnass ) 

(k0.2887 : 0.5) 

(~t0.2943 : 0.5) 

(f 0.3 1-10 : 0.5) 

(3~0.33-1-1 0.5) 

(+O.-13 L i  : 0.5) 

(f 0.5 : 0 5 )  

(&0.5 : 0.5) 

niinirnax loss 

Tddc 3.6: D-opt inial design for mode1 I I  wtieii p = 1. y = 2 

(design point : m a s  ) 
no optimal clesign esists 

(&O. 1880 : 0.5) 

(&O2812 : 0.5) 

(f 0.33-L-L : 0.5) 

(M.5  : 0 5 )  

(f 0.5 : 0.5) 

( * O 5  : 0 3 )  

niinimas Ioss 
0.0000 

5.6569 

l'2.6-Cg 1 

17.8885 

-10 

60 

1-10 



Table 3.7: D-optimal design for mode1 1 w-hen p = 1. q = 3 
-- 

(design point : mas ) 
( kO.:38X : O.Xi8). (0.0000 : 0.-1-1-14} 

(3~0.38-14 : 0.2930). (0.0000 : 0.41-10) 

(I0.3720 : 0.3551). (0.0000 : 0.2894) 

(&0.:3598 : 0.43 L8). (0.0000 : O.l%-1) 

(f 0.3'-17 : 0.4786). (0.0000 : 0.0428) 

(k0.3933 : 0.4849). (0.0000 : 0.0302) 

(&O.-13 L i  : O.F>). (0.0000 : 0.0000) 

if O.-Li% : 0.5). (0.0000 : 0.0000) 

( k0.49 16 : 0.5). (0.0000 : 0.0000) 

minimas loss 
0*0000 

1,1769 

.5,4965 

10.2492 

18.3736 

'24 .O000 

37.0810 

60.453 1 

1-17.66*58 

T e  3.8: D-optinial design for niodel I I  when p = 1. q = 3 

(design point. : mus ) 

no optinial ciesign esists 

( f 0.2656 : 0.2506). (0.0000 : 0.4988) 

(k0.3247 : 0.3748). (0.0000 : 0.2504) 

(f O.X3-l-l : O.??). (0.0000 : 0.0000) 

(&O.-LZG : 0.5). (0.0000 : 0.0000) 

(f 0.-17uï : 0.5). (0.0000 : 0.0000) 

(f O.?iOOO : 0.5). (0.0000 : 0.0000) 

mi ninias loss 

O. 0000 



Table 3.9: D-optimal design for mode1 I when p = 1. q = -I 

(design point : niass ) 

(1t0.3873 : 0.2778). (0.0000 : 0.-L-L-14) 

(j~0.390-1 : 0.284 1). (0.0000 : 0.43 l8) 

(M.3999 : 0.3082). (0.0000 : 0.3846) 

(&O.--L079 : 0.3360). (0.0000 : 0.3280) 

(*0.4176 : 0.3852). (0.0000 : 0.2296) 

(f O.-IZ6 : 0.-1200). (0.0000 : 0.1600) 

(&O.-1307 : 0.5). (0.0000 : 0.0000) 

(f O.-!-LI L : 0.5). (0.0000 0.0000) 

(*O.-1652 : 0.5). (0.0000 : 0.0000) 

rninimax loss 

0.0000 

1. Li69 

5,4965 

10.249'2 

L 8.3736 

't-l .O000 

3'1.0828 

fit3 .;3fi6X 

160.2507 

Table 3-10: D-optimal design for moclel 11 whcn p = 1. q = -1 

(cisign point : m a s  ) 1 m i n i m a  loss 
-- .- - - 

n o  opt,imnI design exists 

( kO.3-132 : O. 1-433). (0.0000 : 0.7 1 :ILL) 

(k0.3854 : 0.3 153). (0.0000 : 0.3651) 

(20.-!O73 : 0.-1395). (0.0000 : O. 12 1 1 ) 

(*O.-4226 : O.-?). (0.0000 : 0.0000) 

(*O.-4-1 12 : 0.5). (0.0000 : 0.0000) 

( f O.-!6Zl : 0.5). (0.0000 : 0.0000) 



Table 3.1 1: D-optinial design for mode1 L when p = 2. q = 3 
-- 

(design point : niass ) 
(f O.S873 : 0.2724). (0.0000 : 0.4552) 

(k0.3918 : 0.3314). (0.0000 : 0.33'71) 

(1k0.4080 : 0.3251). (0.0000 : 0.3498) 

(&O.-1354 : 0.3191). (0.0000 : 0.36123) 

(f0.5000 : 0.3032). (0.0000 : 0.3936) 

(k0.5000 : 0.31-1-1). (0.0000 : 0.371 1) 

(HL5000 : 0.3257). (0.0000 : 0.3387) 

minima los  

0.0000 

193. 1609 

853 .-1 f 12 

1500.122 

-LOt37.9;35 

6279.972 

1-1953.00 

Table 3. L2: D-optimal design for mode1 I I  wlien p = 2. q = :3 

11 

0.0 

0 .  

