Obtaining quantitative information on the state of stress in the crust can only be accomplished by accessing the zone of interest by drilling. The borehole cavity, however, disrupts the virgin stress state by concentrating stresses in predictable patterns with a number of consequences. At sufficiently low stress magnitudes, the concentrated stresses amplify the elastic anisotropy azimuthally around the borehole because the elastic properties of most rocks depend nonlinearly on stress. At higher levels, the stresses damage then fracture the rock near the wellbore wall or within a growing core stub. Indeed, almost all of the borehole techniques indirectly measure stress through these manifestations of the concentrated stresses. This contribution reviews, at a fundamental level, the concentration of stresses by the borehole, the effects on the materials in the borehole's vicinity, and how these are used to infer stress states. Stress concentrations applied to rocks, which are generally nonlinear elastic materials, induce both radial and azimuthal variations in elastic wave speeds near the borehole that can be used to infer stress directions from advanced acoustic logging methods. Hydraulic fractures initiate, propagate, and remain propped open by measured pressures that can be interpreted with knowledge of the stress concentrations to obtain quantitative stress magnitudes. At higher stress levels, the rock fails producing borehole breakouts or drilling induced tensile fractures both of which are indicative of stress directions and can be used to constrain stress magnitudes. Similarly, the various styles of drilling induced core fractures indicate both stress directions and the faulting environment encountered. Unfortunately, no method currently allows for complete determination of the stress tensor; using a number of different but complementary techniques is necessary to best constrain in situ stress states.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Crustal stresses are generated by gravitational loading, thermal excursions, pore fluid diffusion, elevation differences, and, of course, tectonic deformation. As such, crustal stress can tell us a great deal about dynamic processes within the Earth particularly with regards to plate tectonics where to a large degree we still do not fully understand what exactly drives or impedes plate motions and fault movements. Stress states lead to the ultimate failure of rock at many scales ranging from the largest earthquakes to the smallest micro-seismic events; having better knowledge of stress states is crucial to understanding such seismicity. Knowledge of in situ stress states has practical implications with regards to the stability and safety of underground workings and boreholes, and the capacity to carry out hydraulic stimulations for water or hydrocarbon recovery. With the rapid rise of enhanced recovery from low permeability ‘tight’ sands and shale by hydraulic fracturing methods, the interest in understanding and detecting stress states has grown rapidly in recent years.

Quantitatively measuring or constraining stresses deep in the Earth remains elusive. There are currently a number of different borehole methodologies available to researchers; the purpose of this contribution is to overview these from a fundamental perspective. In order that the reader understands in each case the basic physics of the problem we ignore the crucial influence of pore pressure on many of these techniques. Many will see this as an oversight, but including effective pressure concepts at the outset can obscure the underlying principles. Further, the literature is replete with cases in which the concept of effective pressure is not correctly applied and ignoring pore pressure in this contribution eliminates the need to deal with such issues at this time. Regardless, the reader can find this information cited in the supporting literature. The reader can begin with a number of textbooks describing stress measurement methods (e.g., Amadei and Stephansson, 1997; Fjaer et al., 2008; Jaeger et al., 2007; Zang and Stephansson, 2010; Zoback, 2007).

This contribution focuses on methods from deeper boreholes. That said, mapping of igneous dyke directions (e.g., Grasso et al., 1991; Gudmundsson, 2006) and caldera ellipticity (Paulsen and Wilson, 2007; Ruch and Walter, 2010), earthquake focal mechanisms, near surface quarry floor buckling (Adams, 1982), and blasting induced axial fractures (Pascal et al., 2010) or blast hole offsets (Bell, 1985) can all be used to provide stress direction information. An entire other class of stress-relief measurements from shallow boreholes are also not discussed here despite their importance in underground construction. These include various techniques to measure the stress relief deformation near a slot cut into a stressed rock mass (Corthesy et al., 1999), various ‘overcoring’ methods (Leite et al., 2010), and laser interferometric based hole drilling techniques (Schmitt et al., 2006).

The contribution begins with some background information in order to set the definitions and framework upon which the review focuses. This is followed by a discussion on the dependence of the physical properties of rocks on stress, a factor usually ignored but which actually provides the basis for some of the stress determination techniques. With this background in place, both qualitative and quantitative stress measurement methods are presented. The paper concludes with some thoughts on future directions in stress determination.

1.1. Basic theory

The literature on elasticity theory is vast with numerous textbooks at a variety of levels readily available, and only a small overview is necessary here to set the definitions. First, at a given point in the solid Earth and relative to an arbitrary reference frame, the stresses, or normalized forces in units of Pascals (1 Pa = N/m²) are distributed around an infinitesimal cube as shown in Fig. 1. Two types of stresses are noted: those whose tractions will be perpendicular to the face of the cube and called normal stresses and denoted with a σ symbol, and those whose tractions are parallel to the surface called shear stresses and denoted using a τ symbol. As illustrated in Fig. 1a, the first subscript indicates the normal of the plane upon which the given stress acts and the second indicates the direction of the associated traction.

Fig. 1. a) Complete stress state on infinitesimal cube of solid material in arbitrary x–y–z co-ordinate system with σ and τ representing normal and shear stresses, respectively. b) Rotation of the arbitrary co-ordinate frame x–y–z into the principal co-ordinate frame x’–y’–z’ within which all the shear stresses vanish leaving only the three principal normal stresses. Stress sign convention shown with tensile normal stresses of negative sign as usually employed in the Geosciences and Geotechnical Engineering.
The six values apparent in Fig. 1 define a stress tensor \(\sigma \) that may be written in matrix format as

\[
\sigma = \begin{bmatrix}
\sigma_{xx} & \tau_{xy} & \tau_{xz} \\
\tau_{yx} & \sigma_{yy} & \tau_{yz} \\
\tau_{zx} & \tau_{zy} & \sigma_{zz}
\end{bmatrix}.
\]

(1)

It needs to be noted that this is a symmetric matrix with, for example, \(\tau_{yz} = \tau_{zy} \). This is a 2nd order stress tensor. As such the values of components of the stress tensor will change if the co-ordinate frame is rotated although the invariants of the tensor do not. This is understood by analogy with a first order tensor (i.e. a vector) with three components the values of which change depending upon the co-ordinate frame. The transformation is effected by

\[
\sigma' = A \sigma A^T
\]

(2)

where the rotation matrix \(A \)

\[
A = \begin{bmatrix}
a_{xx} & a_{xy} & a_{xz} \\
a_{yx} & a_{yy} & a_{yz} \\
a_{zx} & a_{zy} & a_{zz}
\end{bmatrix}
\]

(3)

is composed of the direction cosines \(a_{ij} \) between the original \(x-y-z \) and new \(x'-y'-z' \) co-ordinate frames.

Consequently, one may find a principal co-ordinate frame \(x'-y'-z' \) where all of the shear stresses vanish leaving only the three principal normal stresses with the rotated tensor appearing as

\[
\sigma' = \begin{bmatrix}
\sigma_{xx}' & 0 & 0 \\
0 & \sigma_{yy}' & 0 \\
0 & 0 & \sigma_{zz}'
\end{bmatrix}
\]

(4)

and illustrated in Fig. 1b. While there appears to be only three components in \(\sigma' \), it must be remembered that the directions of these stresses are known. This requires knowledge of three angles, and such that six independent values are necessary to define the stress tensor regardless of co-ordinate frame.

A change in the stress state results in changes in both the volume and shape of an object. Briefly, a hypothetical fiber running through the material will undergo a change in length as the object deforms; this is referred to as a normal strain. A shear strain describes changes in the angles between two originally perpendicular fibers. For small strains, the strain tensor \(\varepsilon \) is

\[
\varepsilon(x, y, z) = \begin{bmatrix}
\varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{xz} \\
\varepsilon_{yx} & \varepsilon_{yy} & \varepsilon_{yz} \\
\varepsilon_{zx} & \varepsilon_{zy} & \varepsilon_{zz}
\end{bmatrix}
\]

\[
= \begin{bmatrix}
\frac{\partial u_x}{\partial x} & \frac{1}{2} \left(\frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x} \right) & \frac{1}{2} \left(\frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x} \right) \\
\frac{1}{2} \left(\frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x} \right) & \frac{\partial u_y}{\partial y} & \frac{1}{2} \left(\frac{\partial u_y}{\partial z} + \frac{\partial u_z}{\partial y} \right) \\
\frac{1}{2} \left(\frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x} \right) & \frac{1}{2} \left(\frac{\partial u_y}{\partial z} + \frac{\partial u_z}{\partial y} \right) & \frac{\partial u_z}{\partial z}
\end{bmatrix}
\]

(5)

where the displacement vector \(u(x, y, z) \) has the three components \(u_x, u_y, u_z \). A principal strain tensor, too, may be found and in an isotropic material this will align with the principal stresses. This strain tensor is symmetric. The reader should take care to note that the ‘engineering strain’ is also often employed with, for illustration, \(\gamma_{xy} = 2\varepsilon_{xy} \) for shear strains and \(\gamma_{xx} = \varepsilon_{xx} \) for the normal strains. The advantage of engineering strains is that their value is that of the actual deformation that for shear strains is a small angle.

