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1. Introduction

The development of vegetation during various stages of growth
depends on several meteorological conditions. One of the conditions is the
winds; strong and persistent winds will prevent vegetation growth because
they reduce soil moisture and physically damage the vegetation. In areas
where winds have such hazards, brushes of trees can be installed to produce
a shelterbelt in order to reduce wind speeds. Many findings have proven that
the areas near the shelterbelt and opposite the wind will have the shelter
effect, i.e. higher temperature.

In Ellerslie weather station, a brush of evergreen trees is planted
northward from the instrument shelter, see figure 1.1. We want to find out
whether the trees have a shelter effect on the temperature at that station. In
order to study the effect, we have chosen the Edmonton International Airport
weather station to help our study. Since two stations are only about 10 miles
apart, we expect that readings from both stations should be very close. Ten
years' daily records of mean daily temperature, total hours of bright sunshine,
total km of winds run from the north for both stations are available. Using all
ten years observations, we use the standard test concerning the difference
between two population means to test whether the mean temperature at
Ellerslie is significantly higher than the mean temperature at the airport
station. This test and the corresponding estimates have concluded that the
temperature at Ellerslie is on average higher than the temperature at the
airport. We also run the test using the days with total north wind greater than
10 km; the same conclusion is drawn. Detailed discussion with a
meteorologist has led to a conjecture that the shelter effect may be the cause
of the higher temperature at Ellerslie. Under this conjecture, we expect that

the temperature difference between the two stations will have a systematic



component when the day has strong north wind and bright sunshine. In this
paper, we try to use a linear model to investigate whether the hours of bright
sunshine and the north wind have any effect on the temperature difference.
Since the readings from both stations are random and measured with errors,
an alternative estimation method rather than the method of least squares
should be used. In the following sections, we will give a brief review of the
measurement error model and the estimation methods. Finally, we will

present the analysis and give a conclusion on the finding.

2. Measurement Error Model

Regression analysis has been studied for the past several decades
extensively. In the classical case, we assume that the explanatory variables
are fixed and can be observed without error. However, in many practical
situations the explanatory variables can not be observed directly and they can

be fixed or random. Consider the following model

Y = XB +¢, E[e] =0, E[e?] = &2,
2.1) y=Y;+u, E[y] =0, E[u}] = 62
=X, +€; Ele]=0,E[gei]l= diag(ol, ... , 012))

and €, u,, ¢, are uncorrelated,
» T = % i
BN X el R
Xi is a px1 vector, i=l .0
where Y, and X, are the true values and y; and x. are the observed values of

Y, and X, respectively. (2.1) is the classical set up for the measurement error

model or the error-in-variables model. When the the explanatory variables are
fixed, we have the so called functional relationship. If they are random, we

have the structural relationship. From (2.1), we can rewrite the model as
(2.2) Y, =XB+e], e =€ +u -elB.



People usually make inferences on f via (2.2) by using the method of least
squares. The least squares estimator for § in (2.2) is
I

A
(2.3) B= (xTx)—ley, x:[ﬁls Xoseeer X

If we substitute (2.2) into (2.3) and take expectation, we get

A
(2.4) E[B]=B + E[(xTx) xTe*]
Since x and €" are correlated, the expectation of the last term in (2.4) does not
vanish. Many statisticians have pointed out that the LS estimator of B in (2.2)
is biased and inconsistent, and they recommended that other estimation
methods should be used to estimate [ (see Fuller 1987). However, Draper

and Smith (1981) have mentioned some conditions which the LS estimation

can still be used in (2.2), and they are

1. Wheno}, k=1,...,p, are small compared to Gfk, the variance of X, , the
2
Ox
bias in (2.4) will be small and approaches zero as sz —> oo,
k

2, When the explanatory variables are fixed and controlled by the planner,
the x and €* are uncorrelated.
3 We use the model
Y=xB+e.
In this paper, the instrumental variables estimation and the orthogonal
regression estimation will be discussed in the following sections to handle the

estimation of 3 in (2.2).