0.5 

1.0 

5.0 

1 O 

30 

(design point : mass ) 

(k0.2500 : 0.2500). (0.0000 : 0.5000) 

(3~0.5000 : 0.2534). (0.0000 : 0.4033) 

(k0.5000 : 0.26-1 1). (0.0000 : 0.47 lc)) 

(k0.5000 : 0,2135). (0.0000 : 0.4531) 

( &0.*5000 : O.:lO:32). (0.0000 : 0.39:36) 

( f O-5000 : 0.3 1-14). (0.0000 : O.3,L 1 )  

(k0.5000 : 0.3257). (0.0000 : 0.3487) 

minimm loss 

1792.000 

18-12.854 

2040.8'2-I 

2280.155 

4087.935 

62'79.972 

1-1953.00 



Table 3.13: D-optimal design for model t wtien p = 3. q = -L 

Table 3.1-1: D-optimal design for model I I  when p = 3. q = -1 

(design point : mass ) 

(&O.Li00 : 0.3551). (k 0.4306: 0.1449) 

(f O. i72-1 : 0.2525). (f 0.4339 : 0.2475) 

(&O. 18 10 : 0.26 13). (f 0.4-162 : 0.2387) 

(&O. l903 : 0.2706). (f 0.4609 : 0.2291) 

(zt0.2166 : 0.2795). (iZ 0 5  : 0.2205) 

(&O2 191 : 0.2689). (k 0.5 : 0.23 1 1 ) 

(k0.2217 : 0.2578). (I 0.5 : 0.2-122) 

I 
- -- 

11 ' (clesign point : mass ) 

0.0 (&0.2225 : 0.3328). ( 3 ~  0.5 : 0.1672) 

0.1 (k0.2226 : 0.3294). (& 0.5 : 0.1706) 

0.5 (k0.2228 : 0.3188). (& 0 5  : 0.1812) 

1.0 (*0.2229:0.3007). (&0..5: 0.1903) 

5.0 (I0.2233 : 0.2809). (& 0.5 : 0.2 19 1) 

10 (f 0.223-1 : 0.2697). (k 0.5 : 0.230:3) 

30 (310.2235 : 0.2582). (iZ 0.5 : 0.2-118) 

niinimax loss 
0.00 

47.5078 

2003326 

333323160 

752399 1 

1 1602-L8-f 

'27685068 



Chapter 4 

Optimal designs for 

approximat ely polynomial 

regression 

Hiibcr ( 1075) and Wiens ( 1990. L992) obtained minimas densities for a n  a p  

prosirria,tcly Lincar regession model with the contamination space K .  It is very 

na t  iird to cstcnd the  m i n i m a  density approach to a n  approsimately qiiadratic 

regrcssion. [t tiirns out t hat the minimas density for higher degree polynomiiils 

is not tractable. In t his chapter rve restrict to a class of densities t hût is tractable. 

pnwt ical ancl can be generalized to higher degree polynoniial models. C \ é  present 

optiniei designs for approsimately qiiadratic regression and approsirnately cubic 

regrcssion for t his restricted clüss. T hese op t imnl designs are easily generalized 

to niiiltiplc regression as ~vel l .  We not only describc the optimal clesigns for an  

ap  prosimately qiiiidrat ic bivariate regression wit h interaction terms biit we dso 

esplain how the densities might be implemented in practice. 



4.1 Review for approximately linear regression 

and motivation 

A s  ive nientioned in C'hapter L. M e n s  (1990. 1992) obtains minimm designs 

for trpprosiniatei- linear regression. Our objective in t his chapter is to estend 

his iciea to higher degree poljmomial models. We present designs for approsi- 

niiit ely cliiaclrat ic and ciibic regression niodels as well as bivariate niodels wit li 

interuct ion ternis. 

CVe use t tie pert iirbeci niodel and the  contaminat ing spuce 6. 

The regressor r E WP is given function of x. where x varies on a design space 

S c Rq. Wens calculates t lie loss fiinctions explicitly. M'it h 

a r i d  ;IE as definecl in ( 1.2.2) and clo corresponding to  the Lebagiie nieasiire. 

C k n s  finds that 



Wiens applies the  minimm approach. that  is. look for <* E E such t hat siipF.L(f. <) 

is min iniized bu <' . I t is necessary t liat < be absoliitely cont inuoils for s u p ~ ,  L(/. <) 

to be finite (see Lenirnü 1 in Wiens (1992)) and so without l o s  of general- 

ity we n i e  restrict our attention to absoliitely continiious rneasures <. Let 

m ( x )  = c'(x) be the density with respect to Lebesgiie measiire. For the maxi- 

niization part. it is enoiigh to look for J in a finite dimensional space in RP. TO 

st a t  il the resiilt prwiselc WC need a few definitions. 

fi, = z(z)zT(x)m2(x) dx. 1 

i\-ieris tstahlisties an important resdt in Theorem 1 of CC'iens ( 1 W L ) :  

Bu t his rcsiil t. WC are niuiniizing a cont inuous fiinct ion over t tic conipact set 

{.j : 11.9(1 = L }  and hence the maximum is attained. This result leads to 

For the niinimization part. Wiens fits a. plane. z ( x )  = (1. x ) .  wtiere x = 

( J I  . - . . . r,) . and the design space S 2 Rq is a sp  here of iini t voliime wi t h raciiiis 



J. He restricts to densities m ( x )  that are symmetric in each variable and each of 

the variables is eschangeable. There are two non-zero eigenvdues in each matris 

whicti are of the fonn 

Ta proceecl to the  niinimizat ion. ive need to know which eigenmliie is larger. Let 

iw assume that XI 2 XI. First hold G fised. ancl minimize J m2(x)  dx over ail 

corit inuoiis clensit ies. Let m(x:  <?) denote t lie niinimizer. Sext . minimize the 

nlasiniiini loss fiinct ion 

Let rr~(x:<;)  be the niinimizer. Firially verifj- that indeed the first eigenvaloe 

is larger at the niinimizer. tliat is. A l  (rn(x: <;)) 2 X2(rn(x: 6)). For Q- and D- 

op t inial designs. the first eigenvalue a t  the mininiizer is larger. For A-opt imal 

clc.sigri t tic serond eigt.ni,-aliie is larger at t lie minimizer. This leads to t, he opt imal 

derisity fiinctions. for Q- and D-optimality cases. 



diere a ancl 6 are detemiined by the eq~iations in (-1.1.5). For -4-optirnality case 

For tiiglier degree polynomial regression models. not only are there more than 

two eigenvaliies. but also t tie eigenvaliies are more complic,zted than t h e  ones in 

ttie linear niodel and so obtaining the optimal density fiinction is not so easj-. 

