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1 Introduction

Assume there are two treatments (0 and 1) in a sequential clinical trial.
When a patient arrives, the clinician should assign him a treatment
immediately. However, it is not proper for the clinician to decide which
treatment is given to the patient. This is because his selection could be
affected by prejudices or by some incomplete knowledge. Therefore, we
should find some allocation schemes for the clinician to try to get balance
between treatment groups.

As an example, suppose that three prognostic factors are to be used:

Prognostic Factor levels
Sex 0 — male
1 — female
Age 1 —under 20
2 — between 20 and 40
3 —above 40
Race 0
1

Also suppose we already have seven patients in the trial with the
prognostic factors as follows:

Patient Prognostic factors Treatment
Sex Age| Race
1

NN N (B WIN|—
WIWININ W= |2
Ol =IO IO|O
et b D | O[O |

1
0
1
0
1
0

Now, the eighth patient is coming with prognostic factors:
Sex -0, Age—2,Race—1
Then, which treatment should we assign to him?



In this project, I am going to use different allocation schemes to assign a
treatment to the patients.

2 Allocation Schemes

2.1 Completely random allocation

This is the simplest method of allocation. We assign each patient
randomly to treatment 0 or 1 with equal probability, independently of the
assignment for the other patients, and also ignore his prognostic factors.
According to this, we will assign the eighth patient treatment 0 with
probability '3, treatment 1 with probability 4, independently of the
assignment for the first seven patients.

Compared to the perfectly balanced experiment, completely random
allocation has some attractive properties. In the perfectly balanced
experiment, we force equal numbers of treatments, for example, the
completely non-random design 010101... Then, the experimenter will
know for certain what is the next assignment. He may consciously bias
the experiment by such decisions as who is or is not a suitable
experimental subject. By using the completely random allocation, we can
avoid selection bias.

But this method also suffers from some disadvantages. When there are
small numbers of subjects in the experiment, the final distribution of
treatments can be very unbalanced. For example, if we assign the eighth
patient treatment 1, then, we will have distinctly unequal numbers on
each assignment. And we know this will happen with probability %.

To prevent the chance of imbalances, more sophisticated schemes have
been devised.

2.2 Permuted block design

This design divides the patients into blocks of even length, say 4. Within
each block randomly assign 2 patients to treatment 0 and 2 patients to
treatment 1. So, in our case, in the second block, i.e., for patient 5 —
patient 8, 2 of them should be assigned treatment 0, 2 of them should be
assigned treatment 1. Now, patients 6 and 7 are under treatment 1 and



patient 5 is under treatment 0. So, in order to balance this block, we
should assign treatment 0 to our new patient.

In general, if we have n patients, we should divide them into blocks with
length 2k (0<k<n/2), and within each block randomly assign k units to
treatment 0 and k units to treatment 1.

Now, the permuted blocks can be quite effective in eliminating
unbalanced designs. But the disadvantage is that at some points, the
experimenter knows for certain which treatment the next arrival will be
assigned. In our case, the experimenter will know for certain that he will
assign treatment 0 to the eighth patient.

In order to achieve balanced experiments without ever giving the
experimenter a high probability of guessing the assignment of the next
patient, we use the biased coin design.

2.3 Efron’s biased coin design
Efron (1971) provided the biased coin design.

Suppose at a certain stage in the experiment a new subject arrives and we
already have D more treatment 1 than treatment 0. We will assign the
new subject as follows:

If D > 0, assign treatment 1 with probability q and treatment 0 with
probability p.

If D = 0, assign treatment 1 with probability % and treatment 0 with
probability %.

If D < 0, assign treatment 1 with probability p and treatment 0 with
probability q.

Here p > q, p + q = 1. Efron suggested to use p = 2/3; this number is big
enough to yield generally good designs.

In our case, for the first 7 patients, 4 of them are in treatment 1 and 3 in
treatment 0. So, D =4 — 3 =1 > 0. We will assign the eighth patient
treatment 1 with probability q and treatment 0 with probability p. (p > q)



The biased coin design method can achieve greater balance than
completely random allocation. But when there are only a few subjects, it
is likely to be out of balance.

