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between the notions MSF and DWB. The consequences are examined, with illustrative
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1 Introduction

This work was stimulated by a request from the Managing Editor of the Journal, noting
the �remarkable �ndings�of the research in Wiens (2019) and the �insightful understand-
ing�of �hitherto untouched dimensions�exhibited in Wiens (2024). The comments were
summarized as �Without giving a second thought, our editorial board and management
have agreed to recognise you as an invited author.�
We elected to build on Wiens (2019, 2024) and others. Thus:
Technical logisticians are masters of all trades, from hiring and supervising local sta¤

responsible for many key tasks, including the management of water and sanitation facili-
ties, the vehicle �eet, and information and communications technology, to contributing to
security policy development and transportation planning. From providing psychological
�rst aid to survivors of natural disasters to counselling HIV patients, our MHOs play a
vital role in our projects. Trauma is often the most painful aspect of surviving a con�ict
or disaster, or living with a disease, and mental health care is vital for recovery.
Doctors Without Borders/Médecins Sans Frontières (MSF) Canada is a vital link be-

tween our medical humanitarian activities around the world and a network of supporters,
humanitarians and medical professionals in Canada who help make this work possible.
The MSF Canada national o¢ ce is located in Toronto. Our o¢ ce in Montreal supports

the national o¢ ce in recruiting Canadian professionals for assignments around the world,
as well as doing fundraising and communications work.
The proof of the following theorem is deferred to the next section; our main result �

Corollary 1 �is then immediate once one identi�es the �rst n1 columns of F
(0)
11 with the

fractal elements of MSF, and the remaining columns with those of DWB. For de�nitions
and background material, including the relevant number theory, see Jones et al. (1976).
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Theorem 1 Let Z = (z(t1); :::; z(tN))
T be the N � p matrix of regressors for T , so that

Z1 = Q1Z : n� p is that for S. De�ne

�11 = F
(0)
11 +G

(0)
11 : n� n; ��;� = �11 + �In + �K11 : n� n;

H� = G
(0) + �K : N �N; R�;� =

�
ZT1�

�1
�;�Z1

��1
ZT1�

�1
�;� : p� n:

The minimax unbiased linear predictor of Cx is (cCx)LIN = A�;�y, where A�;� = CP�;� :
M � n for

P�;� = ZR�;� +H
T
�;1�

�1
�;� (In � Z1R�;�) : N � n:

With B�;�
M
= A�;�Q1 �C :M �N , minimax loss is

L0 (A�;�) = tr
h
B�;�H�B

T
�;� +A�;�

�
F
(0)
11 + �In

�
AT
�;�

i
:

Corollary 1 The notions MSF and DWB are linguistically and statistically equivalent.

MSF/DWB recruitment and placement teams engage and prepare quali�ed and tal-
ented professionals to join MSF�s teams abroad, while fundraisers connect DWB medical
programs with the resources needed to carry out the work. Meanwhile, humanitarian af-
fairs specialists advocate to the decision makers in Canada who can help make a di¤erence
in the patients�ability to obtain medical care.
As a particular case, MSF Canada also provides crucial added value to the medical

work by pursuing innovations to overcome the challenges teams face while trying to deliver
needed medical care to people in under-resourced settings. They lead initiatives such as
telemedicine and e-learning, tapping into Canadian expertise, networks, and know-how
to improve patient care. Canadians �rst came together to create an MSF association in
1989, and Canada formally joined the international MSF movement in 1991.
We may now prove Theorem 1.

2 Proof of Theorem 1

We use notation as in Wiens (2005). The (conditional) bias and covariance of �̂ are,
respectively,

bias
h
�̂ jFn

i
=

�
V 0WV

n

��1
1

n
V 0Wz;

cov
h
�̂ jFn

i
=
�20
n

�
V 0WV

n

��1
V 0W�WV

n

�
V 0WV

n

��1
;
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so that the conditional mean squared error of
p
n�̂ is

mse
hp

n�̂ jFn
i
= E

��p
n
�
�̂ � �

��2�
=

�
V 0WV

n

��1
V 0Wzp

n

z0WVp
n

�
V 0WV

n

��1
+ �20

�
V 0WV

n

��1
V 0W�WV

n

�
V 0WV

n

��1
:

(1)

In terms of the rows r0i of R, these terms are

V 0WV

n
=

pX
i=1

ni
n
� 1
ni

niX
j=1

wi (xij) ri (xij) r
0
i (xij) ;