The instrumental variables (IV) method has been used to solve some
econometric problems for many years. However, this method can also be
used to handle the estimation of the regression parameters when the

explanatory variables are subject to measurement error. In (2.1), assume that



there is a set of variables, W, say, which is highly correlated with X but is

independent of the measurement errors ¢, €, u. The idea of IV estimation is to

extract more information about X from W, then use this extra information to

estimate [3. Since the measurement error u of Y and € can be considered as

one error term without affecting the structure of (2.1), we can rewrite (2.1) as

y=XB+v

(3.1) x=X+e

As mentioned above, we can write the instrumental variable W as

(3.2) X=W0+a E[a]=0, E[gall=cl, k=l,..p
where W and a are independent.

Putting (3.2) into (3.1), we have

(3.3a) y=W6B + v, vi=v+aP

(3.3b) x=W0+e", e'=e+a

From (3.3), we can estimate 0 from (3.3b), then use 8, ¥, W to estimate [3 by

LS. The resulting estimators of 6 and 3 are

A
0 = (WTW)-1wTy

A A A AN
B =[(W6)"(We)I''(W8)y
(3.4) = [(WWTW) WD) T(W(WTW) W) (WWTW) T W Tx) Ty

= [xTW(WTW) TWTx] L TW(WTW) TwTy

A A
or PB=[2T22Ty, X=Wo
Substituting (3.1) into (3.4) and taking expectation, we have
A
(3.3) E[B] =B + E{[xTW(WTW) 'WTx] LTW(WTW) 1WTy}.



Because of the independence assumption on W, the last term in (3.5)

vanishes. Hence, the IV estimator of 3, say 61v, is unbiased. In order to use IV
estimation, we must have q = p, where Wpyq and Xnxp- Also, one can use the
two stage LS method to estimate [3. First, one regresses x on W to get Q; then,
one regresses y on % to get the estimate of . For more properties of IV

estimation, see Bowden and Turkington (1984).

Due to recent active research in robust regression, we try to robustify
the IV estimation by using robust estimation in each stage. The type of robust
estimation which we will discuss is bounded influence estimation for

regression. For the model,

yi = ETB + ei E[el] = 05 E[elzl = 029
the estimate of 3 can be obtained by solving

n
Zn(fﬁiari){i =0, r=0;-xiB) /o,
i=1

where 1 is the function mentioned in Hampel et. al. (1986). Wiens (1991)
mentioned a simple procedure to obtain the estimate of 3 and its variance by
using iteratively reweighted LS. This procedure can be implemented in any

programming language or in any statistical package which can implement
weighted LS.

4. Orthogonal Regression Estimation

In instrumental variables estimation, the estimation of B relies on the

instrumental variables. When such variables do not exist, one may use the



maximum likelihood (ML) method to estimate B. We now rewrite the model
(2.1) as follows

(4.1) Y, =X{B+¢
Y= Yi +u,
X=X +¢;
with g ~N(0, 6?)
u,~N(@, 62)
e~ N0, Seo), See = diag(c?, ... , 02

Z—(i i N(LJ:X ; Exx)
and €, u, e, X are independent.

Assume that the observation Z, = (y,, g;r) T is from a normal population with

mean W, and covariance Yzz where yz = (uIB, p»)T, and

B'ExxB+oi+c:  BTExx

222~ [ XxxP 2xX+ Leel

Hence, the logarithm of the likelihood function is
I
@) L=-Pinen -JulSxxd -3t (S 3 - u) & - w")

1=1

2
c5u

2 1 i
When 62 and oy, k=1, ..., p are known, or A, = & 1, Kendall and Stuart

(1973), Anderson(1984), Fuller(1987) show that maximizing (4.2) is
equivalent to minimizing the sum of squared perpendicular distances from the

observation points to the plane defined in (4.1). In other words, the ML



estimator of B is the result from the orthogonal regression (OR) of y on x. In
the least squares sense, the resulting estimator comes from minimizing the

following

=

O; - E?B)Z
{=1

D(B) = p

2B§+1
k=71

Since orthogonal regression is not used in practice very often, a program for it
is not included in statistical packages. However, Ammann and Van Ness
(1988) have developed a routine to convert a standard regression program
into an orthogonal regression program. "The idea is to use an iterative
procedure to rotate the data until the regression line is horizontal. The final
regression line and the data are then rotated back to the original coordinates

giving the OR line".! Hence, the OR estimate of 3 for (4.1) can be obtained by
using the following algorithm

1.  Obtain x° and y° by subtracting x and y from x and y.

A A
2, Get B, by doing a regression of y° on x°. Check whether B is close to

zero; if not, go to step 3.