In the previous designs, we ignore the prognostic factors for the patients.
But actually, the prognostic factors can severely affect the response of
the patient. So, we should pay attention to it in our design. That is, we
should use some methods, which can minimize differences between the
treatments, not only in the number of patients but also in patient
characteristics.

2.4 The minimization method of Taves
Taves (1974) constructed the minimization method.

According to this method, I draw a table as follows:

Units Male Female | <20 20-40 >40 | Racel Race2

Sum

Treatment O 1 1 1 1

Treatment 1 3 0 3 3

Patient 8 0 0 0 0

*TO + P8

Treatment 1

Absolute difference

Treatment 0

*T1 + P8

QOINININ = W= =N

OIN{ NN = [ W] r= =N

Absolute difference

*TO + P8 means we assign the eighth patient treatment 0
T1 + P8 means we assign the eighth patient treatment 1

Row 1 and row 2 display the information about the first seven patients.
We can see the amount of each treatment with respect to the prognostic
factors. Row 3 is the code for patient 8: ‘zeros’ in all subcategories
except male, age 20 — 40, race 2, so only these subcategories are being
considered. First, we consider assigning treatment 0 to the patient. Row 4
of the table shows that now we have 3 instead of 2 patients for male, 2
instead of 1 in age 20 — 40, 3 instead of 2 in race 2. Next the absolute
difference is determined for these subcategories. The sum of these
differences is 5 (right column). The trial procedure is then repeated (row




8) with patient 8 added to treatment 1 rather than treatment 0, and the
absolute difference is determined (row 9) which is 1. Since the sum of
the differences is less when treatment 1 is added to patient 8, the patient
is assigned to treatment 1.

In this method, we consider the numbers of patients in each treatment
group who have the same characteristics as the patient about to be
assigned. By doing this, we minimize the differences between the
treatment groups. The use of randomization occurs only when the
placement of the new patient makes no difference in the comparability of
the two groups.

2.5 The method of Pocock and Simon

Pocock and Simon (1975) suggested a procedure for treatment
assignment that concentrates on minimizing imbalance within the levels
of each individual prognostic factor. The improvement of this method
compared with the method of Taves is that we have more randomization
in this method.

Using their method, we have 3 prognostic factors for which the treatment
balance is required, the number of levels of these factors being 2, 3 and 2.
For the first seven patients, the combination of treatment and factor level
are as follows:

Factor | 1 2 3
Treatment | Level | 1 2 1 2 3 1 2 Total
0 2 1 1 1 1 1 2 3
1 1 3 0 1 3 3 1 4
Total 3 4 1 2 4 4 3 7

Now, the eighth patient is at level 1, 2, and 2, respectively for the three
factors. The problem is to determine to which treatment that patient
should be assigned.

Denote:

dix: The range of the treatment difference for level r when treatment k
were assigned to the new patient who has level r in factor i. It
measures the ‘lack of balance’.



Gi: The sum of di with respect to i. It represents the ‘total amount of
imbalance’.

First, consider the results of assigning treatment 0 to the eighth patient:
For factor 1 level 1, treatment numbers would then be 3, 1. Range d;;0 =
12?.or factor 2 level 2, treatment numbers would then be 2, 1. Range d,z =
1217 ;)r factor 3 level 2, treatment numbers would then be 3, 1. Range d3;0 =
G.0 = Y1’ din = di1o + digo + dzgo = 5.

Assigning treatment 1 to the patient will get:

For factor 1 level 1, treatment numbers would then be 2, 2. Range d;;; =
I(z";)r factor 2 level 2, treatment numbers would then be 1, 2. Range dy; =
%.or factor 3 level 2, treatment numbers would then be 2, 2. Range ds;; =
dl = Yiet® dige = dy1) + dagy + dsy = 1.

G, is smaller than Go. Therefore, treatment 1 is assigned to the eighth
patient with probability p, treatment 0 being assigned with probability q.
Here p > q and p + q = 1. This means that treatments with small values of
Gy have a higher probability of being chosen.