LVe d l  illustrate these obstacles by fitting a qiiüdratic polynornial under the 

Q-optiniality criterion. In the  perturbecl mode1 (-I.L.1) wit h t tie contaminat ing 

spiice &. take the regressor. z ( x )  = ( L. x. x2)'. where - LI2 5 x 5 112. [gnoring 

tlir term rI< t tic niasiniurn IhISE is 

Let t ing tl = J' .rlrn(s) (lx. ki = J x'.m2(x) d-r. ive calciilatc mat rices 

ko O k2 hl O hl 

IL2 O k., It O h:{ 

w l i ( w  i tic dcnicnts of matris IIc arc fiinctions of certain nionients: 



Tticre are three non-zero eigenval~ies in the  matris KEF..<' : 

Lié itre now looking for t hc density ni t.hat niinirnizes 

rnas{Xl (m).  X + L ) }  + 11 tr(.-1;' Ao). 

WC fïrst assiiriie X i  > A?. wtieri evaliiateci at the  niinimizing clensity. Fis 5. ci: 
t his fixes the matrices de and I(ç so that the problem is to: 

1. IIininiize X I  ( m )  = J .r'rn2(r: &.cd) d:r for fiseci <-. ancl &. 

2. Var>. t h e  paranieters of the rninimizing rn so =as t o  minimize 

XI ( n ~ )  + vtr(.-1;'--lo). 

3. Verifj- tha t  for the  final m'. u-e have indeeci X I  (m') > X?(m'). 

Froni the first step. minimizirig k2 for fiseci &. <.! gives 

m ( ~ )  = (ax' - b / r 2  + c)+. b > 0. 

IO9 



This rrt c m  never place rnllss near O. ~f only as it shoiild when v - x;. [t tums - 
out t hut. 

X2(m(x: a'. b'. c'))  > Xi ( m ( x :  a*. 6'. c*) ) .  

iviierc CL* = a(<;.<:). 6-  = b(<: 2 .  41 c* = c(G.C) are the minimizers at step L! 

above. Sow thcn mininiizing X2 for fked GI E4 gives ttie minirnaï density of the 

forni. for positive a. a n d  mal coefficients b. c. d. e. and f. 

But. t lie density above is very complicatecl- 4 s  a reniedj-. we restrict to densities 

rrl wi.liirli arc reasonublp tractable and have the correct limits. In this restricted 

cblaiss it  is not nieaningful to pick a largest eigenvaliie. and now ive write the loss 

fiinct ion to be niinimized as 

hé propose densities. ivitti coefficients a 2 0. -x  < b < sc. O < s 4 1 <_ 112. 

Tu c a q -  out the rninimization proîess iising the -nlniin" fiinetion in Spltis. we 

neecl to take transformations on t .  t f  = ( t  - s )  /( l - 2s). and so t hat ~ h e  doniain 

is ii rcciangle sliape. O 5 s 5 ' ancl O 5 I f  5 4. Froni the fact J rn(.c) <lx = 1. - - 
tlw constant n is wit ten in tcrms of S .  i .  and b. Thiis oiir optiniization probleni 



tri the optimization problem. it is complicated and tirne consuming to  ob- 

tiiiii the intcgrals 5, and kt. We have applied Sirnpson.~ ride (see p.266 of 

This ted ( L988) ) to appro?timat.e t hese integrations. We now provide explana- 

tions why we choose to restrict to the densities in (-1.1.7)- First. the den- 

sit ies of t his forni are not only easily constrocteci but ülso can be general- 

izecf to the higher polynomial rnodels. For s general polynomial regressors. 

Z(X) = ( 1. S. i2. . . . . XP)? take tlie densitics of tlie f o m  

so t lien O 5 s: 5 for al1 i = 1. . . . . p. CVe vcrify t hat t liis transforniat ion works. - 
Let 

S' = {sr  E RP : O < .s: < 112 : i = 1.. . - . p l  

for j = 1. . . . . p. wtiere .so = O. CVe prove tliat O is a oncto-one niapping of S 

ont0 S' : Let s E S. we show that ~ ( s )  E Sr. T h e  condition s j - 1  < sj < 11% 



iniplies thüt O < ( s j  - .s,-i)/( 1 - %.s,-~) < 112. that is. O < ( Q ( s ) ) ~  < L/2. 

ancl ttiiis. ~ ( s )  E S'. Sour for any s' E S' dcfine coordinates inductively .SI = 

si : S ,  = .s,-~ +s!, ( 1  - ' L S ~ - ~ ) .  j = 2 .....p. By induction O < -5,-l < 11'1. Thus 
J ' 1  

s,-l < s j  < s,-1 + (1 /2)(  1 - 2 . ~ , - ~  ). This shows that s = (sl. . . . . s,) E S and 

clearly o(s) = s'. The sarne indiict ive ugiinient shon-s that if ~ ( s )  = ~ ( t ) .  t hen 

s = t so o is one-to-one, 

Also. for v = 0. the mininiking density m*(.r) is approxirnately imifom. As  

11 gets larger. the mass is concentrated around O and I:. This nieans that the - 
densit ies have the correct limits because ( i )  for v = O. only the bias term is 

niininiizcd anci Iience the optimal design is iiniiorm. (i i)  for large 11. t h e  variance 

swanips the bias term. and so the optimal densitx is as in the classical Q-opt inial 

<am. t hkrt is. a11 niasses are at O and the boiindary points. 