A
3 Rotate the data until the plane defined by B* is perpendicular to the y-

axis. The rotation matrix is the matrix Q from the QR decomposition of

I
Be1)

1 .. Ammann and J. Van Ness (1988)




The rotated data x**! and y**! are the columns of [x¥ | y¥]*Q.

A A
4. Get B**1, by doing the regression of y**! on x**!, Check whether B**! is

close to zero. If not, go back to step 3; otherwise, go to step 3.

5.  Divide the last column, say q, of Q*Q¥1...Q°, where QX is the matrix Q
obtained at the kth iteration and QU is the identity matrix, by the
negative value of the last element of q. Form b equal to the first p

elements of q", the resulting q from above. Also, define a equal to y - xb.
6.  The OR estimate of B is giving by [a | bT]T.

The classical OR can be obtained by using the LS regression in the above
procedure. If one uses the robust regression procedure instead, the robust OR

will be obtained.

5. Analysis

In section 1, we have tested that the temperature at the Ellerslie station

is on average higher than the temperature at the airport station. The model

that we will use is

(5.1) Y, =B, + B, X,; + B.X,, + B X, N -
where Y, = True temperature at Ellerslie - true temperature at the
airport;

X,;= True total hours of bright sunshine at Ellerslie;

1
By = True total km of north wind speed at Ellerslie’




Xa; = Xy * Xy

and we will use only the days with north wind greater than 10 km per day to
estimate the parameters in the model. The reason for using the temperature
difference instead of the actual mean temperature is to filter out the seasonal
and air-mass effects on the temperature; hence, it will leave only very local
influences upon the variables of interest. Also, we expect that the
temperature differences are directly proportional to the sunshine hours, but
are inversely proportional to the north wind speeds. For exploration purpose,
we will use the first half of the data, from 1969 - 1971; for model validation, we
will use the second half of the data set, from 1972-1976. Since all readings are
subject to measurement errors, the above mentioned methods are very
suitable for this analysis. For the IV estimation, we will use the readings for
sun and winds from Edmonton International Airport station as instrumental
variables. For the OR estimation, we estimate the variance on the
measurement errors by comparing the observations at Ellerslie and the
airport, since on any given date the readings from both stations should be very
close. Therefore, we can assume that they are fixed, but in fact they are
random. Also, we assume that the measurement error for the equipment
from both stations are the same and the errors are uncorrelated. If we take
the differences of the same kind of reading from both stations and divide them
by square root two, the measurement error variance is then calculated by the
usual formula with n-1 replaced by n. For instance, to calculate the
measurement error variance on the north wind speed, we take the readings
on north wind speed from both stations. Finally, we take the differences
between the two readings and divide them by square root two. For the robust

case, we use a robust estimate of scale to estimate the variances. The most



common estimator is the Median Absolute Deviation (MAD) estimator, it is

defined by

s(w) = 1.4826™*median(lw; - median(w;)l).

The estimated measurement error variance for the temperature is computed

by the same formula.

Using the estimation methods mentioned above, we estimated the 3s by

four different methods. These methods were:

L.

IV Estimation with the readings from the airport as the instrumental
variables.
Robust IV Estimation with the readings from the airport as the
instrumental variables. The function 1 that we use is

N(x, 1) = wEIW(r, / w(x,)),

a lal= ¢
where y(@) ={ csign(a) alze ° c=1.0,
and w(x,)=(1-h)/h%, bi= gl G el

Orthogonal Regression. We use the estimated measurement error
standard deviations to scale the data, so that the As are all equal to one.
Then we use the routine mentioned in Section 3 to compute the
orthogonal regression estimates.

