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ABSTRACT
Most current distributed machine learning systems try to scale up

model training by using a data-parallel architecture that divides

the computation for different samples among workers. We study

distributed machine learning from a different motivation, where

the information about the same samples, e.g., users and objects, are

owned by several parities that wish to collaborate but do not want

to share raw data with each other. We propose an asynchronous

stochastic gradient descent (SGD) algorithm for such a feature dis-

tributed machine learning (FDML) problem, to jointly learn from

distributed features, with theoretical convergence guarantees un-

der bounded asynchrony. Our algorithm does not require sharing

the original features or even local model parameters between par-

ties, thus preserving the data locality. The system can also easily

incorporate differential privacy mechanisms to preserve a higher

level of privacy. We implement the FDML system in a parameter

server architecture and compare our system with fully centralized

learning (which violates data locality) and learning based on only

local features, through extensive experiments performed on both

a public data set a9a, and a large dataset of 5, 000, 000 records and

8700 decentralized features from three collaborating apps at Ten-

cent including Tencent MyApp, Tecent QQ Browser and Tencent
Mobile Safeguard. Experimental results have demonstrated that the

proposed FDML system can be used to significantly enhance app

recommendation in Tencent MyApp by leveraging user and item

features from other apps, while preserving the locality and privacy

of features in each individual app to a high degree.
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•Computingmethodologies→Massively parallel algorithms;
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1 INTRODUCTION
While the success of modern machine learning lays the foundation

of many intelligent services, the performance of a model often de-

pends on the availability of data. In most applications, however,

a large quantity of useful data may be generated on and held by

multiple parties. Collecting such data to a central site for training

incurs extra management and business compliance overhead, pri-

vacy concerns, or even regulation and judicial issues. As a result,

a number of distributed machine learning techniques have been

proposed to collaboratively train a model by letting each party per-

form local model updates and exchange locally computed gradients

[27] or model parameters [21] with the central server to iteratively

improve model accuracy. Most of the existing schemes, however,

fall into the range of data parallel computation, where the train-

ing samples are located on different parties. For example, different

users hold different images to jointly train a classifier. Different

organizations may contribute their individual corpora to learn a

joint language model.

We study distributed machine learning based on another motiva-

tion, where different features of a same sample are held by different

parties. The question is—can we improve the predictive power at

one party by leveraging additional features from another domain or

party, yet without requiring any party to share its features? This is

a real problem we are solving at Tencent MyApp, one of the largest
Android app stores in China, with a market share of 24.7% in China

in 2017. Tencent MyApp performs app recommendation and acti-

vation rate prediction based on the user and app features logged

in its own platform. However, it turns out other Tencent apps in-

cluding Tencent QQ Browser and Tencent Mobile Safeguard share a

large number of common users with MyApp. Since these apps may

have complementary information about a user, such cross-domain

knowledge from another app, if utilized, may help to train a joint

model that can improve app recommendation and customer behav-

ior preference prediction in MyApp. However, due to privacy and

customer protection regulations, raw customer data are not to be

shared across apps that belong to different departments.

A natural question is—how can we train a joint machine learn-

ing model if the features of each training sample are located on

multiple distributed parties? To make the solution practical with

the most conservative assumption on information sharing, we bear

the following goals:

• To minimize information leakage, no party should share its

feature set. Neither should any of its local model parameters

be communicated to other parties.
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• The prediction made by the joint model should outperform

the prediction made by each isolated model trained only with

a single party’s feature set, provided that such improvement

from joint features also exists in centralized training.

• The joint model produced should approach themodel trained

in a centralized manner if all the features were collected

centrally.

• The system should be efficient in the presence of both large

numbers of features and samples.

To solve the above challenges, in this paper, we design, imple-

ment and extensively evaluate a practical Feature Distributed Ma-

chine Learning (FDML) system based on real-world datasets. For

any supervised learning task, e.g., classification, our system enables

each party to use an arbitrary model (e.g., logistic regression, factor-

ization machine, SVM, and deep neural networks) to map its local

feature set to a local prediction, while different local predictions

are aggregated into a final prediction for classification via a “hyper-

linear structure,” which is similar to softmax. The entire model is

trained end-to-end using a mini-batched stochastic gradient de-

scent (SGD) algorithm performed in the sense of stale synchronous

parallel (SSP) [13], i.e., different parties are allowed to be at different

iterations of parameter updates up to a bounded delay.

A highlight of our system is that during each training iteration,

every party is solely responsible for updating its own local model

parameters (local net) using its own mini-batch of local feature

sets, and for each record, only needs to share its local prediction

to the central server (or to other parties directly in a fully decen-

tralized scenario). Since neither the original features nor the local

model parameters of a party are transferred to any external sites,

the FDML system preserves data locality and is much less vulner-

able to model inversion attacks [12] targeting other collaborative

learning algorithms [27, 31] that share model parameters between

parties. Moreover, we further enhance the data privacy by adopting

a differential-privacy-based method [9, 10, 27]. by adding some

perturbations to the shared local predictions.