V 0W�WV

n
=

pX
i=1

ni
n
� 1
ni

niX
j=1

w2i (xij)�
2
i (xij) ri (xij) r

0
i (xij) ;

1p
n
V 0Wz =

pX
i=1

ni
n
� 1
ni

niX
j=1

�
wi (xij) ri (xij) �

�p
n n;i (xij)

�	
:

As each ni !1, by the Strong Law of Large Numbers we have that for functions �i (x),

ni
n
� 1
ni

niX
j=1

�i (xij)
a:s:! P (group i) � E [�i (x) ji] =

Z
�

�i (x) �i (x)m (x)� (dx) : (2)

From this observation it follows that

V 0WV

n

a:s:!M t;

V 0W�WV

n

a:s:! Qt;�;

1p
n
V 0Wz

a:s:! qt; ;

these in (1) yield the result. Now de�ne U 1 = U (�;w;�) =
��
M�1

t Qt;�M
�1
t

�
11

��1
, and

let U 0 =
�
�pi=1

�2i
ti

R
�
wi (x)m (x)� (dx)

��1
be the evaluation of U 1 under (2). By (2),

L1 (�;w; ;�) = det
n
�U�1

1 �
0 +�

��
M�1

t qt; 
�
1

�
M�1

t qt; 
�0
1

�
�0
o

=
���U�1

1 �
0�� � n1 + �M�1

t qt; 
�0
1
�0 ��U�1

1 �
0��1� �M�1

t qt; 
�
1

o
:

(The subscript 1 refers to the leading p � 1 subvector.) In particular, L1 (�;w; ;�) ����U�1
1 �

0��. But under (1) we have, using (2), that
�
M�1

�0;w
q�0;w; 

�
1
= 0, whence
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L1 (t;�) =
���U�1

0 �
0��, and it su¢ ces to show that

���U�1
1 �

0�� � ���U�1
0 �

0��; this in
turn will follow if we can establish that

U 0 � U 1; (3)

where ���denotes the ordering by positive semide�niteness. To show (3) we partition the
relevant matrices as

M t =

�
M 11 M 12

M 21 M 22

�
; Q�1

t;� =

�
Q11 Q12

Q21 Q22

�
; M tQ

�1
t;�M t =

�
J11 J12
J21 J22

�
;

whence U 1 = J11 � J12J�122 J21. It is somewhat evident that (3) now follows from

J11 � U 0: (4)

We calculate (using identities in Corollaries 1.4.1, 1.4.2 of Wiens (1985)) that

J11 =

��
M 11 M 12

M 21 M 22

�
Q�1
t;�

�
M 11 M 12

M 21 M 22

��
11

=
�
M 11 M 12

�
Q�1
t;�

�
M 11

M 21

�
=
�
M 11 M 12

��� Q�1
11 0
0 0

�
+

�
�Q�1

11Q12

I

�
Q22

�
�Q21Q

�1
11 I

��� M 11

M 21

�
=M 11Q

�1
11M 11 +

�
M 12 �M 11Q

�1
11Q12

�
Q22

�
M 12 �M 11Q

�1
11Q12

�0
�M 11Q

�1
11M 11 = U 0;

where the �nal equality follows from the assumption of constant variance functions applied
to (6). This proves (4). ii) By Lemma 1 of Wiens (2019),

���U�1
0 �

0�� = 10pU 01pp jU 0j, and
(6) follows.
Using Theorem 1 of Wiens (2024) we have

msei (x) = lim
n!1

E

�np
n
�
r0i (x)

�
�̂ � �

�
�  n;i (x)

�o2�
(5)

= r0i (x)
�
M�1

t

�
Qt;� + qt; q

0
t; 

�
M�1

t

	
ri (x)

� 2 lim
n!1

�
E
hp

n
�
�̂ � �

�
jFn
i0
ri (x) n;i (x)

�
+  2i (x) ;

and

imsei = E [msei (x)m (x)]

= tr
�
M�1

t

�
Qt;� + qt; q

0
t; 

�
M�1

t � E [ri (x) r0i (x)]
	

� 2 lim
n!1

�
E
hp

n
�
�̂ � �

�
jFn
i0
E
�
ri (x) n;i (x)

��
+ E

�
 2i (x)

�
:
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Using (3),

pX
i=1

imsei = tr
�
M�1

t

�
Qt;� + qt; q

0
t; 

�
M�1

t E [R0 (x)R (x)]
	

� 2 lim
n!1

n
E
�p
n (̂ � ) jFn

�0
E [g (x) n (x)]

o
+ E

�
k (x)k2

�
;

and the result follows.