Orthogonal Regression M-estimate. We estimate the error variances
by the MAD estimator and scale the data, so that the As are all equal to
one. The Bs are computed by the OR routine with the M-estimation of

regression. The M-estimator for regression can be obtained by solving

10



n
Dwrx, =0, r=0,-x1B)/o.
=1

The M-estimator for regression can be obtained by using the algorithm
for bounded influence regression estimate, such as one mentioned in
Section 3. We use the same v function as in method 2.

All the computation are performed by Proc IML of SAS; the final
estimates from the above methods are listed in Table 5.1. In order to see the
effect on the estimates fi’om the least squares estimation, we also include the
results from the least squares estimation in the last column in Table 5.1.

From Table. 5.1, both IV estimations result in similar estimates for the
Bs. Also, the estimates have the right sign as we expected. For the least
squares estimation, the estimates are not the same as both IV estimates
because of the bias mentioned in section 2. For the Orthogonal Regression
estimates, the final estimates of the s are quite different from the results from
both IV estimations. This problem may arise from the outliers in the data and
the estimated measurement error variances. It is well known that the
orthogonal regression estimate is unstable due to unit change in variables,
such as from inches to yards. Also the classical OR estimate is very sensitive
to outliers; even with a small amounts of outliers, the classical OR estimate
can be completely changed. The outliers in the data can be noticed from the
differences between the classical IV estimates and the robust IV estimates,
and from the remote points on the residuals plots. Although the robust OR
estimation can down weight the effect of the outliers in the data, the estimates
from this method also rely on the accurately estimated measurement error
variances and hence the As. Lakshminarayanan and Gunst(1984) have
shown that when the As are incorrectly specified the classical OR estimate is

inconsistent and the asymptotic variance for the Bs will not be valid, because

161l



the estimator has no finite sample moments. We think that the incorrectly
estimated As are from the wind speeds and this is the major reason for the
resulting estimates. Although we have replications on the wind speeds, the
readings are taken out from different equipment. In Ellerslie station, the
equipment which take the wind speeds only reads the speed from 8 directions,
i.e. N,NE, E, SE, S, SW, W, NW. For the airport station, before 1971, the
equipment read the speed from 16 directions; after 1971, the equipment can
read the speed from 36 directions. This difference could cause the unequal
variance from the equipment, and hence violate our assumption of equal error
variances from both stations. Also, the total wind speeds on each day are
computed by summing up the 24 hourly readings. Therefore, as the wind
direction can change within an hour, the equipment from the airport station
will produce more accurate reading than the equipment in the Ellerslie station.
This may also cause the incorrectly estimated of the As. The mispecification
of the measurement error structure may also cause a problem in the OR
estimations. At the beginning, we assume that the measurement errors are
uncorrelated. When the interaction terms are added, the covariance matrix of
the measurement error will not be diagonal. When this is true, we have to
employ the generalized version of the OR and the simple routine mentioned
can not be used. In the robust case, the estimates can be obtained by directly
solving the estimating equations but this could lead to complicated
computation.

Due to the above mentioned problems in the OR estimations and the

least squares estimation, the rest of the analysis will be based on both IV
estimations. Since BO is the most insignificant from both IV estimations, we

will delete it from (5.1) and estimate B, B,, B, again from the following model
(32) Y, =B, X, + B, X, + B X5 i R

L2



Both IV estimations are listed in Table (5.2). Again, both IV estimations result
in similar estimates for all parameters except for B,; we think that the outliers

in the data may have the effect on it. Also, both IV estimations have shown
that B,, and B, are insignificant; hence, we will remove them from (5.2) in
turn. First, we remove X, from (5.2), since it is the most insignificant in the
model. After X, is removed , 3, still remains significant in the new model and
B, also remains insignificant. Finally, we remove both X, and X, from (5.2)
and get the following model