\\f siim iip the  algorit hm to obtain an optimal density for a n  approsimateiy 

polytioniial regression. r (r ) = ( 1. x. . . . . sp)'. 

I I . O bt ain t tic niatrices &. .-k. ancl set = 4 -4; --le 

2. O h a i n  t lie (p + 1 ) eigenvalties of the matris fiPEtl;'. 

3. niake the transforniat ion (-1.1.8)- 

I. O btain the coefficient rc in (-1.1.7) as a fiinction of s' and b as a resiilt of 

1 m ( x )  (lx = 1. 

5 .  WriCe out the foss fiinction 1 in terms of sr ancf 6.  



Using Simpson's riile. calciiIate the ci 's  and k,'s and apply the '-nlmin" 

ftinction in Spliis to minimize l(sr. 6 )  over p dimensional rectangle and 

-x < b < x for d l  v. 

In the ïollowing section Lve provide optimal density Functions for some u's under 

t kit. t kiree o p  iniulity criteria. 

4.2 Numerical results for quadratic and cubic 

regression models 

4.2.1 Design densities for approximately quadratic re- 

gression 

Q-optimal design 

As illwtnitcul in the first section of this chapter. Q-optiniality leads to  the fol- 

lowing type of clensi ty 

m(s: a. S .  t .  6 )  = cx{(x2 - .s2)(.$ - t 2 )  -+ h ) +  

to rriininiiz~ t tic loss fiinct,ion ly (nz(x:  a. .S. I .  b )  ). 

LI-op t imal design 

T h e  are t hree eigcnvalues in the  

A ,  = 

Az = 

A3 = 



wtiere A. B and C are 

A-opt imal design 

Li? prescrit constants for clensitics for a few vdiies of 11 in Figure -1.1 and Table 

1.1. Table -1.2 and Table -1.3. 



Figure 4.1: Q-optimal design densities for an approximately quadratic regession 

model with contaminating space F2. 



Thble 4.1: Values of the constants for the Q-optimal design u'it ti the regressor 

( 1. x. x2)' and density a{($  - s2) (x2 - t') + b l i .  



Ta& -1.2: Values of the constants for the D-optimal design with the regressor 

rninirnax Ioss 



Table - I . 3 :  Values of the constants [or the *-1-optinial design with the  regressor 

( 1. .r. J ? ) ~  and density a { ( r 2  - S.') (x2 - t') + b } + .  

minimax loss 



4.2.2 Design densities for approximately cubic regression 

Ué fit a ciibic polynomial although the true mode1 might be only npproxiniately 

cubic. The regressor r(x) = ( 1. x. S. x ~ ) ~  and - 112 5 x 5 1/2. SimiIar to the 

quaclrat ic. case. here arc foiir mat rices: 

C k  first rwall t tie stiprenia of t h e  loss iiinct ions in (4 .12) .  ( - 1 . 1 4  and (-1.1.-1). 

There are foiir eigenvalues of emh of t h e  rnatriccs. E < & ~ ' .  ~ ~ ' ~ - 4 ~ '  c;;'~ ancl 

(;y --\$y . It can be shown that two larger eigenvdiics are of the forni. the  



super script Q is replaced by D. and -4. 

- 

u-licre A. B. and C's are respectiwly 

For t lie D- anci LI-opt iniulity case- il, = l = A-. The ot lier constants B. C are 



In this cubic regession. ive are working on t h e  density of the f o m  

The coefficient u is non-negative. b is real and O 9 s 5 t 5 u 5 1/2. Taking 

tninsformat ions on S .  t. u we rewrite the  siipremiim of l o s  f~inction 1. sa-. in 

ternis of S .  1'. ut.  and h. C'onseqiient ly our  optimization problem. for each fised 

v, is to 

C\O prescrit the  design densities for some valiles of 11 in Figiire -1.2. Table -1.4. 

Table -1.5 ancl Thle -1.6. 



Figure 4.2: Q-optimal design densities for an approximately cubic regession 

model with contaminating space F2. 



TaMc 4.4: Valiies of the constants for the Q-design with regressor ( l . r .x2 .  xYT 

tt b 1 minimas l o s  

Tiibkl 1.5: Vüliies of t Lie constants for t he  D-design u-itli regessor ( 1. r. 1'. 2)' 

niininias loss 



Tat~ie -1.6: Values of the constants for the --\-design with regressor (1. r . x 2 .  r3)T 

m i n i m a  loss 

4.3 Bivariate regression mode1 

4.3.1 Approximately linear with interaction terms 

M%ms ( LOOO) also fits t tie biwriatc sinface u.it 11 interactions. Ttiat is. the re- 

grtiisor is r(x) = ( 1. r , .  i3 . Z ~ S ~ ) ~ .  ancl the design space is a rectangle S = 

[-  11'1. 1/21 x [- 112. 1/21. Wiens restricts to symmetric designs as well as es- 

changeable rn. CVe find then 



w here 

Tticre are tlirec eigenvaliies in the mûtris A-&' : 

Cl-ims ( 1!190) obtains t lie niiriimas clensity of t lie form 

wit ti t h e  coefficients tletermincd by the tliree eqiiations 

/ ~ L ~ ( D )  d z  = 1. ( x )  lx = . ~ : . c ~ n ~ ~ ( ~ )  d~ = <2. 1 1 
For small valiies of v (O  5 v 5 1.2758) Wiens calculates the  minimas densilies 

esplicitl~ ( see Table 1.7). 