For the conditions of isotropic linear elasticity, the stresses and strains are related to one another via Hooke’s Law, which may be written in a convenient Voigt matrix form as

\[
\begin{bmatrix}
\varepsilon_{xx} \\
\varepsilon_{xy} \\
\varepsilon_{yx} \\
\varepsilon_{yy} \\
\varepsilon_{zx} \\
\varepsilon_{zy}
\end{bmatrix} = \begin{bmatrix}
\frac{1}{E} & -\frac{\nu}{E} & 0 & 0 & 0 & 0 \\
-\frac{\nu}{E} & \frac{1}{E} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{E} & -\frac{\nu}{E} & 0 & 0 \\
0 & 0 & -\frac{\nu}{E} & \frac{1}{E} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2(1+\nu)} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{2(1+\nu)}
\end{bmatrix}
\begin{bmatrix}
\sigma_{xx} \\
\sigma_{xy} \\
\sigma_{yx} \\
\sigma_{yy} \\
\sigma_{zx} \\
\sigma_{zy}
\end{bmatrix}
\]

(6)

Only two constants appear in the above equation. The first is the modulus of elasticity or Young’s modulus \(E \), and the second is Poisson’s ratio \(\nu \). These are the only elastic parameters that are needed to define the stress–strain behavior of an isotropic linearly elastic material and they can readily be converted to the other isotropic elastic moduli of the bulk and shear moduli and the Lamé parameters if necessary. However, rocks are more generally anisotropic particularly, as will be discussed below, under deviatoric states of stress. The more anisotropic the material the larger the number of elastic constants required to define it such that the most general form of Hooke’s law is:

\[
\begin{bmatrix}
\varepsilon_{xx} \\
\varepsilon_{xy} \\
\varepsilon_{yx} \\
\varepsilon_{yy} \\
\varepsilon_{zx} \\
\varepsilon_{zy}
\end{bmatrix} = \begin{bmatrix}
S_{11} & S_{12} & S_{13} & S_{14} & S_{15} & S_{16} \\
S_{21} & S_{22} & S_{23} & S_{24} & S_{25} & S_{26} \\
S_{31} & S_{32} & S_{33} & S_{34} & S_{35} & S_{36} \\
S_{41} & S_{42} & S_{43} & S_{44} & S_{45} & S_{46} \\
S_{51} & S_{52} & S_{53} & S_{54} & S_{55} & S_{56} \\
S_{61} & S_{62} & S_{63} & S_{64} & S_{65} & S_{66}
\end{bmatrix}
\begin{bmatrix}
\sigma_{xx} \\
\sigma_{xy} \\
\sigma_{yx} \\
\sigma_{yy} \\
\sigma_{zx} \\
\sigma_{zy}
\end{bmatrix}
\]

(7)

where the \(S_{ij} \) represent the 21 independent (i.e., \(S_{ij}=S_{ji} \)) elastic compliances.

1.2 Crustal stress states

When working with stresses in the Earth we often assume that the direction of one of the principal stresses is vertical because the surface is essentially a free boundary and because the stress generating acceleration of gravity \(g \) is directed downwards. Under this paradigm, this principal stress is here denoted as \(S_{z} \) will be expected to have a depth \(h \) and density \(\rho \) dependent magnitude

\[
S_z(h) = -\frac{h}{\rho}g
\]

(8)

where again the negative value arises due to the selection of the stress sign convention under the assumption that both \(g \) and \(h \) are positive numbers with the compression increasing with depth. By default, the other two principal stresses in the Earth must be directed horizontally and here we will denote them as \(S_{xy} \) and \(S_{yz} \) to indicate the greatest and least horizontal principal compressions, respectively. \(S_{xy} \) may be estimated relatively easily if appropriate knowledge of the density overlying the point in question is known. The two horizontal stresses are not so readily found as they result from combinations of tectonic forces (e.g., Bott, 1993; Zoback et al., 1989) and crustal structure (e.g., McCutchen, 1982), surface topography (e.g., Savage and Morin, 2002; Schmitt, 1993; Warpinski and Teufel, 1991), lateral constraint stresses induced by Poisson’s ratio expansion from the vertical gravitational loading (e.g., Amadei et al., 1988) and geothermal gradient (e.g., Sheorey, 1994; Sheorey et al., 2001), thermal anomalies (e.g., Haxby and Turcotte, 1976), and fluid flow (e.g., Chen, 2011;
Erratum

Figure 2 Illustration of the three pure reference stress states with S_H, S_h, and S_v aligned with the x, y and z axes, respectively. In each panel, the two complementary planes of expected shear faulting shown as transparent grey planes while the tensional opening occurs normal to the clear plane. a) Normal faulting with tensional opening normal to the x-z plane. b) Thrust faulting with tensional opening normal to the x-y plane. c) Strike-slip faulting with tensional opening normal to the x-z plane.

The above text is correct, the highlights show where the changes need to be made.
Rice and Cleary, 1976), to name a few. Here we will assume for sake of a reference condition that the virgin stress tensor in the Earth is:

\[
S = \begin{bmatrix}
S_{rr} & 0 & 0 \\
0 & S_{θθ} & 0 \\
0 & 0 & S_{yy}
\end{bmatrix}
\] (9)

with \(S_{rr}, S_{θθ}, \) and \(S_{yy}\) aligned with the \(x, y,\) and \(z\) axes, respectively. Later, this will be synonymous with the ‘far-field’ stresses of the rock mass into which the borehole is drilled.

The relative magnitudes of these three stresses with respect to one another strongly controls the motion of faults in the Earth and hence earthquakes and seismicity. These relative relationships are so critical to faulting theory applied by geophysicists and structural geologists that they serve as reference stress states and are introduced here to prepare for later discussion. Three different classes of fault motion result from three different combinations of these stresses as proposed by Anderson (1951) (see Kanamori and Brodsky, 2004). These three reference states (Fig. 2) are referred to as:

• Normal or extensional faulting regime: \(S_{yy} > S_{rr} > S_{θθ}\)
• Thrust faulting regime: \(S_{rr} > S_{θθ} > S_{yy}\)
• Strike slip faulting regime: \(S_{rr} > S_{θθ} > S_{yy}\)

It should be remembered that this situation may not always hold in structurally complex zones (Yin and Ranalli, 1992).

In addition to the complementary planes along which shear faulting is expected, Fig. 2 also shows the planes that will open normal to the least compression during the formation of dykes (Ode, 1957; Pausen and Wilson, 2010), joints (Engelder and Geiser, 1980), and hydraulic fractures (Hubbert and Willis, 1957). As will later be seen, the directions of such fractures are important pieces of information during field hydraulic fracturing tests.

It is often difficult to obtain truly quantitative measures of the complete, or even the partial, stress tensor of Eq. (9) including both magnitudes and directions. That said, a great deal can be accomplished as long as the type of faulting environment can be established.

2. Stress concentrations

Within a homogeneous Earth we do not expect large and rapid stress gradients. This situation changes drastically, however, once some kind of cavity such as a tunnel, a mine drift, or a borehole is introduced. This cavity is said to ‘concentrate’ the pre-existing stresses. Such stress concentrations can lead to failure of stressed objects and consequently are of great interest in fields such as mechanical engineering where many objects must have holes (e.g., Edwards, 1951; Pilkey et al., 2008) even at the nanometer scale (Ou et al., 2009). In this section we present the most common 2D and 3D cases for the stress concentrations around a circular borehole.

2.1. Concentration of far-field stresses: 2D Kirsch solution

We begin with the stress concentrations for the simplest case of a circular hole of radius \(a\) in a horizontal plate subjected to principal ‘far-field’ stress \(σ_0\). At a distance \(r\) from the hole axis and at azimuth \(θ\) measured with respect to the \(x\)-axis (Fig. 3) the hole redistributes the stresses in its vicinity to maintain equilibrium according to the classic 1898 solution of Kirsch (1898) with

\[
σ_{rr} = \frac{σ_0 a^2}{2} \left(1 + \frac{a^2}{r^2} \right) \frac{1 + 3a^2}{r^2} \cos(2θ)
\]

\[
σ_θθ = \frac{σ_0 a^2}{2} \left(1 - \frac{a^2}{r^2} \right) + \frac{σ_0}{2} \left(1 + \frac{3a^2}{r^2} \right) 4 \frac{a^2}{r^2} \cos(2θ)
\]

\[
τ_{rr} = -\frac{σ_0 a^2}{2} \left(1 - \frac{a^2}{r^2} + \frac{2a^2}{r^2} \right) \sin(2θ)
\] (10)

where \(σ_0\) and \(σ_0\) are the radial and azimuthal (hoop) normal stresses, respectively, \(τ_{rr}\) is the shear stress generated by the applied far-field stress and \(σ_{θθ}\) is the radial distance \(r\) from the axis of the hole of radius \(a\) at the cylindrical co-ordinates \((r,θ)\) (Fig. 3).

These stress concentrations can show some interesting patterns (Fig. 4). For example, if \(σ_{θθ}\) is compressional, a pure hoop tension \(σ_0 = -σ_{θθ}\) is generated at points on the hole in the direction of \(σ_{θθ}\) (i.e., \(θ = 0°\) and \(180°\)) but perpendicular to this (i.e., \(θ = 90°\) and \(270°\)) the hoop stress is amplified to \(σ_{θθ} = 3σ_{θθ}\). Kirsch’s (1898) equations have long been applied in the geosciences to understand borehole stability (Bell and Gough, 1979), hydraulic fracture initiation...
where the coefficients

\[\alpha_1 = \frac{1}{2} \left(a_{xx} \sin^2 \phi + a_{yy} \cos^2 \phi - 2a_{xy} \sin \phi \cos \phi \right) \sigma_{xx}, \]
\[\alpha_2 = \frac{1}{2} \left(-a_{xx} \sin^2 \phi + a_{yy} \cos^2 \phi + 2a_{xy} \sin \phi \cos \phi \right) \sigma_{yy}, \]
\[\alpha_3 = \left(a_{xy} \cos \phi - a_{yx} \sin \phi \right) \sigma_{xy} + \left(a_{xy} \cos \phi - a_{yx} \sin \phi \right) \sigma_{yx}, \]
\[\beta_1 = \left(a_{xx} \sin^2 \phi + a_{yy} \cos^2 \phi + 2a_{xy} \sin \phi \cos \phi \right) \sigma_{zz}, \]
\[\beta_2 = \left(-2a_{xy} \sin \phi + a_{zx} \sin \phi \cos \theta - a_{zy} \cos \phi \sin \theta \right) \sigma_{yz}, \]
\[\gamma_1 = \left(-a_{xx} \sin \phi \cos \theta + a_{zx} \sin \phi \cos \theta + a_{xy} \sin \phi \cos \theta \right) \sigma_{xz}, \]
\[\gamma_2 = \left(-a_{yz} \sin \phi \cos \theta - a_{yy} \sin \phi \cos \theta \right) \sigma_{yz} + \left(-a_{xy} \sin \phi \cos \theta - a_{yx} \sin \phi \cos \theta \right) \sigma_{xy}. \]

2.2. Concentration of far-field stresses: 3D

The Kirsch equations are derived under 2D plane conditions and as shown in Eq. (3) can only provide stress and displacement values within that plane. A real borehole is drilled in the 3D Earth where out of plane normal and shear stresses also exist. These stresses are illustrated for the general case of a long cylindrical cavity of radius \(a \) whose axis is arbitrarily oriented with respect to the principal stress state in the Earth. Fig. 5 shows two Cartesian co-ordinate frames with the horizontal x-axis, following Hiramatsu and Oka (1962), the y-axis passes through the origin perpendicular to the borehole axis that tilts at an angle \(\phi \) relative to the x-axis. The third cylindrical \(r-\theta-\zeta \) co-ordinate frame is borehole centric with the \(\zeta \) and borehole axes co-incident. As in Eq. (10), the angle \(\theta \) is the azimuth with respect to the borehole axis.