(5.3) Y, = B,X,5, i=1,...0

The final results are presented in Table 5.3. Once again, the final estimates
from both IV estimations are quite similar, and the residuals plots do not have
any unusual trends. For the model validation, we estimate Bz in (5.3) by using
the second half of the data, from 1972 - 1976. The final estimates and the 95%

confidence intervals are presented in Table 5.3. Looking at the estimates for
both data sets, we can see that the estimates of B, in the second half of the

data set is about 2 units higher than the estimates of B, in the first half from

robust IV estimation. This might cause by the height of the trees, since the

trees do increase in height as age increases. As a result, the trees may cause
the effect of the north wind, i.e. B,, to be higher in the second half of the data.

However, the 95% confidence intervals produced from both data sets do
overlap more than 50%. This indication suggests that B, in (5.3) is similarly

estimated by the IV estimations. Hence, we conclude that (5.3) is the final

model to study the effect of the temperature differences.

6. Conclusion
In the previous section, we have concluded that (5.3) is our final model

to study the temperature differences. Based on this model, we can conclude

13



that the north winds do have significant effect on the temperature differences,
and hence the shelterbelt does cause higher temperature at the Ellerslie
station. Also we can see that the temperature differences is more significant
when the north winds is moderate, and the differences reduce as the north
winds getting stronger. Finally, we want to make a remark about the data set
that we used. Since the shelter effect will work more efficiently when the
place has bright sunshine and moderate to strong north wind altogether,
hourly readings of the variables show when this condition is obtained. Hence,
if one can obtain the hourly readings on the temperature, the north wind, and

the bright sunshine, a more detailed analysis can be performed.

14
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The estimates of the s in model (5.1)

Table 5.1

Method Method Method Method Least
1 2 3 4 squares
_I -0.85989 --0.85535 87.6228 -660.489* 0.41145%*
Bo (0.58760) (0.58462) (580.847) (0.04647) (0.15705)
0.16251 0.14594* -11.3256 64.9176* 0.00123
[31 (0.08946) (0.05870) (75.2676) (0.01296) (0.01971)
48.8421* 48.9249* -3318.92 28831.0* -0.16581
Bz (22.0203) (20.6543) (22101.6) (0.00112) (4.32306)
-5.75715 -5.22093* 430.833 -3032.62* 0.46750
B3 (3.38392) (2.09064) (2859.59) (0.00914) (0.55420)

NOTE: * At 5% level of significance, the hypothesis Hy : Bj = 0 is rejected.

The value inside the parenthesis is the estimated standard deviation.
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FLGURE 5.1
RESIDUALS PLOT FOR CLASSICAL IV ESTIMATION
FOR MODEL (5.1)

Plot of RESIDUAL*PREDICT. Legend: A = 1 obs, B = 2 ohs, ste.
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FIGURE 5.2
RESIDUALS PLOT FOR CLASSICAL IV ESTIMATION
‘FOR MODEL (5.1)
Plot of RESIDUAL*X1. Legend: A = 1 obs, B = 2 obs, etc.
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FIGURE &.83
RESIDUALS PLOT FOR CLASSICAL IV ESTIMATION
FOR MODEL {5.1)

Plot of RESIDUAL*X2. Legend: A

1 obe, B = 2 obs. cfs.
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FIGURE 5.4
RESIDUALS PLOT FOR CLASSICAL IV ESTIMATION
FOR MODEL (5.1)
Plot of RESIDUAL*X3. Legend: A = 1 obs, B = 2 obs, etc.
18 *
A
B # AA A
DDA B A
RESIDUAL IBCBAAB A A A A
ZOKG BABDA D ACAB B AB A
0 + ZZZMROGGEHFEBDBABAA A D A A
PMONEHCBDCBB. B
HDDDC ABA
D BAA AA
“5 % B
A A
A
=0 @
e R e e Fommm e m - +--
0.0 0.5 1.0 1.8