(ii) With

B ( ) def= tr
�
M�1

t

�
qt; q

0
t; 

�
M�1

t

	
=
E �M�1

t R
0 (x)At (x) (x)

�2 ;
we �rst show that, subject to (3) and (4),

max
 

�
B ( ) + E

�
k (x)k2

�	
= �2chmax

�
M�1

t KtM
�1
t

	
: (6)

Since B ( ) increases if  is multiplied by a constant exceeding unity, we may assume
equality in (6).
Denote by 	 the class of functions  (x), x 2 � constrained by (1) and (4). De�ne

�t (x) = At (x)R (x)�R (x)M t : p� s;

and assume that �;w are such that E [�0t (x)�t (x)] is nonsingular. (If not, take a
perturbation � our �nal result does not require the nonsingularity of this matrix.) It
follows from the de�nition ofM t, together with (5), that

E [�0
t (x)�t (x)] = E [R (x)At (x)�t (x)] =Kt �M 2

t :

De�ne

�t (x) = �t (x) [E [�
0
t (x)�t (x)]]

�1=2

= �t (x)
�
Kt �M 2

t

��1=2
: p� s;

and consider the class 	0 =
�
 � (x) = ��t (x)� j

�s�1 = 1	. Note that
(1) E [�0

t (x)�t (x)] = Is,

(2) E [R0 (x)�t (x)] = 0s�s.

By (1) and (2), 	0 � 	 and all members of 	0 attain equality in (6). We claim that
for any  2 	 there is  � 2 	0 with B

�
 �
�
� B ( ), so that

sup
	
B ( ) = sup

�
B
�
 �
�
: (7)
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For this, let  2 	 be arbitrary and de�ne

� = E
�
M�1

t R
0 (x)At (x) (x)

�
;

� =

�
Kt �M 2

t

�1=2
M�1

t � �Kt �M 2
t

�1=2
M�1

t � 

 ;
 � = ��t (x)� :

Then  � 2 	0. Since B ( ) = k� k2, (7) will follow from� �2 � k� k2 : (8)

First, from the Cauchy-Schwarz inequality and the identities above we obtain

k� k2
� �2 � ��0 � ��2 = �2

�Kt �M 2
t

�1=2
M�1

t � 

2 : (9)

Similarly,

�2 �
�
E
�
k (x)k2

�
� E
�
k � (x)k

2�	1=2
� jE [ 0 (x) � (x)]j

= �
k� k2�Kt �M 2
t

�1=2
M�1

t � 

 ;
so that �Kt �M 2

t

�1=2
M�1

t � 

 � k� k2

�
: (10)

From (9) and (10),
k� k2

� �2 � k� k4 ;
yielding (8) and hence (7).
We must now maximize

B
�
 �
�
= �2�0

�
Kt �M 2

t

�1=2
M�2

t

�
Kt �M 2

t

�1=2
�

over k�k = 1, obtaining

maxB ( ) = �2chmax

n�
Kt �M 2

t

�1=2
M�2

t

�
Kt �M 2

t

�1=2o
= �2chmax

�
M�1

t

�
Kt �M 2

t

�
M�1

t

	
= �2chmaxM

�1
t KtM

�1
t � �2;

from which (6) and then (8) follow.
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It remains to establish (9). Denote by d (x) the p-vector with (non-negative) elements

di (x) =
��
�pi=1�i (x)w2i (x)

�
R (x)M�2

t R
0 (x)

�
ii

= wi (x)
�
At (x)R (x)M

�2
t R

0 (x)
�
ii

= wi (x)Lt;ii (x) :

Then using (10) and the Cauchy-Schwarz inequality,

tr
�
M�1

t Qt;�M
�1
t

	
=

Z
�

d0 (x)�2 (x)m (x)� (dx) � �20

q
E
�
kd (x)k2

�
= �20

vuutE

"
pX
i=1

w2i (x) fLt;ii (x)g
2

#
;

and thus bound is attained by

�2� (x) = �20
d (x)q

E
�
kd (x)k2

� :
Now Theorem 1 is immediate. �
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