Orir goal wliich as we introdiiced in Section 4.1 is to look for tractable den- 

sitics for a11 v. The algorit hm in Section 4. L can be generalized to t his case as 



Table -1.7: Values of t h e  constants for t,he Q-design with regressors 

( 1. L I .  Q. xl r?)' and density {a + b(z: + x:) + cx:x$}'. 

long as we restrict to syrnmetric and exchangeable densities. We determine the  

niinimizing coefficients of a general density of the form 

over the ciorriain O 5 s 5 I/2. -x: < l>o < x. CVe show the optimal densititu: for 

u = 2 and v = 10 in Figiire 4.3. We compare oiir optimal designs in Table -1.8 

aricl Wicns's niininiüs ciesigns in Table -1.7. 

Me writc out the niusinium loss fiinctions for D- and A-optiniality cases. 

We present the optiniai ciesigns in Table -1.9 and Table -1.10. 



Figure 4.3: Q-optimal design densities for an approximately linear bivariate 

regression mode1 F2: (a) m = 51.37(x2 + 0.05619) (y2 + O.056I9) when v = 2; (b)  

m = 178.92(x2 - 0 . 0 0 9 8 8 ) ~ ( ~ ~  - 0.009S8)i when u = 10. 



Table -1.8: Valiles of t he  constants for Q-design regressor ( 1. XI. xz. xl x2)T and 

density ao{(xy - -s2 + bo) + (xz - s' + bolf  }. 

Td)lr 1 . :  Valiies of the constants for the D-design with regressor 

m i n i m u  loss 



T e  1.10: Values of the constants for the A-design aitli 

( l . . r i . r 2 . r l ~ ) ' .  clensity ao{(z:  - s' + h o ) +  (xi - s' + bo)I i .  

minimax loss 

regressor 

Approximately quadratic wit h interaction terms 

Nil <.i\ri estcnd t lie idea ilbove to t h e  q~iadrat ic regression mode1 rvit ti interaction. 

-r .> *> t h  is. x = (.ri. .r2) . z(x) = ( 1. XI. x-. xi. .rs. . i ~ x ~ ) * ~ .  The design domain is 

agi~iri a rectangle [-1/2. 1/21 x [-1/2. 1/21. LVe obtain the basic niatrices with 



Tlicrc are 6 eigenvaliies in the rnatris f<,$l;'. I t can be shown the masiniiim is 

aniong the following -I eigcnvaloes. 

w here A. B und C are 



The nixirniini ILISE is. wit h ubove -1 cigenvalries. 

For the D- and A-opt iniali ty cases. t lie maximum loss fiinc t ions are 

2 L 54 + (22  2 (&  - <.?) 
sop &(/. <) = i l ( -  + - + + 
F2 & h2 - u<.: + & - ~ . ~ < a :  + 2<& - 

1 

where t he  eigenvlilofs are fiinc t ion of &. <-, &. b. k2. k4 and b. Lin-c omit the  

esprc~sioris of t lie eigenvaliies because t hey are ver- Icngt hy- 

Cté proviclc tlesigns for sonie 11 in Figure -1.-1. Ta tlle -1. L 1. Tablc 4-12 and Table 

1 In t liis case. the  density is of the form 



Figure 4.4: Q-optimal design densities for an approximately quadratic bivariate 

regression mode1 with 32: (a) m = 5467((x2 -0.036) (x2 -0.111) +0.0093)+ ((y2 - 

0.036) (y2 - 0.111) + O.OO93)+ when u = 2; (b) m = 32042.64((x2 - 0.2256~) (x2 - 
0.3565~) + 0.0015)+((y2 - 0.2256~) (y2 - 0.3565~) + 0.0015)+ when v = 10. 



Table -1. L 1: Values of t h e  constants for t h e  Q-design with regressor 

(~..cl.x2.x~.x~.xlx2)T a n d  derisity a{(x: - .s2)(xf - 1 2 )  + b l t { ( x :  - .i2)(x; - 

Table 1.12: Values of the constants for the  D-dcsign with regressor 
* P  ( 1. .cl. .cs. .ri. -. .rlx2)T a n d  density a{(xl - .s2)(r: - t') + b}'{(x$ - i2)(4 - 



Table -1.13: Values of the constants for the  A-design with regressor 

Remark 

Alttioiigh in general the n i in imu  density (-1.1.6) is coniplicated. t he  qiiadratic 

niodel rvit hout a constant t e m  is analyticall- solvable. Setting the regressor 

z(.r) = (S.  - 11.1 5 r 5 112. ive calculate the matrices 

.-io = c i  1 0 )  :le = diag(G. &). 

ric = c i i ( . . } .  FIc =diag(~/ (12G).  1/(80<::)). 

( 1. rl. r-. r:. r;. X , X ~ ) ~  and clensity a { ( x :  - s 2 ) ( . s ~  - t') + b}+{(x:  - .?)(.c~ - 

t2 )  + b}+. 

The mxxirnum [.\ISE. ignoring t lie term $. is now 

masLQ(f.E) = nias{Xl(rn(x:~.~.i)).~\2(m(~:<~.<.~))} 
3=2 

134 

I /  

O 

1 

.5 

10 

a 

0.0009 

91. 18L8 

1502.3'7 

579 1.90 

b 

:5'2.606 

0.092 

0.0204 

0.008'1 

30 

100 

-3 

O. 1-538 

0,0000 

0.1809 

0.2168 

t 

0.-1-132 

0.0000 

0.2951 

0.3363 
I 

0.2368 

0.2430 

28588.87 

862-1 L .37 

<2 

0-0833 

0-0947 

0,1037 

O. 1062 

0.00 16 18 

-0.00 163 

0.3599 

0.3674 

<., 
0.0 125 

0.0152 

0.01'78 

0.019l 

O. 1 103 

O. 1 186 

minimaxloss1 

0.0000 

-L85.15 

2191.14 

-1 105.33 

0.022 1 

0.0255 

1069653 

3028 1 - 



In three steps. we obtain the rninimax density as follows. 

