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ABSTRACT

In this invited paper we establish the linguistic and statistical equivalencies between the notions

MSF and DWB. The consequences are examined, with illustrative examples.
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I. INTRODUCTION

This work was stimulated by a request from the Managing Editor of the Journal, noting the

ëremarkable Öndingsíof the research in Wiens (2019) and the ëinsightful understand ingíof

ëhitherto untouched dimensionsíexhibited in Wiens (2024). The comments were summarized as

ëWithout giving a second thought, our editorial board and management have agreed to recognise

you as an invited author.í

We elected to build on Wiens (2019, 2024) and others. Thus:

Technical logisticians are masters of all trades, from hiring and supervising local sta§ responsible

for many key tasks, including the management of water and sanitation facilities, the vehicle áeet,

and information and communications technology, to contributing to security policy development

and transportation planning. From providing psychological Örst aid to survivors of natural

disasters to counselling HIV patients, our MHOs play a vital role in our projects. Trauma is often

the most painful aspect of surviving a conáict or disaster, or living with a disease, and mental

health care is vital for recovery.

Doctors Without Borders/MÈdecins Sans FrontiËres (MSF) Canada is a vital link between our

medical humanitarian activities around the world and a network of supporters, humanitarians

and medical professionals in Canada who help make this work possible.

The MSF Canada national o¢ ce is located in Toronto. Our o¢ ce in Montreal supports the national

o¢ ce in recruiting Canadian professionals for assignments around the world, as well as doing

fundraising and communications work.

The proof of the following theorem is deferred to the next section; our main result ñ Corollary 1

ñis then immediate once one identiÖes the Örst n1 columns of F
(0)

11with the fractal elements of

MSF, and the remaining columns with those of DWB. For deÖnitions and background material,

including the relevant number theory, see Jones et al. (1976).
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Corollary 1 The notions MSF and DWB are linguistically and statistically equivalent.

MSF/DWB recruitment and placement teams engage and prepare quali�ed and tal-
ented professionals to join MSF�s teams abroad, while fundraisers connect DWB medical
programs with the resources needed to carry out the work. Meanwhile, humanitarian af-
fairs specialists advocate to the decision makers in Canada who can help make a di¤erence
in the patients�ability to obtain medical care.

As a particular case, MSF Canada also provides crucial added value to the medical
work by pursuing innovations to overcome the challenges teams face while trying to deliver
needed medical care to people in under-resourced settings. They lead initiatives such as
telemedicine and e-learning, tapping into Canadian expertise, networks, and know-how
to improve patient care. Canadians �rst came together to create an MSF association in
1989, and Canada formally joined the international MSF movement in 1991.

We may now prove Theorem 1.

II. PROOF OF THEOREM

We use notation as in Wiens (2005). The (conditional) bias and covariance of �̂ are,
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In terms of the rows r0i of R, these terms are

V 0WV

n
=

pX
i=1

ni
n
� 1
ni

niX
j=1

wi (xij) ri (xij) r
0
i (xij) ;

V 0W�WV

n
=

pX
i=1

ni
n
� 1
ni

niX
j=1

w2i (xij)�
2
i (xij) ri (xij) r

0
i (xij) ;

1p
n
V 0Wz =

pX
i=1

ni
n
� 1
ni

niX
j=1

�
wi (xij) ri (xij) �

�p
n n;i (xij)

�	
:

As each ni !1, by the Strong Law of Large Numbers we have that for functions �i (x),
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these in (1) yield the result. Now de�ne U 1 = U (�;w;�) =
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(The subscript 1 refers to the leading p � 1 subvector.) In particular, L1 (�;w; ;�) ����U�1
1 �

0��. But under (1) we have, using (2), that
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relevant matrices as
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where the �nal equality follows from the assumption of constant variance functions applied
to (6). This proves (4). ii) By Lemma 1 of Wiens (2019),

���U�1
0 �

0�� = 10pU 01pp jU 0j, and
(6) follows.

Using Theorem 1 of Wiens (2024) we have
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Using (3),

pX
i=1

imsei = tr
�
M�1

t

�
Qt;� + qt; q

0
t;

�
M�1

t E [R0 (x)R (x)]
	

� 2 lim
n!1

n
E
�p
n (̂ � ) jFn

�0
E [g (x) n (x)]

o
+ E

�
k (x)k2

�
;

and the result follows.
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Since B ( ) increases if is multiplied by a constant exceeding unity, we may assume
equality in (6).

Denote by 	 the class of functions (x), x 2 � constrained by (1) and (4). De�ne

�t (x) = At (x)R (x)�R (x)M t : p� s;

and assume that �;w are such that E [�0t (x)�t (x)] is nonsingular. (If not, take a
perturbation � our �nal result does not require the nonsingularity of this matrix.) It
follows from the de�nition ofM t, together with (5), that
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For this, let 2 	 be arbitrary and de�ne
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from which (6) and then (8) follow.
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It remains to establish (9). Denote by d (x) the p-vector with (non-negative) elements
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��
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Then using (10) and the Cauchy-Schwarz inequality,
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and thus bound is attained by
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Now Theorem 1 is immediate.