We theoretically establish a convergence rate of O ( 1√
T
) for the

proposed asynchronous FDML algorithm under certain assump-

tions (including the bounded delay assumption [13]), where T is

the number of iterations on (the slowest) party, which matches

the standard convergence rate of fully centralized synchronous

SGD training with a convex loss as well as that known for asyn-

chronously distributed data-parallel SGD in SSP [13].

We developed a distributed implementation of FDML in a pa-

rameter server architecture, and conducted experiments based on

both a public data set a9a [8], and a large dataset of 5, 000, 000

samples and 8700 decentralized features collected from three pop-

ular Tencent Apps, including Tencent MyApp, Tencent QQ Browser
and Tencent Mobile Safeguard. Extensive experimental results have

demonstrated that FDML can even closely approach centralized

learning in terms of testing errors, without violating data locality

constraints, although centralized learning can use a more sophisti-

cated model, since all features are collected centrally. In the mean-

time, FDML significantly outperforms models trained only based on

the local features of each single app, demonstrating its advantage

in harvesting insights from additional cross-domain features.

2 RELATEDWORK
Distributed Machine Learning. Distributed machine learning al-

gorithms and systems have been extensively studied in recent years

to scale up machine learning in the presence of big data and big

models. Existing work focuses either on the theoretical convergence

speed of proposed algorithms, or on the practical system aspects

to reduce the overall model training time [30]. Bulk synchronous

parallel algorithms (BSP) [7, 32] are among the first distributed

machine learning algorithms. Due to the hash constraints on the

computation and communication procedures, these schemes share

a convergence speed that is similar to traditional synchronous and

centralized gradient-like algorithms. Stale synchronous parallel

(SSP) algorithms [13] are a more practical alternative that abandons

strict iteration barriers, and allows the workers to be off synchrony

up to a certain bounded delay. The convergence results have been

developed for both gradient descent and SGD [13, 20, 25] as well as

proximal gradient methods [18] under different assumptions of the

loss functions. In fact, SSP has become central to various types of

current distributed Parameter Server architectures [1, 5, 14, 17, 19].

Depending on how the computation workload is partitioned [30],

distributed machine learning systems can be categorized into data
parallel and model parallel systems. Most of existing distributed

machine learning systems [1, 5, 14, 17, 19] fall into the range of data
parallel, where different workers hold different training samples.

Model Parallelism. There are only a couple of studies onmodel
parallel systems, i.e., DistBelief [6] and STRADS [16], which aims

to train a big model by letting each worker be responsible for up-

dating a subset of model parameters. However, both DistBelief

and STRADS, require collaborating workers to transmit their local

model parameters to each other (or to a server), which violates our

non-leakage requirement for models and inevitably incurs more

transmission overhead. Furthermore, nearly all recent advances on

model parallel neural networks (e.g., DistBelief [6] and AMPNet

[2]) mainly partition the network horizontally according to neural

network layers with motivation to scale up computation to big mod-

els. In contrast, we study a completely vertical partition strategy

based strictly on features, which is motivated by the cooperation

between multiple businesses/organizations that hold different as-

pects of information about the same samples. Another difference is

that we do not require transmitting the model parameters; nor any

raw feature data between parties.

On a theoretical perspective of model parallel algorithm anal-

ysis, [31] has proposed and analyzed the convergence of a model

parallel yet non-stochastic proximal gradient algorithm that re-

quires passing model parameters between workers under the SSP

setting. Parallel coordinate descent algorithms have been analyzed

recently in [4, 26]. Yet, these studies focus on randomized coor-

dinate selection in a synchronous setting, which is different from

our setting where multiple nodes can update disjoint model blocks

asynchronously. Although Stochastic gradient descent (SGD) is the

most popular optimization method extensively used for modern

distributed data analytics and machine learning, to the best of our

knowledge, there is still no convergence result of (asynchronous)

SGD in a model parallel setting to date. Our convergence rate of

FDML offers the first analysis of asynchronous model parallel SGD,
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Figure 1: Illustrating FDMLmodel (2), where the local predic-
tions, each depending on the local model on a party, are ag-
gregated into a final output using linear and nonlinear trans-
formations (1).

which matches the standard convergence rate of the original SSP

algorithm [13] for data parallel SGD.

Learning Privately. A variant of distributed SGD with a fil-

ter to suppress insignificant updates has recently been applied to

collaborative deep learning among multiple parties in a data par-

allel fashion [27]. Although raw data are not transferred by the

distributed SGD in [27], a recent study [12] points out that an algo-

rithm that passes model parameters may be vulnerable to model

inversion attacks based on generative adversarial networks (GANs).

In contrast, we do not let parties transfer local model parameters

to server or any other party.