1. First we assume that  X i  ( n ( x ) )  2 h ( m ( x ) ) .  Holding c2. c4 fised we 

Let m(.r: &. E, )  be the  mininiizer. 

For the first stcp. piit, 

ntt (x) = ( 1 - l ) rn0(x) + t7r t  i ( X I .  

wtierc nio. ml satisfy the  t hree conditions in (-1.3.-1). Set 



for Lagrange miiltipliers a. 6. c 3 O. Since L ( t )  is a convex function of 1 for al1 

mo and ml. the density no is optimal if and only if L'(0) 2 O for each rB1. This 

nicaris that rno mist s a t i s -  

The second step is eqiiivalent to finding (6.6) rninimizing 

In the ttiird step. rvt. mi 1st verify tliat for the mininias rn(r: a- .  h*. c').  

1 
- J b8r'(c8r' + L - n * / ~ ' ) ~ m ( r )  dx > b'x-'(c8> + i -a* / r2)+rn( . r )  dz. 
12'$ 

This is eqiiivalent to 

1 1 
-(cœ<.; 2e.y + 6 - a ' )  2 -(cR<; + #OC' 

- a*<.;). - 
Siippose t hat rn(x: a. 6. c) 2 O for x E ( S .  L / 2 ) .  Since J rn(z: a. h. c )  = 1. t Lie 

coefficients CL. 6. c and the moments &. es may be w-ri t ten in terms of s and &' 

whose doniain is O 5 s 5 112. O 5 c2 5 I -  For very sniall Y ilIl three steps c m  be 
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carricd out successf~illy. For larger v. XI 2 X2 is not satisfied at  the minimizing 

derisit- We present some ol the m i n i m a  densities for O 5 v 5 0.4 in T'able -4.14 

ancl we compare in Table 4.15 the densities obtained by method in this chapter. 

Table -1.1-1: Values of the  constants and eigenvalues for the regressor ( X - X ' ) ~  

ancl t lie densitj- b(c:c2 + L - a / x 2 )  

c 11 I X2 minirnax loss 

1-00 0.0000 1 1 

Table -4.15: Valiies of  lie constants and eigenvaiiies for the  regressor 

ancl t.he clcnsity u{(x2 - s')(x2 - t') + b)+. 

(x. x')~ 

ni i n imax Ioss 



4.4 Applications on ozonation data 

We have obtsined optimal designs that are continiious. In practice we need to 

iniplement tliesc continiioiis cinigns. We illtistrnte a n  implementation technique 

iising t lie ozonation espr iment  that wa?j introdiiced in C h p t e r  1. Before the 

esperinient the researcher [vas convincd that TSS and O3 were linearly related. 

and that as increrises TSS decreüses. After a bencti-scde esperinient he re- 

alized that this assunipt ion is qiiestionable and it is more reasonable to assume 

that the relstionship is only approsimately linear. Thüt is. ive üdopt the a p  

prosimiitely linear regression mode1 with .& type contamination. Suppose that 

n = 16 ancl v = 10. Frorn Section 2.4. L the niinimait density is then. after taking 

a transformation on so tliüt it lies t~etween - 112 and 112. 

Tlie design points niight tie chosen by selecting the n points MG'(*). i = 

1. . . . . n. For this particular esample the minimas design points are 

The ozonation is not the only factor iisefril to remove siispencled solids. The 

other important factor is the Güs to Liquid ratio which we denote CL. Three 

different levels. 0.2.0.-1.0.6 of C L  were applied in this esperinient. It might 

be  useful to adopt an approsimately linear mode1 in a bivariate regression set- 

ting with possible interaction t ems .  Alter tnking a linear transformation on 



GL so that it lies bettveen -112 and 11%. we consider an approximately Iinear 

regression mode1 wi t h regrcssors z (x) = ( 1. x 1.  x?. xi x - ) ~  and the design space 

[- 112. + 1/21 x [- 112. + 1/21. The optimal density is of the forrri (4.3.2). We 

iuiinie agirin that v = 10. und the sümple size is 16. The corresponding density 

is 

r r i o ( r l .  ri) = 178.9 1 (ry - 0.009882ï) (x: - 0.0098827) *. 

Bu independence t lie corresponding distribution ftinct ion Mo can be wri t ten as 

the procliict of .Cli and fi. The optimal design points can be chosen from 

For this particiiliir esaniple the optimal design points are 

(-0.5. f0.23 13). (-0.5. +O.-1-72). (-0.3960. fO.23 1:3). (-0.3960. +O.-1272). 

(fO.3960. +0.23 19).  (f0.3960. +O.-1'272). (+O.*S. + O . Z  13). (f0.5. f0.4272). 

( -0..5. -0.23 13). (-0.5. O - ) .  (-0.3960. -0.23 13). (-0.3960. -0.4272). 

( +0.3960. -0.23 13). (f0.3960. -0:1272). (f0.5. -0.23 13). (+O.S. -0.4272). 