In terms of the three far-field principal stress state \([\sigma_{xx}, \sigma_{yy}, \sigma_{zz}]\) and the direction cosines \(a_\theta \) transforming the principal axes \(x'-y'-z' \) to the \(x-y-z \) frame the borehole centric stresses are (Edwards, 1951; Fairhurst, 1964; Hiramatsu and Oka, 1962)

\[
\sigma_i = \alpha_i \left(1 - \frac{a_\theta^2}{r^2} \right) + \alpha_3 \left(1 - \frac{4a_\theta^2}{r^2} + 3 \frac{a_\theta^4}{r^4} \right) \cos 2\theta + \alpha_3 \left(1 - 4a_\theta^2 + 3 \frac{a_\theta^4}{r^4} \right) \sin 2\theta, \\
\sigma_\theta = \alpha_1 \left(1 + \frac{a_\theta^2}{r^2} \right) + \alpha_3 \left(-1 - 3 \frac{a_\theta^4}{r^4} \right) \cos 2\theta + \alpha_3 \left(-1 - 3 \frac{a_\theta^4}{r^4} \right) \sin 2\theta, \\
\sigma_z = \beta_1 - 4a_\theta \alpha_1 \left(\frac{a_\theta^2}{r^2} \right) \cos 2\theta + \alpha_3 \left(\frac{a_\theta^4}{r^4} \right) \sin 2\theta, \\
\tau_{\theta r} = \gamma_1 \left(1 + \frac{a_\theta^2}{r^2} \right) \cos \theta + \gamma_2 \left(\frac{a_\theta^4}{r^4} \right) \sin \theta, \\
\tau_{\theta z} = \gamma_1 \left(1 + \frac{a_\theta^2}{r^2} \right) \sin \theta - \gamma_2 \left(\frac{a_\theta^4}{r^4} \right) \cos \theta, \\
\tau_{r z} = \alpha_2 \left(-1 - 2 \frac{a_\theta^2}{r^2} + 3 \frac{a_\theta^4}{r^4} \right) \sin 2\theta + \alpha_3 \left(1 + 2 \frac{a_\theta^2}{r^2} - 3 \frac{a_\theta^4}{r^4} \right) \cos 2\theta
\]

(11)

It is interesting to note that these stress concentrations are mostly independent of the elastic properties of the rock save for Poisson's ratio \(\nu \).

2.3. Stresses arising from conditions in the borehole

One further consideration is that a real borehole in the Earth is usually filled with liquid be it water or dense drilling mud. As with all fluids the pressure in the mud column increases with depth. This fluid pressure \(P_m \) (here taken with a positive sign) is a boundary
condition on the wellbore wall that generates an axisymmetric stress field within the solid material $r \geq a$ that upon examination shows that a maximum tensile stress hoop stress $\sigma_{\theta\theta} = -P_w$ is generated immediately at the borehole wall with $r = a$. Eq. (14) derives from Lamé’s solution for the stress concentrations in a long hollow cylinder (see Eqs. (44) and (45) of Timoshenko and Goodier, 1970)

$$\sigma_{rr} = \frac{P_w a^2}{r^2}$$

$$\sigma_{\theta\theta} = -\frac{P_w a^2}{r^2}$$

and these are plotted in Fig. 6. Fluid pressure acting on the borehole always produces a tensile hoop stress and a compressive radial stress. Both of these are important when examining the failure of the borehole wall rock.

The above stress concentrations are primarily static in nature, but both temperature and pore fluid pressure diffusion from the borehole into the formation result in stress fields that vary with time. Analytic solutions exist but as these depend critically on the boundary conditions and material properties (that may also be temperature or pore pressure sensitive) and a wide variety of situations can be addressed. In both problems a diffusional equation must be solved; and the...
solutions are analogous to one another to the point that both can share the same Fig. 7. As the potential situations that can be solved are vast, we rehearse here only two illustrative simple cases.

The first example is provided by Stephens and Voight (1982) who adapted Ritchie and Sakakura’s (1956) thermo-elastic solutions for a hollow cylinder to study the stress concentrations at the borehole wall due to the application of a temperature T_w. This consists of a temperature gradient $\Delta T = T_w - T_\infty$ where T_∞ is both the initial uniform temperature of the system prior to perturbation and undisturbed temperature in the far-field of the borehole. Away from $r = a$ the solution depends on time as the temperature changes due to thermal diffusion, but immediately at the borehole wall the stresses are time independent as long as the temperature at the wellbore wall remains constant at T_w:

$$\sigma_{\theta\theta}(r = a) = \frac{\alpha E \Delta T}{r - r'}$$

$$\sigma_{rr}(r = a) = 0$$

where α is the coefficient of thermal expansion. Increasing the temperature at $r = a$ effects a compressive hoop stress $\sigma_{\theta\theta}$ and vice versa. Although such thermal effects are usually ignored, examination of Eq. (15) shows that relatively large stresses are generated by modest changes in temperature (Fig. 7). For a typical quartz-rich granite
with $E \approx 70$ GPa a cooling of the wellbore wall by only 10 °C would generate a tensile stress $\sigma_{th} = -22.4$ MPa, values that easily exceed the material’s tensile strength. Indeed, Wu et al. (2007) employ temperature variations to control fracture propagation in hollow cylinders of acrylic.

Poro-elastic solutions for the stresses induced due to pore pressure diffusion are derived analogously (Haimson and Fairhurst, 1967; Rice and Cleary, 1976; Schmitt and Zoback, 1993). For example, the infiltration hoop stress generated at $r = a$ due to an instantaneous pressure change $\Delta P = P_w - P_o$ is given by

$$\sigma_{th}(r = a) = -\Delta P (1 - 2\eta)$$

with

$$\eta = \frac{1}{2} \left(1 - \frac{K_f}{K_d} \right) \frac{1 - 2\nu}{1 - \nu}$$

where K_d and K_f are the drained (dry frame) and rock mineral bulk moduli, respectively. The term $1 - K_f/K_d$ is often called the Biot effective stress coefficient. The analogy between the thermal and fluid diffusion solutions is readily apparent in Fig. 7.

For purposes of simplicity later, we combine the stress concentrations resulting from wellbore fluid pressure, temperature differences, and pore pressure diffusion into a generic generated hoop stress $\Delta \sigma_{th}$ at $r = a$ of

$$\Delta \sigma_{th} = \sigma_{thw} + \sigma_{thT} + \sigma_{thf}$$

2.4. Stress concentrations: additional considerations

The above equations assume an isotropic and linearly elastic rock mass and their examination reveals that, except for ν, the material properties are absent. However, real rock is usually much more complex (e.g., Giovanni, 1969) and solutions that consider the anisotropy of the rock mass (Amadei, 1983; Fairhurst, 1964; Wu et al., 1991) or time dependences due to viscoelastic (Wawersik and Stone, 1989), elastoplastic (Papanastasiou and Durban, 1997) and poroelastic effects (Abousleiman and Chen, 2010; Detournay and Cheng, 1988; Rice and Cleary, 1976; Schmitt and Zoback, 1993), or nonlinear elasticity (Chin et al., 2000; Haimson and Tharp, 1974; Mahtab and Goodman, 1968; Meyer and Jacot, 2001; Mitaim and Detournay, 2004; Nawrocki, 2010; Santarelli et al., 1986) and chemical effects (Roshan and Rahman, 2011) have been developed. The problems of stresses near long cavities are still of current interest with recent applications of conformal mapping techniques applied to differing cross sections (Adnay and Angelolsen, 1995; Batista, 2010; Exadaktylos et al., 2003). However, nearly all stress analyses to date employ the simpler elastic solutions. The reader is referred to Fjaer et al. (2008) for a comprehensive overview of these problems that includes details of the equations used in a variety of cases.

3. Stress effects in rock

Rock is a complex material composed of solid minerals and fluid filled voids. Its mechanical properties depend critically on the composite structural architecture. Generally, the magnitude of the porosity is the first order control on such properties. However, the physical properties of rocks also depend on confining stress, the degree to which is controlled in some cases by Hertz–Mindlin grain contact responses (e.g., Makse et al., 1999) but more generally from crack-like porosity (see Sayers, 2010). Small aspect ratio (width to length) pore space strongly influences the stress and effective pressure response of rock, an attribute recognized in the first measurements on rock elasticity under pressure (Adams and Williamson, 1923; Zisman, 1933) and illustrated in Fig. 8.

Crack-like pore space, at any scale, is highly sensitive to the state of stress because even small stresses applied normal to the crack’s plane readily push the crack’s surfaces together. Indeed, idealized cracks close once the stress normal to their plane reaches a critical value p_c (the closure pressure) that for an elliptically shaped crack with ratio of minor to major axis χ is given by

$$p_c = \frac{\pi E \chi}{4(1-\nu^2)}$$

where E and ν are the Young’s modulus and Poisson’s ratio of the pore-free solid composing the material, respectively (Berg, 1965; Walsh, 1965). Note that p_c does not depend on crack length. Closing this crack makes the overall material stiffer; this nature makes both the rock nonlinearly elastic and allows for stress induced anisotropy.

One would expect a real rock to have a distribution of χ and hence closure pressures. It is this distribution of crack aspect ratios that leads to the progressive stiffening of the rock as the confining pressures increase (Meglis et al., 1996; Reuschlé et al., 2006) and the family of cracks with similar χ close. This progressive closure results in the nonlinear behavior for both elastic and transport properties (Han et al., 2011; Saner et al., 1996). The nonlinear pressure dependence of the wave speeds seen in Fig. 8 derives from such effects.

Numerous approaches have been used to describe this nonlinearity such as the Birch–Murnaghan equation of state with pressure dependent variation in bulk modulus (Birch, 1961), higher order elastic constants (Payan et al., 2009; Sayers, 2007; Sinha and Kostek, 1996) or linearization of these (Gurevich et al., 2011), damage models (Lyakhovsky et al., 1997), wave speed to stress coupling coefficients (see Tang and Cheng, 2004), differentials related to crack closure (Ciz and Shapiro, 2009), or most commonly, by simply fitting to mathematical functions that parametrically mimic the rock behavior (Freund, 1992; Prikryl et al., 2005).