2.6 The method of Begg and Iglewwicz

Begg and Iglewicz (1980) proposed a scheme for balancing the
treatments. In their method, the primary endpoint is the comparison of
two treatments with respect to an outcome variable that is related’ to
treatment and a number of binary prognostic factors. But sometimes, not
all prognostic factors are binary data. In that case, we can combine some
similar levels together, and only leave two levels for each prognostic
factor. In order to show how to apply this method, I will change the
conditions given before. That is, I will change the prognostic factors for
the patients as binary data by combining two levels in factor ‘age’
together. The details are as follows:



Prognostic factor | Levels
Sex + Male
— Female
Age + 40 and under
— above 40
Race +

Then, the prognostic factors and treatment for all patients are:

Patient | Prognostic factors | Treatment
Sex | Age | Race
1 - - + 1
2 - + + 0
3 + - - 0
4 - + + 1
5 + + - 0
6 - - 1
7 + - + 1
8 + + - ?

The table below gives the treatment assignments within each of the eight
factor level combinations.

Combination Treatment
Factor] | Factor2 | Factor3 | 0 (-) 1(+)
- - - 0 1
- - + 0 1
- + - 0 0
- + + 1 1
+ - - 1 0
+ - + 0 1
+ + - 1 0
+ + +

Totals: 3 4

The marginal totals for each factor and the overall total is:



Factor | Level | TreatmentO (-) | Treatment 1 (+)
1 - 1 3
+ 2 1
2 - 1 3
+ 2 1
3 - 2 1
+ 1 3
Overall totals: 3 4

Suppose m..,, m.,, m,., m,. represent the current treatment-factor totals,
the first subscript representing treatment. Now, we will calculate the
difference between the treatment imbalances in each of the two levels,
that 1s,

(m..- m,.) — (M. - m4) 3)
Factor | (m..- m,) - (m.. - m.,) | New patient
1 -3 +1
2 -3 +1
3 3 -1
Overall | 1 +1
+1

Since (-3 -3 3 1) +: = -8, the treatment allocation should be positive,

+1
i.e. assign treatment 1 to patient 8.

According to this method, when the (n+1)th patient arrives, we should
calculate (m.. - m,.) — (m., - m;) from the first n patients, then, multiply
this with the factor level of the new patient. If the result is negative, we
will assign the new patient treatment +. Otherwise, if the result is
positive, we will assign treatment — to the new patient.



2.7 Atkinson’s D -optimum designs

In his article, A.C.Atkinson (1982) mentioned that one disadvantage of
Efron’s biased coin design is: it does not include balance over prognostic
factors, which may affect the response of the patient to the treatment.
Then, he uses optimum design theory to provide a procedure of the
biased coin type for sequential clinical trials in the presence, or absence
of prognostic factors.

First, he introduced some necessary optimum design theory and then
applied it to biased coin experiment.

For the linear model E(Y) = X'B with independent observations of
variance o7, the variance of the least squares estimate of P is: var(p ) = o*
(X"™X)", where XX is the pxp dispersion matrix, assumed to be of full
rank. The fitted value at x is y(x) =x" B with var {;(x)} = o x"(x'x)'x.
The optimum design of experiments is concerned with the choice of X to
minimize various functions of variance of B. This theory is given by
Silvey (1980).

Now, let M be the dispersion matrix of the design: M = n”! (X"X). It is
convenient, instead of var {;(x)}, to consider the standardized variance:
d(x) =x™"x (1)
One design criterion, which is known as D-optimality, is to maximize the
determinant of M. This minimizes the generalized variance of the
parameter estimates.

In a clinical trial interest is often in contrasts between treatment effects.
Suppose the contrasts are s linear combinations which are elements of the
vector A'B, where A is an sxp matrix of rank s < p. The covariarice
matrix of the least squares estimate A™ B is proportional to AT™MA. And
the analogue of D-optimality is to maximize the determinant of
{A™'A}". Sibson (1974) named this criterion as D,-optimality. The
Equivalence Theorem for D,-optimality is described by silvey (1980).
The analogue of the variance (1) is the quantity:

da(x) =x'M'A{AT™™M!A}TATM 'x (2)
Sequential Da-optimum designs are generated one trial at a time by
adding an observation at x where (2) is a maximum.