Chapter 5 

Conclusions 

Our goal in this thesis is to find a niinimas design <*. ttiat is. 

siip C( J .  <* ) = inf slip L( j. <). 
F z 3 

where ttirec loss fiinctions and three different contsminating spaces are consid- 

ercd. With respect to contaminüting spaces. we distingiiish these problenis bu 

denot ing r hem ( P 1). (P2). and (PS). In the first two cases. the fit ted niodel is 

!j(.r) = r r ( . r ) e  the ciifferences Lire foiind in t lie troc rnodcl as siiown below. 

True Mode1 Contarninating space 

In thc multiple regression case (PJ)  we have the triie niodel 



and rontaminating spüce 

Here the bold x reniinds lis t hat the  variable is nitil t idiniensionel a n d  the  regres- 

sors are @en. for esaniple. by x T ( x )  = ( 1. XI. xz. rl-) or  

*> .> z T ( x )  = ( 1. .rl. .Q. ~1x2. xi. xz). 

Let's esplain the difference between problems ( P  1) and (PZ). wtiich on the 

s i i r h e  look iclent icul. 

( P I )  . (P3) ( P2) 

The cliffcrcnre is siniply t lie LW in which the fiinct ion E(Y 1 .r) is decorn- 

posecl into *.lorver order pa r t -  und "contamination part". In (P  1). t h e  triie 

coefficient Bo aricl u are defined so  tliat a fitted response ftinction will be use- 

ftil in prtulicting ftitiire valiies of y. O n  the  ot her hand. in (P2). 0, and  @ arc 

sirriply the coefficients of low powers and  high powers of L. respectively In tliis 

case the csperinienter simply w m t s  to estimate the original mode1 fiiriction as 



closely as possible regardles of t h e  contamination. We illustrate the difference 

with a simple (and artificial) example: Suppose that the true mode1 function is 

E(Y 1 x) = O+Ox+ 1x"nnd we want to fit a linear model. In (P l )  the fitted line 

will follow the contamination term x2. whereas in (P2) it deliberateiy ignores 

the contamination and follotvs the  horizontal O + O z  as closely as possible. 

We now summarize o u  main resiilts and explain what can be estended from 

them. There are t hree main results: 

(RI) The siiprema of loss hinctions are espressecl in terms of moments. Since 

there might be many design measires corresponding optimal set of mo- 

ments. with help of Wald ( 1I)SS). we looked only a t  discrete m e s u r e s  with 

the mininial niiniber of support points. 

For ( P l )  under the D-optimality criterion with p = 1. arbitraq- q and 

sniall v. an>- symmetric measure p with p.>, = m.?, is niinima.. . where 

i = 1.. . . . [ ( q  + 1)/2[ and rn is Wiens's measure as foiind in (2 .5 .2 ) .  Ué 

observe that any optimal measure tends to Wiens's measure as q - r>c. 
(R2) independent.1~ of Wald. we have shown for ( P  1) and (P2) with arbitrary 

p and q. that for any sqmnietric optimal measure p not supported by p or 

f e w r  point,s. there esists an  optimal measure < with p + 1 support points 

that sliares the first 2 p  + 1 moments of p. 

(R3) For (P3) under a restricted class of densities. we obtained continuous 

optimal designs for miiltiple regression with interaction terms. 



CVe i l l i i ~ tn t e  how the results can applied to our regression problems. Suppose 

that an  esperinienter fits a linear regression model although the true mode1 
- 

might be cubic. Le.. p = 1. q = :3. Define g : z - W u {x) by g(<)  = 

1 - [V + rnax(+: ( 125 - I)?. 5 (206  - :3c2)'} 1 if t2 # O and g(<) = x ot herwise. .As 
E2 

we have shown in Lemma 2.2. L t  the Function g is continuous on the compact set 
- - =. and hence t here exists an opt imal measure pB. say. on =. Applying (R2). t here 

is ari optimal design measiire < with 3 support points. < = ( 1  - ci.)& + (a/-)&,, - 

The design point x, and its m a s  û are chosen to rninimize g. For instance. when 

1 )  = 1. one choice is û = 0.8636. and sl = 0.3598. On the other hand. from 

( R  1).  we know that Wiens's measure m is also optimal: it h m  density m(x)  = 

1 + :(luJ-- l)(12s2 - 1) on [-112. 1/21. Bu Theorern 3 .32  and 

Theorem 3.3.3. there is a nieüsure of the form < = (a/2)6-,, +( 1 -û)bo+(a/2)&, . 
so t,tiat 5 = f T i i  for i = 0. 1. . . . .5  and thus < is ais0 optimal. Solving for X I  

and a gives ri = JG. and a = JI-LV + 5)/(7201:). LVhen v = L .  since 

mz = l /J80.  and rn4 = 0.0186 and so  this gives xi  = 0.-1079 and a = 0.672. So 

we have two distinct optimal nietisiires with ttiree support points. 

In the frst two resiilts. the nimber of support points of these optinial de- 

s i g n ~  is too low to provicle an opportiinity to assess the higher order model. We 

prescrit an csaniple of how we might overcorne t his obstacle. 

Estimation in higher order models 

Using Wiens's optimal nieasure. the nurnber of support points might be added 

so that we estimate the coefficients in tiigher order models. For instance. when 



p = 1 and q = 3. we have seen a n  optimal meastire with three support points. 

Since there are lour coefficients in the model. we need a minimum of four siipport 

points in oiir design to estimate them al[. The  error variance is estirnateci by 

replicat ing the observations. 

Now. because Wiens's memure m is absolutely contintiotis. Theorem 3-32 

tells us thut there esists a unique rneasiire with 4 support points wit h same first 

seven moments as CC-iens's. This measure is necessarily optimal as well. It lias 

the forni 

< = [( 1 - 0 )6 - ,~  + ab-,, + a&, + ( 1 - n)b,,]/2. 
- -- 

~vhere a. r I .  and .r2 are determinecf by t hree equations. c2 = fi~/ + 5)/720. 