A second important implication of the stress sensitivity of cracks is that application of an anisotropic stress state induces elastic

Fig. 8. Illustration of the effects of microcracks on the elastic properties of the Cadotte sandstone, Alberta, as manifested by the nonlinear relationship of the P- and the S-wave velocities with confining pressure. Nonporous brass shows little measurable change in P-wave speed over this pressure range. Unpublished data from He (2006).
anisotropy in the rock. For example, a greater compression along one axis than another will result in greater crack closure and hence stiffness in that same direction as illustrated in Fig. 9. The top panel (Fig. 9a) shows the traces of a randomly oriented set of cracks in the initially unstressed and elastically isotropic rock. Uniaxial application of \(\sigma_{xx} \) (Fig. 9b) preferentially closes those cracks oriented such that the stress normal to their plane exceeds the crack closure pressure. The resulting material is now stiffer in the \(x \)-direction. However, those more horizontally aligned cracks stay open and the material remains compliant in the \(y \) direction. Consequently, the material becomes elastically anisotropic, and there are numerous examples in which this effect has been observed via ultrasonic measurements in cracked solids (e.g., Holt et al., 1993; Johnson and Rasolofosoa, 1996; Majmudar and Behringer, 2005; Nur and Simmons, 1969; Rathore et al., 1995; Sayers et al., 1990; Vilhelm et al., 2010; Wu et al., 1991; Zheng, 2000). In Fig. 9b crack closures produce a rotational symmetry around the \(x \)-axis that results in a transversely isotropic material (see Fuck and Tsvankin, 2009).

Introducing a borehole and its consequent stress concentrations as described above (Fig. 4a–c) to this stressed rock mass results in a pattern of crack opening and closing azimuthally around the borehole axis (Fig. 9c). The mean stress \(\sigma_{\text{mean}} = (\sigma_{xx} + \sigma_{yy})/2 \) is a weak tension at the azimuths parallel to \(\sigma_{xx} \) with the result that the natural cracks remain open and the material is compliant. In contrast, \(\sigma_{\text{mean}} \) is compressive at those azimuths perpendicular to \(\sigma_{xx} \) such that more cracks are closed and the material is proportionally stiffer. In short, the rock elastic moduli vary azimuthally around the borehole axis due to the changes in the stress concentrations (Schmitt et al., 1989; Winkler, 1996).

The azimuthal variations in the rock compressibility, produced by the changing stress state near the wellbore, manifest azimuthal and radial dependencies of the speeds of the elastic waves propagating parallel to the borehole axis. An illustration of these variations, induced by the application of a uniaxial \(\sigma_{xx} \) and calculated with higher order elastic constants (Sinha et al., 1994) is found in Fig. 4d–f for the compressional and the primarily ‘\(x \)’ and ‘\(y \)’ polarized shear waves, respectively. These are included in Fig. 4 to allow for ready comparison to the same distribution of stress concentrations. To a large degree the wave speed variations mimic the pattern of the azimuthal hoop stress. The changes in the wave speeds are not insignificant and, as will be seen later, provide for methodologies for obtaining information on stress directions and perhaps even stress magnitudes.

Such variations have been measured directly. Gladwin and Stacey (1974), during thermal stressing of a tunnel, detected changes in the travel times of ultrasonic pulses of a few microseconds along paths of a few meters. Tang and Cheng (2004) provided evidence of two split shear wave arrivals with speeds differing by about 10% from monopole sonic log waveforms collected through a sandstone subjected to nonuniform horizontal stresses. Winkler and D’ Angelo (2006) developed a high resolution technique to map the azimuthal evolution of the compressional speeds of waves propagating at the borehole wall and parallel to the borehole axis. Laboratory tests of the method in a borehole through a mass of uniaxially stressed sandstone showed that the wave speed increased by more than 17% at azimuths orthogonal to compression (Fig. 10a). More recently, Balland and Renaud (2009) developed an ultrasonic travel time tomography method that can map the compressional waves speeds both radially and azimuthally around the borehole. Their measurements (Fig. 10b) display the expected azimuthal velocity dependencies but also reveal a degree of damage that lowers the wave speed relative to the virgin formation. These last two examples clearly demonstrate the effects of stress concentrations on wave speeds around the wellbore, but as noted by Winkler and D’ Angelo (2006) there are many technical challenges that must be overcome in order to implement such borehole measurements in a practical way.

4. Rock failure criteria

The discussions above have assumed that the rock, particularly in the vicinity of the borehole, behaves elastically; the rock has not been damaged. This case, while important, will be the exception especially for deeper boreholes that are subjected to increasingly higher states.

![Fig. 9. Illustration of the effects of stress on crack closure within a rock, which under a) no confining stresses contains cracks (black lines) with a uniform distribution of orientations. b) Application of the uniaxial stress \(\sigma_{xx} \), preferentially closes those cracks subjected to normal stresses perpendicular to their plane exceeding the closure pressure. c) Drilling of the borehole through the rock results in stress concentrations that reopen cracks at the azimuth of the compression but close additional cracks perpendicular to this where the mean stresses are tensile or compressive, respectively. Color bar indicates the value of the normalized mean stress at each location with tension reckoned as negative.](image-url)
of stress. Consequently, more often than not the borehole wall rock will yield or completely fail. In this section a brief discussion of failure modes is provided in order to understand how they provide crucial diagnostics on in situ stress states.

By far, the most prevalent in the Earth mode of failure, which in nature is almost always in compression, is referred to as shear failure. Shear failure is most simply described using the Mohr–Coulomb frictional failure theory as summarized in many textbooks (Jaeger et al., 2007; Zoback, 2007) where details are available. The geometry of the failure is given in Fig. 11a and these criteria state that shear failure occurs when

\[\tau = \sigma \mu + C \quad (20) \]

where \(\tau \) and \(\sigma \) are the shear and normal stresses, respectively, on the incipient failure plane, \(\mu \) is the coefficient of internal friction and \(C \) is the ‘cohesion’ in units of stress. The internal friction \(\mu \) controls the angle \(\gamma \) with respect to \(\sigma_{\text{max}} \) of the plane along which shear failure will occur

\[\gamma = \frac{\pi}{4} + \frac{\arctan(\mu)}{2}. \quad (21) \]

The reader should not be left with the impression that the Mohr–Coulomb model is the only one describing shear failure and numerous additional criteria have been developed under various assumptions. While in later sections the use of various criteria is mentioned in
the context of the stress measurement techniques there is insufficient space here to devote to describing the rapidly growing literature on this topic (Al-Ajmi and Zimmerman, 2006; Colmenares and Zoback, 2002; Haimson and Chang, 2002; Zhang et al., 2012).

Tensile stresses are not generally expected to exist under normal conditions in the Earth and as such this failure mode (Fig. 11b) is not as well studied in rocks. However, they can exist as shown above due to the stress concentrations around the borehole. In this case, a very simple criterion first attributed to Rankine can be applied that states that tensile (pulling apart) failure will occur if the most tensile (least compressive) principal stress exceeds the ‘tensile strength’ \(T_v \) of the material. In such a case the tensile fracture will open in the direction of this tensile stress.

While we mostly consider shear and tensile failure it is worth mentioning more recent developments with regards to compaction bands (Fig. 11c). These are highly localized zones characterized by overall densification and micro-crack damage to the mineral grains observed in porous sandstones. They do not display any shear offset suggesting that they ‘close’ perpendicular to the greatest compression (Mollema and Antonellini, 1996) with loss of volume and hence can be called anti-mode I failure. This deformation mode has garnered a great deal of attention due to its application to consolidation of reservoirs, production of sand during fluid extraction, and the creation of certain classes of borehole breakouts (Katsman and Haimson, 2011; Schultz, 2009; Stanchits et al., 2009; Tembe et al., 2008).

5. Stress measurement techniques

The above sections on stress concentrations, on the nonlinear elastic responses of rocks, and failure modes in rock all provide essential background information in order to understand how to interpret observations from cores and boreholes. As noted earlier it is often not so much the stress that is measured directly, but rather its manifestations in a perturbed Earth. The stress concentrations as shown by Kirsch’s (1898) solutions above illustrate this well. The only way for us to directly sample into the Earth is by creating a cavity. This cavity must concentrate the stresses as shown in Fig. 4 and the resulting patterns of the disruption, whether by elastically changing the physical properties or by actually damaging the borehole wall rock, can be measured. These stress concentrations amplify the virgin in situ stresses and produce substantive anisotropy of the elastic properties or can lead to different kinds of failure of the borehole. The latter is of particular economic concern as unstable borehole conditions can be costly to drilling operations.

5.1. Crossed dipole sonic logging

In analogy to surface waves in seismology and light transmission through optical fibers, a family of various borehole wave modes exists. These include tube, pseudo-Rayleigh, screw, and quasi-flexural waves. Much like surface Rayleigh and Love waves, these borehole modes are dispersive, and their phase wave speeds are controlled by a number of factors that include the variations in the physical properties of the wellbore fluid and of the rock in the vicinity of the borehole and the borehole dimensions. Consequently, much like Rayleigh wave inversion of surface data, detailed analysis of the borehole modes allows information on changes in physical properties near the borehole. The fact that these variations depend on the distribution of stresses (Fig. 4e–f) suggests further that the results can be interpreted to provide information on the horizontal stress directions and perhaps magnitudes (Frignet et al., 1999; Murray et al., 2004; Plona et al., 1998, 2002).

The ‘flexural’ mode of oscillation is most germane to stress indication. The particle motions associated with this mode are reminiscent of the transverse oscillations one might observe in the various modes of transverse vibrations seen in a string under tension although the flexural waves can have any frequency (Fig. 12). From a vertical borehole quasi-flexural waves are distinguished by horizontal particle motions and phase velocities \(VF \) that correlate with the (primarily) phase speed velocities of the radially polarized shear waves, for this discussion denoted as \(VS(r,\theta) \), that are also propagating parallel to the borehole axis. This effect serves as the basis for the ‘crossed-dipole sonic’ method that is widely used to estimate the direction of the principal horizontal stresses and the degree of anisotropy. Technical details of how the measurements are made are beyond the space available here and the reader is directed towards Tang and Cheng (2004). Briefly, however, a ‘dipole’, or ‘bender’ acoustic transmitter produces a radial but uni-directional ‘push–pull’ displacement in the wellbore fluid that preferentially excites the flexural mode (Zemanek et al., 1984).