The design region consists of t points, the ith of which corresponds to
allocating treatment i to the next patient. Let the corresponding value of
da(x) be da(i). The sequential construction of the optimum design
allocates the (n+1)th patient to the treatment for which da(i) is a
maximum. If randomization is required, we can choose treatment i with
probability:

pi=da@/{ 2, 4.0} 3)
With two treatments and no prognostic factors the model is E(Y) = B
(i=1,2). If interest is in the difference in treatment effects Bi- B2, AT=(,
-1). If, of the n patients, n, have received treatment 0 and n, treatment 1,
then M = diag{n/n}, a diagonal matrix. Substitution in (2) shows that for
the criterion of D4-optimality:

dA(l) = nz/nl, dA(2) = n,/nz.

From the biased coin rule (3), the probability of selecting treatment 1 is:
p1 = n; /(] +ny).

In our example, we have n, = 3, n, = 4, then, p; = 16/25, p, = 9/25. ie.
we will assign the eighth patient treatment 0 with probability 16/25, and
treatment 1 with probability 9/16.

Now, we will consider the prognostic factors. If we have n patients in our
trial, when the (n+1)th patient comes, which treatment should we assign
to him? The linear model is written in partitioned form

E(Y)=x'B=xB, +x]B, 4

Where x; is the vector of indicator variables for the treatments and x; 1S
the vector of prognostic factors.

To calculate the design, we need to partition the dispersion matrix and let
1 Mll M12

M - ( MZ] M22

Then, Atkinson suggests writing the general expression (2) as:

da(x) = xTM"BM"x, + 2xTM" BM " x, + x; M* BM "x,

Where B = A (A™"'A)'A". The contrast matrix A" = (1 -1)

Then, we will assign the new patient treatment 0 with probability:
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da(0)/[da(0) + da(1)]
and assign him treatment 1 with probability:
da(1)/[da(0) + da(1)]

In our example, Xy = 021
(0 1 3 0)
0

ll
O e O et e
_— et O e OO e
b et D

O = O = O =
W W N N W -

0)

(042858 0  0.14286 0.85716 0.28572)
0 057144 0.42858 1.57146 0.14286
M=n"(X"X)=0.14286 042858 0.57144 128574 0.14286
0.85716 1.57146 128574 6.4287 1.14288
(028572 0.14286 0.14286 1.14288 0.42858

AT=(Q1 -1

—-0.0587 0.0587

Ifx,"=(1 0), then, do(0) = x"M"BM"x, +2x" M"BM"x, + xT M* BM"x,
=0.44

Ifx;" = (0 1), then, da(1) = x"M"BM"x, + 2x" M" BM"x, + xT M* BM x,
=22.9716

We will assign the new patient treatment 0 with probability
da(0)/[da(0) + da(1)] = 0.44/(0.44+22.9716)=0.0188

and assign him treatment 1 with probability 1 — 0.0188 = 0.9812.

B=AA™M"A)" AT=( 0.0587 —0.0587]

3 A model for a clinical trial

In part 2, we introduced some methods to assign a treatment to the new
patient. Next, we want to know their effectiveness and appropriateness in

11



actual clinical trials. I am going to use computer simulations based on a
particular model to do the comparison of these methods.

The model chosen is as follows:

a) There are 10 patients initially in the trial with generated prognostic
factors andtreatment 101010 10 1 0 respectively. Here, I started
with a balanced situation, which is easier for the further operation.

b) The number of patients entered into the trial each time, N, is fixed. N
= 50 1s arbitrarily chosen for the simulation. I ran the simulation 1000
times. This should be large enough to illustrate the general properties
of the methods.

¢) There are two treatments: 0 and 1. This is the most common situation
in controlled clinical trials.

d) There are three prognostic factors: sex, age, race, with 2, 3, 2 levels
respectively. Balanced treatment numbers are desired for these
prognostic factors. We also assume there is no association among
factors.

e) Patients enter the trial sequentially in purely random fashion, the
factor levels of any one patient being independent of those for any
other.

4 Measure of treatment imbalance

The purpose of all the allocation methods is to avoid ‘imbalance’ for the
treatment. The word ‘imbalance’ has been used rather loosely so far and
is now defined more precisely.

For methods 1, 2, 3 and 7 in which we ignored the prognostic factors:
D1 = total number on the two treatments/2 — number of treatment 1

If D1 =0, the two treatment are balanced.
If D1 > 0, we have more treatment 0 than treatment 1.
If D1 <0, we have more treatment 1 than treatment 0.