Lack of Fit (LOF) test for (Pl) 

Thc LOF test çan be perfomied realizing t hat Tlieorem 2.5.1 also proves t hat 

an-. opt inial design measiire has the same second moment as Wiens's. T h e  reason 

for this is Following. We know frorn Section 2.5.2. that X i  (c) = ~ ~ = 2 ( E c [ 1 , ] ) '  1 

( ) (  1 - 1 ) .  Let h(G) = ( 1/E2)[L + (5/-!1/)(1& - l)']. LVe observe that 

h is strictly conves in &. and so h hm a unique minimum. We also know that 

s ~ l p ~ C . ~ ( < )  2 h(G) and we louncl <* in Theorem 25.1 so that 

slip &CE') = min h(&) = h(G). 
3 €2 

If another ( rninirnizes S L L P ~ C D ( < )  then 



Since it is a unique minimum. eY = <;- 
We point olit that higher moments may not be the same as Wiens's. This 

enables 11s to c a r y  out the LOF test. 

ihe dernonstrate how this claim can be iised in the LOF test for fitting a 

straight line wtiereas true resporise might be qiiadrütic. In (PL) this rneans 

z:(z) = ( 1. x) and uT(5)B = (x2 - 1/ 12)P. We assume that  the errors are 

nornially clistributed. Using the equation ( 2 . 2 )  in Wiens (199 1)  we obtain the 

non-centrnlity parameter in the  test of LOF. P(p.<) := (<., - &B'. We now 

want to finde' siich that 

min P(.L <*) = m m  min P(3. <). 
{J'= 1 ) 

* ' = { E 2 : c2 mininiizcs supF lD (<)}. This is eqtiivalent to find <' 
-f niasiniizing El over = = {< E 3 : c2 = J ( - L ~  + 5)/720}. Then the solution for 

(*?.O. 1 ) is o f  the form <' = ( 1 - a)& + ( ~ / i > ) & , , ~ ,  where a = -I<;. This is so 

bwutise C = u'/lfj = <;/-I is the maximum. 

Applications of (R3) to Ckowt h hlodels 

C\.k provide guiciclines on liow the optimal designs for an approsimately polyno- 

mial with interaction terms miglit be adopted in other areas of science. 

( L )  Yield-Density C'iirves (see Sebcr and Wilcl ( 1089)) 

In agricultilre. several niodels are used for quantifying the relationship between 

t h e  clensity of crop planting and crop yielcl. The cornmon Yield-Density moclels 

are 



Shinozaki and Kin:  E ( Y  1 x) = (,JO + 31x)-' (5.02) 

Holliday: E(Y 1 z) = (,JO + 31 x + ,32x2)-'. (5.0.3) 

ahere r ancl a1 denote the dcnsity of planting and the yielcl per unit area and 

y := w/.r represents the avemge yield per plant if al1 plants surviveci. It seems to 

be qiiite usiisl t hat the agronornist. after collecting his data. fi ts the models above 

to p rd ic t  the yield or  to find tlic density of planting maxiniizes the yield. But 

the main drawbacks in this situation are that  fi rst the experimenter can never 

be sice the niodel used is correct and secondly. for the rnodels above. E ( Y  1 s) 

decreases as is increases when x is small. however in r e d i t -  this decrease will 

not occiir. We might be able to overcomc these dficulties bj. looking a t  this 

as a design probleni as follows. Suppose the density of planting r lies between 

[a - h/9.  a + hl - ! .  for a. h E IR. The nonlinear mode1 (5.02) c m  be linearized by 

a Twlor scries cspansion and the change of variables xr = (x - a ) / b .  

Similarly. the Holliday rnodel transforms to E ( Y  1 2) = O0 +O1xr + 02xr2 + f (Y) .  

ivhere O0 = (do + .?,a + .&a2)-' -0 ,  = -h(,& + J l a  + &a2)-' and 0- = b'(.?o + 
-> 4 

Ji  a + .&a-) . Before planting the crop. by applying the algorit hm in Section -4.1 

and t.he tedinique of implementing the densities in Section -1.4. the agronomist 

may choose the optimal xi's so t hat the estimates for 0's are the most efficient. 



C'rop yield is not only affect4 by the density of planting but üIso the  shape of 

the area available to each plant. A bivariate mode1 is recommended considered 

For this case. E(Y 1 .ri.r2) = [,& + ,31(l/ri + l / r 2 )  + . L / ( X ~ Q ) ~ - ' / - ~ .  where xi 

is the spacing between plants within a row and x- is the distance between the 

rows. Using a similcu idea to the one above. the optimal design for bivariate 

rcgrcssion riiodel wit h interaction ternis can be chosen by the esperimenter. 

Ué close this section by mentioning applications on growth models in Forest 

Science. 

(2) Chowth hIodels 

Predicting total tree iieiglit based on observed clianieter a t  breast height oiitside 

bürk is roiitincly reqiiired in practical managenient and silviciiltural work ( see 

page 2 of kluang. Titiis. and Wiens (1991)). hIany nonlinear height-diameter 

iiinctions are avnilable to predict height growth. The Cliapman-Richards fitnc- 

tion hiis been iised estensively in clescribing the height-dianieter as well as a 

base Iiinction for cleveloping more complicated models (Huang and Tit ils ( 1994)). 

These lunctions are given by the expression 

where y is the total tree height (meters). x is the diameter (meters) of the tree 

at Imüst Iicight. The  technique described in ( I )  above might be applied when 

3.) 2 1. 
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