In an isotropic formation the borehole will flex in the direction of the provided push–pull. In contrast, in an anisotropic formation both the fast and the slow flexural waves are generated with particle motions dictated, as just described, by the directions of the anisotropy. Further, their respective amplitudes are controlled by the azimuth at which the push–pull is directed. For example, if the push–pull displacements are aligned with the material’s rotational axis of symmetry then only the slow flexural wave (in blue in Fig. 13b) results. If the push–pull is at 45° to the symmetry axis, then both the fast and slow flexural waves are created. Geometry stipulates that this information cannot be found with only a single set of oriented dipole sources and receivers; and for this reason a second set of transducers that gives a perpendicular push–pull is added. At each depth two in-line and two crossed waveforms are acquired and these are processed using schemes developed for the analysis of multi-component seismic waves (Esmeroy et al., 1994). This ‘crossed-dipole’ analysis finds that the ‘fast’ and ‘slow’ azimuths, and hence those for \(S_h \) and \(S_v \), respectively, would be encountered in the far-field from the borehole in Fig. 9c.

Again, as with surface waves on the Earth, the longer the wavelength of the flexural wave the deeper into the formation the wave senses and at sufficiently long wavelengths \(VF \) approaches \(VS \). At lower frequencies \(VF \approx VS; VF(r) \) depends on \(VS(r) \); and hence measuring \(VF(r,\theta) \) provides proxy information on \(VS(r,\theta) \).
Fig. 13 provides three examples of differing velocity structures in the vicinity of the borehole and how these would affect the VF dispersion.

In the first (Fig. 13a) the borehole is drilled into an elastically isotropic formation; VS is constant for all propagation directions and polarizations. Correspondingly, there is no restriction on the azimuth θ.
at which the flexural mode can be polarized; and the generated flexural wave will be polarized in the direction of the ‘push–pull’ motions of the tool. The observed flexural wave dispersion $V_f(r)$ depends only on the frequency, or as shown in Fig. 13 with the wavelength λ.

The next level of complexity considers the case of a vertical borehole through an intrinsically horizontal transversely isotropic (HTI) formation (Fig. 13b). Such a case could exist if an otherwise elastically isotropic formation contains an oriented set of vertical fractures, or if the rotational symmetry axis of a layered sediment is tilted horizontally. Ellefsen et al. (1991) showed in this instance i) that two flexural modes exist, ii) that both modes are orthogonally polarized with horizontal particle motions parallel to the polarizations of the fast and the slow shear body waves propagating parallel to the borehole axis, and iii) that the speeds of these polarizations are also fast and slow, respectively, relative to one another. Hence, the two flexural wave polarizations and wave speeds contain information on the degree and orientation of the material’s intrinsic anisotropy.

Consequently, if the anisotropy is stress induced, as in the case illustrated in Fig. 9b, then the long wavelength components of the flexural waves can provide information on the direction of the principal stresses (Fig. 13c). Further examination of Fig. 9c and of Fig. 4e–f shows that the stress induced wave anisotropy near the borehole is considerably more complex than for intrinsic formation or stress induced anisotropy alone (Fig. 13a,b). At the σ_{xy} azimuth, the radially polarized shear wave velocity is lower than normal (Fig. 4e) whereas perpendicular to this the wave speed is considerably higher (Fig. 4f).

The relation reverses in the ‘far-field’. As noted, the various wavelength components will also sense these changes. At higher frequencies (smaller wavelengths) the flexural waves are most sensitive to the properties near the wellbore, while the lower frequency waves sense deeper into the formation (Pistre et al., 2005; Sinha et al., 1994). This results in a frequency dispersion of the flexural wave speeds with a further characteristic that the dispersion curves (dashed lines, Fig. 13c) for the two perpendicular polarizations cross (Winkler et al., 1998). In contrast, there is no radial dependence on the shear wave speeds in the more general intrinsically anisotropic formation and consequently the dispersion curves of the x and y polarizations are offset but do not cross (dashed lines, Fig. 13b). Examination of such dispersion curves allows stress induced anisotropy to be distinguished from intrinsic anisotropy (Boness and Zoback, 2006). Further, there have been attempts to employ information from the dispersion curves to provide quantitative measures of S_H (Lei et al., 2012; Sinha et al., 2008) although calibrations of these type of measurements suggest that the material properties and their stress dependencies must be well known (Ashraf Mohammed and Abousleiman, 2008) and it is not understood yet whether this technique is able to provide reliable stress magnitudes.

5.2. Hydraulic fracturing and leak off testing

The hydraulic fracture technique is usually accepted as providing the most robust quantitative values for the in situ stress magnitude, particularly S_H. In this method, an artificial hydraulic fracture is created by rapidly pressurizing a sealed section of a wellbore until the in situ stresses and the rock strength are overcome and a fracture propagates away from the borehole (Fig. 14). The fracture will continue to extend into the geological formation; the fracture essentially increases the effective surface area of the borehole and allows much larger volumes of fluid to be extracted. Because the fluid pressures involved must overcome the stresses and the material strength in order to initiate, propagate, and remain ‘open’, the pressurization histories conversely contain a great deal of information on the in situ state of stress.

A detailed description of a hydraulic fracturing stress measurement procedure is given by Haimson and Cornet (2003) and Zoback (2007) and only a brief outline is necessary here. Indeed, a simplified discussion of the pressurization record obtained is provided that illustrates only the essential elements while ignoring its finer details, the interpretation of which is beyond the scope of this article (Gjonnes et al., 1998; Hayashi and Haimson, 1991; Ito et al., 1999; Nelson et al., 2007). In open-hole (i.e. uncased) boreholes, a typical hydraulic fracturing test (Fig. 14) begins with sealing of an interval along the borehole with two packers. Here, for purposes of illustration the ideal case of hydraulic fracturing from a borehole drilled parallel to the vertical stress into a linearly elastic, nonporous material with tensile strength T_H is considered. A simplified and hypothetical pressurization record illustrates the process (Fig. 15) with three pressurization cycles (Rutqvist et al., 2000).

In the first cycle, the interval is first rapidly pressurized from the ambient P_0 until a rapid drop in the interval pressure P_I occurs even if pumping to the interval continues; the maximum value of P_I is called the breakthrough pressure P_{PB}. The drastic reduction in pressure results from the abrupt increase in the interval volume due to the incipient opening of the fracture.

At this point the pumping ceases and the interval is ‘shut-in’; P_I then relaxes to an equilibrium pressure P_{eq}. Once it is away from the borehole stress concentrations the fracture will open in the direction of the least compressive stress (Hubbert and Willis, 1957; Murdoch, 1995; Warren and Smith, 1985). This may be complicated by horizontal fractures that intersect the borehole (e.g., Evans et al., 1988) or by heterogeneities in the rock mass (Warpinski and Teufel, 1991). Hence, once the fracture exists it can remain jacked open as long as equilibrium exists and the interval pressure P_{eq} is at least equal to the minimum compression which is S_H for strike-slip and normal faulting and S_V for thrust faulting regimes. Indeed, an accurate determination of P_{eq} is usually taken as the most robust stress magnitude measurement available. However, even this assumption may not always be valid (Nelson et al., 2007) and the fact that many different
techniques have been developed to find P_3 may hint at some ambiguities in its determination (Guo et al., 1993; Ito et al., 1999).

After an appropriate equilibration, the interval pressure is released and decays back to the ambient borehole pressure prior to the experiment. The excess fluid in the interval will flow back to the surface reservoirs. The cycle is repeated a number of times. On the second cycle the pressure increases until the already created fracture reopens. Again a rapid drop in the pressure accompanies the increased volume, but the interval pressure P_B at which this occurs is smaller than P_B because the rock's tensile strength no longer needs to be overcome, this issue is discussed in more detail below.

As already noted P_{3I} gives a reliable quantitative measure of the minimum compression in the Earth. In addition, however, P_B and to some extent P_F contain information on the stress concentrations immediately at the borehole wall ($r = a$). For the simple case above, the incipient fracture initiation occurs when the P_I induced $\sigma_{\theta\theta}$ tension (Eq. (14)) overcomes both T_o and the concentrations of the S_H and S_V; this will happen at the S_H azimuths ($\theta = 0^\circ$ and 180°). This allows the stress directions to be found from oriented images of the borehole although care here must be taken (Evans et al., 1988; Warren and Smith, 1985). Consequently, at breakdown ($P_I = P_B$) and where $P_{3I} = S_H$ the maximum horizontal compression is

$$S_H = 3S_H + T_o - \Delta \sigma_{\theta\theta}$$

where $\Delta \sigma_{\theta\theta}$ was described earlier (Eq. (18)). Eq. (22) is the simplest 'break down' equation that can be written but is deficient in that it excludes potentially important factors such as the ambient pore pressure, the fluid pressure in the incipient fracture, or interval pressurization rate effects (Schmitt and Zoback, 1992). The reader may find derivations of the appropriate corrections in numerous contributions (e.g., Schmitt and Zoback, 1993). Kehle (1964) carried out a more sophisticated analysis that incorporated the influence of the sealing packers on the stress concentrations and found that it remains valid, although his analysis did not include the radial pressure of the packers themselves, a deficiency later resolved by Warren (1981) who warned about issues in interpreting P_F if the packer pressure significantly exceeds P_o. The values of S_H that were determined, however, are taken to be uncertain because often even if one could presume to know exactly the physics operating during creation of the fracture leading to breakdown (e.g., Golshani and Tran-Cong, 2009), obtaining the appropriate physical properties needed is difficult and often only estimates can be made.

As well, it is often not known whether the fracture initiation is influenced by the packers themselves; owing to the design of the system they must remain at a pressure above that in the interval (Warren, 1981; Warren and Smith, 1985). One final caution comes when measurements are made in thrust fault regimes where S_V is the minimum compression, Evans et al. (1988), for example, observed that both horizontal and vertical fractures were produced during hydraulic fracturing tests in granite and noted the ambiguities that arise in attempting to interpret the pressurization curves in thrust regimes.

The survey of the history of the 'tensile strength' T_o employed highlights some of the difficulties encountered in trying to obtain an accurate quantitative measure of S_H. Hubbert and Willis (1957) were the first to provide a formula akin to Eq. (22) that related the state of stress to the fluid pressure in order to estimate both S_H and S_V, but reasoning that rock formations are already densely populated with joints of negligible cohesion they neglected to include any formation strength in their analysis (as noted by Scheidegger, 1960). Kehle (1964) incorporated a tensile fracture criteria for initiation that, given the limited knowledge of tensile rock strengths at the time, assumed a constant value of 20 MPa. Later field campaigns used laboratory T_o derived from Brazilian tests of laboratory hydraulic fracture simulations on core samples (Raleigh et al., 1972; Yamashita et al., 2010).