For methods 4, 5, 6 and 8, which are supposed to balance treatments
across prognostic factors, the measure of imbalance should include the
imbalance of treatment for each factor combination. A measure of
imbalance in these cases is given by Dr. D.P. Wiens (2000):

12



D2= 357 =315 - Ly

i=0 i=0 I 1= n,
where:
i represent the treatments, in our case, i= 0, 1.
1 is the different combination of the prognostic factors, each combination
represents one level. In our case, we have 2*3*2 = 12 levels all together.
So, overall level L=12.
n;; is the number of times in the n assignments that a patient at level 1

receives treatment i.
12

n; = Znu
1=1

n;=ng +ny

I am going to use D1 and D2 as the measures of imbalance later on in the
simulation. I will calculate the average for the imbalance after each
assignment for all the 1000 simulations; plot it against the number of
patients for each method to make the comparison.

5 Result of simulation

Using computer software SAS, I generated 60 patients with prognostic
factors sex, age and race in each simulation. The first ten of them already
have been assigned a treatment. Assuming patients 11 to 60 are new
arrivals who will come sequentially to our trial, I use the above eight
different allocation methods to assign the new patient a treatment. After
each assignment, I calculated the imbalance for the trial. Then I repeated
this procedure 1000 times. Each time, I get 50 data for each allocation
method, which represents the imbalance after an assignment. I calculated
the average for these 50 data and used the result to compare the
effectiveness of different methods.

Table 1 lists the imbalance for those methods without considering the
prognostic factors. Among them, the imbalance for the permuted block
design is the smallest one, and it follows a pattern: the imbalance is equal
to O for 4th patient. This is because in our trial we divided the patients
into blocks with length 4. This shows both the advantage and
disadvantage for the permuted block design: it is effective in reducing
imbalance, but we can know for certain which treatment should be given

13



to the 4™ patients. In order to randomize our design, biased coin design
and Atkinson’s Dy-optimum design without considering prognostic
factors are better choices. We can see from table 1, the imbalances for
these methods are not very big.

I plotted the absolute value of the imbalance for methods 1, 2, 3 and 7
against the number of patients in figure 1. It is more convenient to
examine the distribution of the imbalance from this plot. We can see that
besides the permuted block design, Atkinson’s Da-optimum design
without considering prognostic factors has relatively small imbalance: all
of the number of imbalances for this method are smaller than 0.253. The
simplest allocation method, completely random allocation, the number of
imbalance has the biggest range, which is from 0.005 to 0.561.

Table 2 lists the imbalance for those methods in which prognostic factors
are taken into account. Among them, the method of Begg and Iglewwicz
has the biggest imbalance. This is not surprising when we examine the
method. In this method, we are only allowed binary prognostic factors. In
order to satisfy this condition, we arbitrarily change the prognostic
factors into binary data no matter what the prognostic factors really are.
This will reduce the precision.

The plot of imbalance for methods 4, 5, 6 and 8 is shown in Figure 2. We
find that the imbalance for Atkinson’s Ds-optimum design is the smallest
one. The range of imbalance is from 0.064 to 0.394. The imbalance for
Taves’ method is relatively small too. The range is from 0.083 to 0.403.
This method is easy to carry out compared to Atkinson’s Da-optimum
design.