= o> >
> Mmoo > > >



Plot of RESIDUAL*PREDICT. Legend: A = 1 obs, = 2 obs, etc.
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1 FIGURE 5.6
- RESIDUALS PLOT FOR ROBUST IV ESTIMATION
FOR MODEL (5.1)
Plot of RESIDUAL*X1. Legend: A = 1 obs, B = 2 obs, etc.
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RESIDUALS PLOT FOR ROBUST IV ESTIMATION

FIGURE 5.5

FOR MODEL (5.1)
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FIGURE 5.7
RESIDUALS PLOT FOR ROBUST IV ESTIMATION
FOR MODEL (5.1)

Plot of RESIDUAL*X2. Legend: A 1 ebs, B = 2 obs, ete.
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FIGURE 5.8
RESIDUALS PLOT FOR ROBUST IV ESTIMATION
FOR MODEL (5.1)

Plot of RESIDUAL*X3. Legend: A = 1 obs, B = 2 obs, etc.
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Table 5.2
The estimates of the s in model (5.2)

J Method | Method
1 2
_“ 0.06541 0.06733
B, (0.05353) | (0.03836)

17.3768* | 21.8559*
By || (4.23944) (4.77357)

217549 | -2.72308
Bs | 2.08502) | (1.41718)

NOTE: * At 5% level of significance, the hypothesis Hg : [3 0 is rejected.
The value inside the parenthesis is the estimated standard deviation.

TABLE 5.3

The estimates of the Bs in model (5.3)

YEAR YEAR

1967-1971 1972-1976
Method Method Method " Method

1 3 1 9

B, LOWBOUND 13.7744 13.5950 17.0282 15.7730
ESTIMATE 18.7341 18.5594 22.4745 20.9683
UPBOUND 23.6938 23.5238 . 279207 | 261637
p 1.44474 1.01939 1.45171 |r0 96081

NOTE : LOWBOUND --- 95% CONFIDENCE INTERVAL LOWER BOUND.
UPBOUND --- 95% CONFIDENCE INTERVAL UPPER BOUND.
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FIGURE 5.8
RESIDUALS PLOT FOR CLASSICAL 1V ESTIMATION
FOR MODEL (5.3), YEAR 1967-1971

Plot of RESIDUAL*PREDICT. Legend: A = 1 cbs; B = 2 obs, etc.
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FIGURE 5.10
RESIDUALS PLOT FOR CLASSICAL 1V ESTIMATION
FOR MODEL (5.3), YEAR 1967-1971

Plot of RESIDUAL*X2. Legend: A = 1 ébs, B = 2 ohs, ete.
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FIGURE 5. 11
RESIDUALS PLOT FOR ROBUST IV ESTIMATION
FOR MODEL (5.3), YEAR 1867-1971

Plot of RESIDUAL*PREDICT. Legend: A = 1 obs, B = 2 obs, etec.
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FIGURE 5.12

RESIDUALS PLOT FOR ROBUST IV ESTIMATION
FOR MODEL (5.3), YEAR 1987-1971

Plot of RESIDUAL*X2. Legend: A = 1 obs, B = 2 obs, etc.
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Plot of RESIDUAL*PREDICT. Legend: A
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FIGURE 5.13
RESIDUALS PLOT FOR CLASSICAL IV ESTIMATION
FOR MODEL (5.3), YEAR 1972-1976

1 obs, B = 2 chs, etc,
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FIGURE 5.14 :

REéIDUALS PLOT FOR CLASSICAL IV ESTIMATION
FOR MODEL (5.3), YEAR 1972-1976

Plot of RESIDUAL*X2. Legend: A = 1 obs, B = 2 obs, etc.
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ELIGURE 5,15
RESIDUALS PLOT FOR ROBUST IV ESTIMATION
FOR MODEL (5.3), YEAR 1972-1976

Plot of RESIDUAL*PREDICT. Legend: A = { obs, B = 2 obs, etc.
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FIGURE 5. 18

RESIDUALS PLOT FOR ROBUST IV ESTIMATION
FOR MODEL (5.3), YEAR 1972-1976

Plot of RESIDUAL*X2. Legend: A = {1 obs, B

2 obs, etc.
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