Beginning with Bredheoef et al. (1976) many workers have suggested that the difference $P_B - P_R$ is T_o predicated on the assumptions that on the second and later pressurization the already existing fracture retains no tensile strength, that the stress concentrations and pore fluid pressures remain the same both before and after creation of the fracture, and that the pressurizing fluid does not re-enter the crack until its P_K is attained (e.g., Healy and Zoback, 1988; Hickman and Zoback, 1983; Stock et al., 1985). In this case Eq. (22) reduces to

$$S_H = 3S_H - P_K$$

A considerable simplification is S_H has been correctly determined from P_B. The validity of these assumptions has been questioned by numerous authors. Ratigan (1992) noted that once the crack is produced the stress state is altered and that the P_B responds to fracture geometry, fluid viscosity, and injection rates in addition to the stress concentrations. He showed that, generally, the use of P_K in Eq. (23) depends on the distance that the initial crack had grown into the formation, a difficult parameter to obtain. Ito and Hayashi (1993) also carried out a fracture mechanics analysis of a pre-existing horizontal

Fig. 15. Illustration of a typical hydraulic fracturing (micro-frac) stress measurement. Heavy black line represents the pressure recorded within the interval. Green and red shaded areas represent flow rates into or out of the interval, respectively.
crack from a vertical borehole. Their calculations, supported also by experiments, indicated that P_R was closer to the magnitude of the applied S_H. Later, Ito et al. (1999) showed by simply superposing the added stress induced by pressurized fluid in the already existing crack that Eq. (23) would be modified to

$$S_H = 3S_R - 2P_R. \quad (24)$$

Inferring Eq. (23) overestimates S_H. Their analysis went further, however, and included the influence of the overall compliance of the system including the hydraulic fracturing hardware which brought to light a more serious problem that the pressurization record alone may not correctly give the correct P_R. In parallel, Rutqvist et al. (2000) carried out numerical simulations of reopening that demonstrated that the apparent P_R is close to P_D and this too will depend on the hardware compliance. In short, although Eq. (23) is widely employed, the above analyses show this may seriously overestimate S_R. Raen et al. (2006) provide a recent overview of this problem and make suggestions for overcoming this using flow back monitoring in extended leak-off tests.

In their important paper, Hubbert and Willis (1957) noted that the preferred plane of a hydraulic fracture is perpendicular to the direction of the least compressive stress as discussed earlier in Section 1.2. The minimum injection pressures must be consequently equal to either S_H for the former two cases and S_R for the latter. Evidence for this came from field observations of dyke orientations and from simple illustrative laboratory tests in blocks of gelatin subjected to various loads. That is again following Anderson's (1951) studies of dyke propagation, vertical fractures are expected in normal and strike-slip regimes while horizontal fractures would propagate in normal faulting regimes (Fig. 2). Consequently, the normal to the plane of an induced hydraulic fracture clearly indicates the direction of the minimum compression while the plane itself must contain the greatest and intermediate stress directions. This was later confirmed by Haimson and Fairhurst (1969) who were able to propagate both vertical and horizontal fractures in laboratory tests (see also Daneshy, 1971). In combination with the stress concentrations at the borehole wall this means that the induced fracture will appear at the azimuths at which the spring-line of S_H intersect the borehole wall; hence measuring the direction of these new fractures reveals the S_H direction. A variety of methods have been developed to find these fracture directions. These include the use of oriented soft polymer ‘impression’ packers (Fig. 16a) that are set over the fractured zone (e.g., Haimson et al., 2003; Teufel et al., 1984) or various geophysical logs that image the borehole wall (Fig. 16b) such as ultrasonic borehole televiewers (Bredelhoefst et al., 1976; Schmitt et al., 2012). However, some care must be exercised in the interpretation of the borehole wall fractures as they may not always indicate the true orientations of the propagating fracture away from the zone of influence of the stress concentrations. For example, even though the induced fracture is seen running parallel to the borehole axis the growing fracture plane will rotate to accommodate the virgin stress state away from the borehole (e.g., Daneshy, 1971).

To conclude this section, it is worth mentioning that there are a number of variations on this theme that may be advantageous under certain conditions. These include sleeve fracturing (Stephansson, 1983), development of 4-packer systems for high stress conditions (Ask et al., 2009), use of small pilot holes at the end of the main borehole (Ito et al., 2006), rapid deployment of packers using wire-lines (Klee et al., 2011; Schmitt et al., 2011), and use of expendable aluminum packers in high temperature geothermal environments (Klee and Rummel, 1993). Opening of pre-existing fractures, too, has been developed into a methodology to obtain the complete state of stress from a borehole. In this method, called the hydraulic tests on pre-existing fractures (HTPF) method, the results of a number of re-opening tests on variously oriented fractures is inverted to obtain and estimate the full stress tensor (Cornet and Vallette, 1984). Other modifications have sought to include the ability to better sense fracture creation or re-opening using extensometers (Lin and Tommy, 1994), acoustic emissions (Manthei et al., 2003), down hole pumps and pressure sensors (Ito et al., 2006; Thiercelin et al., 1996). Furthermore, electrical imaging of the borehole wall rock surface during the hydraulic fracturing pressurization, shows the most promise for properly interpreting the records (Cornet et al., 2003).

Despite the issues brought up with ambiguities in the interpretation of hydraulic fracturing results, however, the quantitative results produced by this method remain the most trusted.

5.3. Borehole breakouts

Bell and Gough (Bell and Gough, 1979; Gough and Bell, 1981) first observed, using oriented calliper logging information, that the cross-sections of many deep boreholes in Alberta were preferentially elongated in a NW–SE direction. They surmised on the basis of Kirsch’s (1898) solutions (Eq. (10)) that those azimuths around a borehole subjected to the maximum concentrated azimuthal compression σ_{90} occurred at the angle of 90° from the maximum far-field compression S_H (Fig. 4a). Consequently, they suggested that the azimuth of these shear fractures provided clues to the directions of the stresses within the Earth. This was supported by additional field measurements (e.g., Plumb and Hickman, 1985). Today, borehole breakout analyses account for a large majority of the data on in situ stress states. A few photographs of borehole breakouts, or similar features, are shown in Fig. 17 as well as one example of the cross section of a wellbore mapped by the travel times of ultrasonic pulses from an ultrasonic borehole televiewer log.
At first, the actual mechanisms of the formation of the borehole breakouts were not entirely understood. Without this understanding it was not possible to use the breakouts for any quantitative estimation of stress magnitudes; a number of studies were carried out to study the stress concentrations using analytic (Cheatham, 1993; Exadaktylos et al., 2003; Mastin, 1988) or numerical (Zheng et al., 1989) methods and different failure modes (Al-Ajmi and Zimmerman, 2006; Detournay and Roegiers, 1986; Guenot, 1989; Tokar, 1990; Zoback et al., 1985). Indeed, the literature is large and the reader may want to consult the reviews of the topic within both Germanovich and Dyskin (2000) and Haimson (2007).

Borehole breakouts can be produced by different mechanisms as summarized in the photographs taken from laboratory tests in a variety of rock types and a polymer epoxy. Fig. 18a is a classic dog-eared breakout observed in sufficiently stiff and brittle rocks. In this case the breakouts are produced by small extensile buckling that continuously grows similar to those seen in Fig. 17a (see also the examples given by Christiansson (2006) and Germanovich and Dyskin (2000)). Such a progressive failure mechanism was observed in the growth of the large ‘breakout’ in a mine drift the growth of which was monitored by Martin et al. (1997) in Fig. 17c.

In contrast, shear failure may dominate breakout growth in some softer rocks. Haimson (2007), for example, noted the growth of dilatant shear cracks symmetrical to the S_p springline in tests on a Cordova Cream limestone; similar features may be apparent in hollow cylinder tests in Berea sandstone subjected to a uniform state of radial confining stress (Ewy and Cook, 1990) in Fig. 18b although in this case their azimuth depends on the strength anisotropy of the rock.

On the other hand, compaction banding, too, appears to be responsible for some breakouts produced in highly porous and weak sandstones (Bessinger et al., 1997; Dresen et al., 2010; Haimson, 2007). These unusual ‘breakouts’ rely on the removal of the sand grains by flow of drilling fluid and produce remarkably linear fractures parallel to the S_p springline (Fig. 18c) and likely contribute to the production of sand through weak formations (Katsman and Haimson, 2011; Katsman et al., 2009).

Finally, elasto-plastic deformations are likely in rocks subjected to creep. An example of a laboratory tests on an epoxy (Tokar, 1990) highlights the ellipse-like yield zone of deformation surrounding a hole in an epoxy block (Fig. 18d). In this case the block was subjected to an anisotropic stress state by applying compression parallel to the borehole axis with the two induced borehole-perpendicular principal stresses resulting from Poisson’ ratio expansion against rigid boundaries; as such the stress state is not completely known. The shape of this zone is in qualitative agreement with theoretical predictions that incorporate a Mohr–Coulomb friction law (e.g., Detournay, 1986) and this topic continues to receive attention with different failure mechanisms applied (e.g., Li and Aubertin, 2009; Zhou et al., 2010).

As noted, true breakouts will lengthen the borehole axis in the direction of the S_p spring-line but the borehole retains the original bit diameter gage (i.e., $2a$) perpendicular to this (Fig. 19a). A variety of different kinds of oriented logging tools including oriented calipers (i.e., dip-meters), electrical resistivity imagers, and ultrasonic borehole televiewers are usually used to locate and interpret breakouts as shown in Fig. 20a (see Hurley (2004) and Pöppelreiter et al. (2010) for technical descriptions of the operation of these instruments). More recently, advances in optical imaging technology have allowed the high resolution optical televiewers to be developed (e.g., Fig. 20b) the use of which is limited to air or clean water filled boreholes (e.g., Williams and Johnson, 2004); but there are to date few reports of their use in breakout analysis.

Briefly, oriented calipers have four or more extendable arms that press against the borehole wall and hence provide measures of the borehole diameter at a number of azimuths. The inclination and orientation of the tool is usually provided by a combination of north sensing magnetometers, gyroscopes, and accelerometers. If breakouts exist, the feet of one caliper pair often become ensnared in the breakout gutters. These arms consequently measure at a more or less consistent azimuth diameter greater than the original bit gage while the second orthogonal pair remains at the bit gage (Fig. 19b). As a result, such tools provide both a measure of the depth of a pair of breakouts
and their orientation that falling along the S_h springline provides information on the horizontal stress directions.