14
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Appendix A

Table 1. Average imbalance for method 1, 2, 3 and 7.
No. of
patient frandom 2permute 3biased 7akwo
11 -0.279 0.033 -0.307 0.044
12 0.015 0.000 -0.232 0.182
13 0.020 -0.025 -0.126 0.096
14 -0.005 0.101 -0.293 0.040
15  0.040 0.106 -0.227 -0.045
16 -0.035 0.000 -0.263 -0.040
17 -0.162 0.005 -0.308 -0.136
18 -0.136 0.091 -0.333 -0.212
19 -0.131 0.066 -0.379 -0.177
20 -0.106 0.000 -0.293 -0.091
21 -0.141 -0.015 -0.359 -0.045
22 -0.187 0.121 -0.232 -0.010
23 -0.253 0.076 -0.268 -0.056
24 -0.328 0.000 -0.354 -0.111
25 -0.364 0.056 -0.288 -0.237
26 -0.348 0.121 -0.343 -0.131
27 -0.333 0.126 -0.369 -0.197
28 -0.328 0.000 -0.354 -0.081
29 -0.404 -0.035 -0.379 -0.076
30 -0.348 0.020 -0.333 -0.010
31 -0.323 0.106 -0.298 -0.035
32 -0.318 0.000 -0.273 0.010
33 -0.343 -0.025 -0.308 0.086
34 -0.359 0.061 -0.263 0.131
35 -0.303 0.045 -0.338 0.076
36 -0.328 0.000 -0.364 0.162
37 -0.364 0.076 -0.318 0.126
38 -0.379 0.051 -0.313 0.253
39 -0.283 0.056 -0.359 0.106
40 -0.217 0.000 -0.303 0.081
41 -0.172 -0.066 -0.268 -0.025
42 -0.237 0.020 -0.273 -0.051
43 -0.293 0.106 -0.268 -0.096
44 -0.247 0.000 -0.323 0.020
45 -0.222 -0.005 -0.328 -0.056
46 -0.227 0.030 -0.394 0.040
47 -0.263 0.096 -0.389 0.066
48 -0.258 0.000 -0.323 0.172
49 -0.273 -0.035 -0.399 0.157
50 -0.298 -0.081 -0.414 0.121
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51 -0.303 0.005 -0.409 0.177
52 -0.338 0.000 -0.374 0.222
53 -0.293 0.015 -0.268 0.197
54 -0.328 0.020 -0.253 0.182
556 -0.414 0.045 -0.318 0.177
56 -0.449 0.000 -0.313 0.192
57 -0.465 0.015 -0.308 0.237
58 -0.460 0.111 -0.263 0.242
59 -0.505 0.136 -0.278 0.247
60 -0.561 0.000 -0.131 0.141

Table 2. Average imbalance for method 4, 5, 6 and 8.

No. of patient  4taves 5ps 6bi 8akw
11 0146  0.179 0210  0.137
12 0403 0403 0394 0395
13 0370 0370 0374  0.370
14 0326 0362 0360  0.362
15 0295 0.343 0348  0.343
16 0285 0.316 0294 0323
177 0263 0280 0288  0.293
18 0250 0272 0278 0.278
19 0244 0260 0266  0.271
20 0258 0279 0237 0279
21 0205 0293 0221 0229
22 0220 0303 0202 0.193
23 0188 0311 0191  0.159
24 0188 0316 0.188  0.163
25 0159 0286  0.188  0.133
26 0158 0277 0190  0.127
27 0164 0226 0.182  0.121
28 0150 0186  0.181  0.132
29 0158 0188  0.176  0.136
30 0137 0161 0179  0.118
31 0116 0176  0.174  0.100
32 0107 0170 0177  0.094
3 0109 0154 0.180  0.078
34 0111 0155 0.183  0.080
35 0093 0164  0.187  0.090
3 0103 0.173  0.190  0.099
37 0106 0146  0.193  0.106
38 0093 0.152 0.191  0.090
39 0093 0139 0.189  0.081
40 0088 0140 0188  0.082
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41
42
43
44
45
46
47
48
49
50
51
52
53

55
56
57
58
59
60

0.083
0.086
0.087
0.091
0.090
0.082
0.085
0.090
0.096
0.090
0.090
0.086
0.087
0.088
0.088
0.089
0.087
0.086
0.093
0.100

0.135
0.144
0.145
0.151
0.148
0.131
0.120
0.096
0.085
0.080
0.074
0.072
0.071
0.073
0.072
0.070
0.071
0.068
0.053
0.038
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0.191
0.189
0.192
0.190
0.193
0.191
0.190
0.187
0.182
0.180
0.178
0.176
0.180
0.183
0.181
0.185
0.183
0.181
0.185
0.188

0.074
0.080
0.079
0.071
0.075
0.072
0.072
0.064
0.068
0.071
0.066
0.067
0.069
0.072
0.069
0.072
0.069
0.069
0.076
0.078



Appendix B:

Figure 1: Measure of imbalance (absolute value) vs. the number of

patients for methods 1,2,3 and 7
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Figure 2: Measure of imbalance vs. the number of patients for methods 4,

5,6and 8
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