Imaging tools provide a 360° view of the borehole wall rock (Fig. 19c) that allows for additional measurements of breakout geometry, such as the breakout width Θ, to be estimated. This information has been used to constrain the magnitudes of the horizontal stresses by various authors (e.g., Zoback et al., 2003) under the assumptions i) that the borehole width does not change as the breakout progressively deepens and ii) that the edge of the breakout corresponds to the azimuth at which the stress state first exceeds the rock strength. Later laboratory tests (Haimson and Herrick, 1986) were consistent with this suggestion. Accordingly, and further assuming a Mohr–Coulomb failure criteria (Eq. (20)), S_h may be estimated as (Barton et al., 1988)

$$ S_h = \frac{UCS + \Delta \sigma_{\theta\theta} - S_h(1 - 2 \cos(\Theta))}{1 + 2 \cos(\Theta)} \tag{25} $$

where UCS is the unconfined compressive strength that, ideally, could be determined by finding stress at which a laterally unconfined and uniaxially loaded sample fails. UCS is related to the cohesion C allowing the Mohr–Coulomb failure condition (Eq. (20)) to be alternatively written as

$$ \tau = \sigma \mu + \frac{UCS}{2[(\mu^2 + 1)^{1/2} + \mu]} \tag{26} $$

One problem with the application of Eq. (25) is that S_h depends on the unconfined UCS which is often not well known as it must be determined in laboratory measurements on rocks. Properly determining UCS necessitates a suite of tests on the rock to produce the shear failure envelope. Unfortunately, there is rarely sufficient core available to carry out these tests and instead proxies based on lithological knowledge (Batra et al., 2012) and geophysical logs are found (see Chang et al., 2006; Sharma et al., 2010).
fractures (DITF) and shear fractures are also observed (Aadnoy and Bell, 1998). The simplest of these are axial-DITF (A-DITF) in Fig. 20a–b with more complex sets appearing in an en-echelon or chevron pattern (E-DITF) in Fig. 20c.

The axial and en-echelon fractures are interpreted to occur under conditions in which the principal stresses are aligned or oblique to the borehole axis, respectively. In some cases, they could be inadvertent hydraulic fractures produced by the wellbore static or transient (e.g., swabbing) pressure of the drilling fluids much as described above for hydraulic fracture initiation (Aadnoy, 1990). They could also result from thermal disturbances caused by cooler temperatures of the drilling fluid. Or, they could result from concentrated tensile stress at the borehole wall according to Kirsch’s solutions (Eq. (10)) (Brudy and Zoback, 1999).

Although these appear to be tensile features and they appear at those azimuths in tension along the borehole wall they have also been interpreted as natural fractures that have slipped due to the tension and have been referred to as drilling-enhanced fractures (e.g., Barton and Zoback, 2002; Barton et al., 2009). Regardless, these fractures provide the direction of S_3 and may provide information to constrain stress magnitudes (Aadnoy, 1990; Brudy and Zoback, 1993; Djurhuus and Aadnoy, 2003; Hayashi et al., 2003; Nelson et al., 2005; Okabe et al., 1998; Peska and Zoback, 1995; Schmitt, 1993; Valley and Evans, 2009) if the wellbore fluid pressures and temperatures are known in a manner analogous to the use of hydraulic fracture data.

Observations of drilling induced fractures are useful in that they can be used to further constrain the in situ stress magnitudes. The formation of A-DITF is essentially the same as for intentional hydraulic fracturing (Eq. (22)). Consequently, careful assessment of the downhole fluid mud pressures together with independent knowledge of S_h can provide an estimate of S_h (Wiprut and Zoback, 2000).

Similarly, interpretation of the E-DITF requires that the angle β of their trace with respect to the borehole axis be measurable (Aadnoy and Bell, 1998). In this case, one must consider the full state of stress at the borehole wall as generated by the in situ stresses (Eq. (11)) as adjusted by the borehole boundary conditions (Eq. (18)). One expects the tensile fracture to open in parallel to the minimum principal compression σ_3 with the angle of the fracture β

$$\beta = \arccos \left[\frac{\tau_{zz}}{(\sigma_{yy} - \sigma_3)^2 + \tau_{zz}^2} \right]$$

where

$$\sigma_3 = \frac{\sigma_{yy} + \sigma_{zz}}{2} - \sqrt{\frac{(\sigma_{yy} - \sigma_{zz})^2 + 4\tau_{zz}^2}{2}}$$

as first derived by Aadnoy (1990). More recently, Thorsen (2011) has developed linearized failure criteria along similar lines.

Morin (1990) observed oval shaped fractures on the borehole wall (Fig. 20d) that they interpreted based on an analytical analysis to be produced by a combination of the far-field and thermal stress concentrations. Similar fractures were recently reported in image logs from the Coso geothermal field, Nevada (Davatzes and Hickman, 2010). The source of such fractures requires further investigation.

6. Stress indications from core studies

6.1. Drilling induced core fractures

Cores retrieved from the borehole are also damaged by concentrations of the in situ stresses leading to damage and macroscopic fracturing. Drilling induced core fractures (DICF) are created during coring operations, their shapes and spacing suggests that they too

5.4. Drilling induced tensile fractures

Borehole breakouts are not the only type of stress induced damage seen on the walls of boreholes; a variety of drilling induced tensile

Work following from this has employed failure criteria that depend on the value of the intermediate state of stress such as the theoretical Weibul–Cook criterion (Vernik and Zoback, 1992), the empirical Mogi criterion (Haimson and Chang, 2002), or a combined Mises–Schleicher–Drucker–Prager criterion (Aubertin et al., 2000; Simon and Labrie, 2012).

It needs to be noted, however, that the use of breakout widths to constrain stress magnitudes remains controversial; Detournay and Roegiers (1986), for example, point out a number of possible deficiencies ranging from geometrical kinematics to lack of precise knowledge of the deformation mechanisms active. For example, repeated measurements of the borehole cross-sections in different boreholes drilled as part of the NanTroSEIZE project demonstrate that the observed breakout widths increase with time (Moore et al., 2011) within the weak sediments logged. Also, Martin et al. (1997) measured the growth of breakout depth and width in a tunnel through granite and granodiorite over a period of several months.
contain clues to in situ stress directions and magnitudes. The types of core fractures observed (Figs. 21, 22) have been classified (Hakala, 1999; Kulander et al., 1990; Venet et al., 1990) as ranging from convex through flat to concave, the axial symmetry of which suggests relatively uniform horizontal stresses, and saddle-shaped through to petal-centerline the asymmetry of which indicates anisotropic far-field stresses (Fig. 23). In many cases, particularly where borehole stability is an issue and geophysical logging or hydraulic fracturing becomes impossible, these core fractures may be the only information available on the in situ state of stress; understanding the relationships between their shapes and spacings has been a goal of many workers.

Despite the fact that rocks are complex materials, such fractures are remarkably uniform along a core in both spacing and shape as may be seen in the photographs of Fig. 21. Additional excellent examples of core disks with a variety of thicknesses may be found in Lim and Martin (2010). Further, the morphology of these fractures seems to show that they are purely tensile features; this is supported by fractographic analyses of the fracture surfaces (Bankwitz and Bankwitz, 1997, 2000; Kulander et al., 1990) (Fig. 22). Li and Schmitt (1998) demonstrated that the point of fracture initiation is an important additional piece of information. Since the state of stress in the Earth is almost always compressive the occurrence of tensile fractures suggests that they are produced by concentration of the stresses by the geometry at the bottom of the borehole.

The stress concentrations at the bottom-hole and near the core stub are not as easily obtained as the axisymmetric stresses away from any ends of a long borehole (Eq. (11)). The asymmetric and three dimensional bottom-hole cannot be described in simple closed form equations (e.g., Coates and Yu, 1970), and aside from some empirical measurements (Galle and Wilhoit, 1962) numerical approaches have been the method of choice in attempting to better understand the bottom-hole stress concentrations. Hocking (1976) provides a comprehensive review of the experimental and numerical work up to the mid-1970s. Since then, the problem has received continued attention with application to failure and damage at the ends of tunnels and boreholes (e.g., Diederichs et al., 2004; Eberhardt, 2001; Ito et al., 1998; Rumzan and Schmitt, 2001) and for overcoring techniques (Kang et al., 2006; Wang and Wong, 1987). However, much of the focus of the overcoring/undercoring community lies in finding sets of experimental geometry-dependent stress concentration factors and the work is usually not directly transferable to the study of core damage.

Before continuing, it is useful to better define the geometry of drilling induced core fractures (DICF). Different types of coring bits are used for various purposes in the petroleum, mining, and nuclear waste industries (Fig. 24). The bit essentially grinds away the material around the central stub or pedestal of the core materials. The shape and width of the cut out slot, or kerf, of course depend on the type of coring bit employed, and this must influence the final distribution of the stresses. Further, as might be inferred by the photographs in Fig. 21, the core fractures are more or less uniformly spaced; and this suggests that the core stub length also influences stress concentrations.

This core–stub geometry (Fig. 24c) is more complex than a simple flat ended borehole and workers have been forced towards numerical approaches in attempting to understand such fractures. The finite element method has been used in most of these studies (Dyke, 1989; Hakala, 1999; Kaga et al., 2003; Li and Schmitt, 1997a, 1997b, 1998; Lim and Martin, 2010; Lim et al., 2006; Matsuji et al., 2003, 2004; Sugawara et al., 1978; Venet, 1993; Venet et al., 1990). One exception is the study of Gorodkov et al. (2006) which used a discrete particle approach to look at the damage produced in a core stub of granular material during coring.

![Fig. 21. Examples of drilling induced core fracture phenomena. a) Series of flat core disks along length of core. b) Series of uniformly spaced concave saddle shaped disks from a depth of 942 m from a vertical borehole at Sakuma, Shizuoka prefecture, Japan. c) Petal fractures in metamorphic rock from the Canadian shield in Alberta. d) Example of core-edge fractures. e) Series of petal-centerline fractures in West Texas limestone core. Panel a is after Bunner (2010) with permission for reuse granted by Springer. Panel b is from Kang et al. (2006) with permission for reuse granted by Elsevier. Panel c is a personal photograph of Schmitt. Panel d is from Wilson and Paulsen (2000) with permission for reuse granted by the journal Terra Antartica. Panel e is from http://www.naturalfractures.com/ used with the permission of Dr. A. Lacazette.](image-url)
Experimental studies of such fractures remain quite limited (Jaeger and Cook, 1963; Obert and Stephenson, 1965). More recently Haimson and coworkers (Haimson and Lee, 1995; Song and Haimson, 1999) carried out core-drilling experiments on blocks of rock subjected to a variety of true triaxial states of stress. They showed that the thickness of the disks depended on the magnitudes of the horizontal stresses and for the first time experimentally demonstrated that the strike of the 'troughs' of the fractures are parallel to Σ_H for an anisotropic state of horizontal stress (Fig. 22f).

One issue in attempting to predict what form the DICF will take is that the criterion for both fracture initiation and propagation is not necessarily well understood. Predicting the path that a fracture will propagate remains an unsolved problem even today (see Pook, 2010). However, it is instructive to look at what kinds of criteria have been employed. Dyke (1989) attempted to localize the fracture trajectory on the basis of strain energy arguments. Li and Schmitt (1998) carried out 3D FEM models on a variety of core stub geometries and used a simple maximum tensile stress failure criterion to both initiate and propagate the tensional fractures. This approach was also adopted by Hakala (1999). Matsuki et al. (2004) carried out extensive finite element modeling for a variety of core stub lengths subjected to general states of far-field stresses. Using reasonable assumptions on the uniformity and direction of stress within the stub they developed a set of 'critical tensile stress' criteria that allow estimation of the full stress field. Bunger (2010) has applied Matsuki et al.'s (2004) criterion for statistical evaluation of a large number of core disks from a South African borehole. Lim and Martin (2010) applied a fracture mechanics approach that yields disk surfaces in agreement with field observations. Most recently, Zhang (2011) made high element density 3D FEM calculations of the stresses around a borehole containing stubs. As with earlier modeling, high pure tensional stresses are generated in and around the core stub (Fig. 25). This extended the 2D fracture propagation models of Li and Schmitt (1998) to a 3D fracture propagation scheme. This model was able to replicate all of the shapes in Fig. 21 with the exception of the core edge fractures. As in Li and Schmitt (1998), the modeling allows for a general interpretation of the fracture shapes to assist in constraining the faulting environment encountered.

6.2. Core damage based methods

To complete this section, we mention two related core-based techniques that attempt to extract additional stress information from the retrieved cores.

The first employs the concept that rocks, like many advanced materials, retain some 'memory' of the stresses they had experienced.
Here, the Kaiser effect (Kaiser, 1950; Li and Nordlund, 1993) consists of monitoring the acoustic emissions from a previously stressed material while it is again stressed. This method presumes that no new crack damage is initiated in the sample, with the result that there are no acoustic emissions detected, until the sample is stressed past its original in situ stress state. At this point new damage is initiated with acoustic emissions produced. Yamamoto (2009) also uses similar ideas but by carefully measuring strains during reloading of a rock sample to estimate stress magnitudes.

The second method is called ‘anelastic strain recovery’ (ASR) (Engelder, 1984; Lin et al., 2006; Matsuki, 2008; Matsuki and Takeuchi, 1993; Wolter and Berckhemer, 1989). The underlying premise of this technique is that rocks are viscoelastic materials. As such, their deformation is time dependent; and as the initial stress relaxes in the sample it creeps in response. Therefore, workers monitor the creep behavior of the core with time immediately upon recovery from the Earth. The 3D deformation is then inverted via a model of viscoelastic behavior to provide an estimate of the stress directions and magnitudes.

It is likely that both the Kaiser effect and ASR are affected by the damage induced by the high tensile stresses experienced during coring as demonstrated for example in Fig. 25. This tension is likely to produce micro-cracking of the sample even if no visible macroscopic drilling induced fracture is seen. Additional work needs to resolve the relationship between these effects and coring induced damage. Further, it is interesting to consider the possibility of relationships between induced fractures in the core and those seen in the borehole wall (Fig. 20) as the core fractures may provide additional information to support the borehole observations (Davatzes and Hickman, 2010).

Although the core based techniques do show promise, they still require that a dedicated practitioner carry out the measurements. More research into the validity and ranges of suitability of these techniques is necessary.

7. Concluding remarks

This review has focused primarily on providing a basic understanding of many of the techniques used to obtain the directions and magnitudes of stresses from deep boreholes. No single technique discussed here provides the ‘magic bullet’ to determine the complete state of in situ stress. As such, current practices focus on obtaining as much information as possible from a variety of indicators that include advanced acoustic logging, borehole breakouts, drilling induced tensile fractures, hydraulic fractures and leak off tests, and drilling induced core fractures.
Again, given the focus here on fundamentals there is insufficient space to show actual applications. There are a number of good examples of this multiple approach most of which come from scientific drilling projects that often include detailed borehole and core logging and, more rarely, hydraulic mini-fract testing. The deep German KTB project provided many opportunities for stress constraint using breakouts, drilled induced fractures, and hydraulic fracturing (Brudy et al., 1997; Haimson and Chang, 2002), core diskig (Bankwitz and Bankwitz, 2000), and anelastic strain recovery (Wolter and Berckhemer, 1990). Since then, expanded studies have occurred in the pilot and main holes of the San Andreas Fault Observatory at Depth (SAFOD) project (Bones and Zoback, 2006; Hickman and Zoback, 2004) and at the Chelungpu fault, Taiwan (Haimson, 2010a; Haimson et al., 2010; Lin et al., 2010; Zhang and Rogeiers, 2010), to name only a few. The reader can find examples of the integration of the various methods by studying the protocols and reasoning used to produce stress profiles in those examples. Unfortunately, some of the best work arising from the deep marine drilling for the petroleum industry remains proprietary.

Significant progress has been made in stress indication and measurement particularly since it was realized that the patterns of borehole and core damage are highly diagnostic of stress states. However, much remains to be done. Obtaining true measures of the full three dimensional stress tensor is still elusive. Furthermore, much future drilling will be from deviated or horizontal boreholes and more can be done to understand how they will fail or how hydraulic fractures will grow from them (Haimson, 2010b). These issues will be of particular concern for unconventional hydrocarbon production where there are hints that stress heterogeneity or fracturing induced stress changes are important (Warピンski, 1989). Finally, a good understanding of the relationship between stresses and the material physical properties will be necessary to reduce the current limits of stress measurements and their interpretations.

Acknowledgments

This work is supported by the Canada Research Chairs and NSERC. This paper honors Prof. T.J. Ahrens (d. December, 2010) for starting and Prof. D.I. Gough (d. March, 2011) for continuing to inspire Schmitt’s interest in crustal stress measurement. Q. Jia’s care in reviewing the equations is greatly appreciated.

References

Edwards, R.H., 1951. Stress concentrations around spheroidal inclusions and cavities.

Hiramatsu, Y., Oka, Y., 1962. Stress around a shaft or level excavated in ground with a three-dimensional stress state. Memoirs of the Faculty of Engineering, Kyushu University Part 14, 52–76.

Venet, V., 1993. Contribution to the optimizing of core drilling by modeling the initia-

l'estimation des contraintes en situe a grande profondeur. In: Maury, V., Formenrauch,
D. (Eds.), Rock at Great Depth: Rock Mechanics and Rock Physics at Great Depth.
Balkema, Pau, pp. 1551–1557.

Vernik, L., Zoback, M.D., 1992. Estimation of maximum horizontal principal stress mag-
nitude from stress-induced well bore breakouts in the Cajon Pass scientific-

Vilhelm, J., Rudajev, V., Zivor, R., Lokajicek, T., Pros, Z., 2010. Influence of crack distribu-
tion of rocks on p-wave velocity anisotropy — a laboratory and field scale study.
Geophysical Prospecting 58, 1099–1110.

Research 70, 381–389.

situ stress measurement. International Journal of Rock Mechanics and Mining Sciences
24, 41–52.

990–997.

site — influence of topography and lithology on the stress state in tuff. International

Warren, W.E., Smith, C.W., 1985. In situ stress estimates from hydraulic fracturing and

rock demonstrated by hydraulic fracturing measurements in salt. International

Williams, J.H., Johnson, C.D., 2004. Acoustic and optical borehole-wall imaging for

Wilson, T., Paulsen, T., 2000. Brittle deformation patterns of crp-2/2a, Victoria Land

Winkler, K.W., 1996. Azimuthal velocity variations caused by borehole stress concen-

Winkler, K.W., D'Angelo, R., 2006. Ultrasonic borehole velocity imaging. Geophysics 71,
F25–F30.

Wiprut, D., Zoback, M., 2000. Constraining the stress tensor in the Visund field, Norwegian
North Sea: application to wellbore stability and sand production. International Journal

Wolter, K.E., Berkhemer, H., 1989. Time-dependent strain recovery of cores from the

Wolter, K.E., Berkhemer, H., 1990. Estimation of in situ stresses by evaluation of time-

py in a sandstone. International Journal of Rock Mechanics and Mining Sciences 28,
101–107.

ment. Earth Planets Space 61, 1143–1161.

Yamashita, F., Mizoguchi, K., Fukuyama, E., Omura, K., 2010. Reexamination of the present
stress state of the Atera fault system, Central Japan, based on the calibrated crustal
stress data of hydraulic fracturing tests obtained by measuring the tensile strength

in anisotropic rocks under non-Andersonian stress systems. Journal of Structural
Geology 14, 237–244.

Zhang, L., 2011. Three-dimensional numerical models of drilling induced core frac-

Zhang, J.C., Roegiers, J.C., 2010. Discussion on “Integrating borehole-breakout dimen-
sions, strength criteria, and leak-off test results, to constrain the state of stress
across the Chelungpu fault, Taiwan.” Tectonophysics 492, 295–298.

Zhang, C.C., Zhao, J.H., Zhang, Q.H., Hu, X.D., 2012. A new closed-form solution for cir-
cular openings modeled by the unified strength theory and radius-dependent

Journal of Rock Mechanics and Mining Sciences 37, 39–49.

for rocks modeled by elasto-plasticity and strength criterion. Theoretical and

Zisman, W.A., 1933. Compressibility and anisotropy of rocks at and near the earth's
surface. Proceedings of the National Academy of Sciences of the United States of
America 19, 666–670.

Zoback, M.D., Moos, D., Matin, L., Anderson, R.N., 1985. Well bore breakouts and in situ

Zoback, M.L., Zoback, M.D., Adams, J., Assumpcao, M., Bell, S., Bergman, E.A., Blumling,
P., Breerton, N.R., Denham, D., Ding, J., Fuchs, K., Gvishiani, A., Jacob, K., Kleinin, R., Knoll, P., Magee, M., Mercier, J.L., Muller,
B.C., Paquin, C., Rajendran, K., Stephansson, O., Suarez, G., Suter, M., Udias, A., Xu,

Zoback, M.D., Barton, C.A., Brady, M., Castillo, D.A., Finkbeiner, T., Grollimund, B.R.,
tation and magnitude in deep wells. International Journal of Rock Mechanics and
Mining Sciences 40, 1049–1076.