Aside from the distributed optimization approach mentioned

above, another approach to privacy preserving machine learning

is through encryption, e.g., via homomorphic encryption [11, 28]

or secret sharing [3, 22, 29]. Models are then trained on encrypted

data. However, this approach cannot be flexibly generalized to all

algorithms and operations, and incurs additional computation and

design cost. Relatively earlier, differential privacy has also been

applied to collaborative machine learning [23, 24], with an inherent

tradeoff between privacy and utility of the trained model. To the

best of our knowledge, none of the previous work addressed the

problem of collaborative learning when the features of each training

sample are distributed on multiple participants.

3 PROBLEM FORMULATION
Consider a system ofm different parties, each party holding differ-

ent aspects about the same training samples. Let {(ξ 1i , ξ
2

i , . . . , ξ
m
i ),yi }

n
i=1

represent the set of n training samples, where the vector ξ
j
i ∈ R

d j

denotes the features of the ith sample located on jth party, and yi
is the label of sample i . Let ξi ∈ R

d
be the overall feature vector

of sample i , which is a concatenation of the vectors ξ 1i , ξ
2

i , . . . , ξ
m
i ,

with d =
∑
j dj . Suppose the parties are not allowed to transfer

their respective feature vector to each other out of regulatory and

privacy reasons as has been mentioned above. In our problem, the

feature vectors on two parties may or may not contain overlapped

features. The goal of machine learning is to find a model p (x , ξ )
with parameters x that given an input ξ , can predict its label y, by

minimizing the loss between the model prediction p (x , ξi ) and its

corresponding label yi over all training samples i .
We propose a Feature Distributed Machine Learning (FDML)

algorithm that can train a joint model by utilizing all the distributed

features while keeping the raw features at each party unrevealed

to other parties. To achieve this goal, we adopt a specific class of

model that has the form

p (x , ξ ) = σ

( m∑
j=1

ajα
j (x j , ξ j )

)
, (1)

where α j : RD
j
× Rd

j
→ R, j = 1, . . . ,m, is a sub-model on party j

with parameters x j ∈ RD
j
, which can be a general function that

maps the local features ξ j on each party j to a local prediction. In

addition, σ : R → R is a continuously differentiable function to

aggregate local intermediate predictions α j (x j , ξ j ) weighted by aj .

Note that x ∈ RD , with D =
∑
j D j , is a concatenation of the local

model parameters x j over all parties j.
As illustrated by Fig. 1, the model adopted here is essentially a

composite model, where each sub-model α j on party j with param-

eters x j could be an arbitrary model, e.g., logistic regression, SVM,

deep neural networks, factorization machines, etc. Each sub-model

x j on party j is only concerned with the local features ξ j . The fi-
nal prediction is made by merging the local intermediate results

through a linear followed by nonlinear transformations, e.g., a soft-

max function. Note that in (1), all aj can be eliminated by scaling

some corresponding parameters in α (x j , ξ j ) by 1/aj . Without loss

of generality, we simplify the model to the following:

p (x , ξ ) = σ

( m∑
j=1

α j (x j , ξ j )

)
. (2)

Apparently, in this model, both the local features ξ j and the

sub-model parameters x j are stored and processed locally within

party j , while only the local predictions α j (x j , ξ j ) need be shared to
produce the final prediction. Therefore, the raw features as well as

all sub-model parameters are kept private. In Sec. 4, we propose an

asynchronous SGD algorithm that also preserves the non-sharing

properties for all the local features as well as all sub-model pa-

rameters even during the model training phase, with theoretical

convergence guarantees.

In general, the model is trained by solving the following problem:

minimizex
1

n

n∑
i=1

L(x ; ξi ,yi ) + λ
m∑
j=1

z j (x j ), (3)

where L
(
p (x , ξ );y

)
is the loss function, indicating the gap between

the predicted value and the true label for each sample. z (x j ) is the
regularizer for sub-model x j .

4 ASYNCHRONOUS SGD FOR FDML
In this section, we describe our asynchronous and distributed sto-

chastic gradient descent (SGD) algorithm specifically designed to

solve the optimization problem (3) in FDML, with theoretical con-

vergence guarantees.

Since we consider a stochastic algorithm, let i (t ) be the index of
the sample ξi (t ) presented to the training algorithm in iteration t .



We denote the regularized loss of sample i (t ) by

Ft (x ) := L(x ; ξi (t ) ,yi (t ) ) + λ
m∑
j=1

z j (x j ). (4)

In stochastic optimization, minimizing the loss in (3) over the entire

training set is equivalently to solving the following problem [13]:

minimizex F (x ) :=
1

T

∑
t

Ft (x ), (5)

where T is the total number of iterations. Let ∇F (x ) ∈ RD be the

gradient of F . Let ∇jF (x ) ∈ RD
j
be the partial gradient of F with re-

spect to the sub-model parameters x j ∈ RD
j
, i.e., ∇jF (x ) :=

∂F (x )
∂x j .

Clearly, ∇F (x ) is the concatenation of all the partial gradients

∇1F (x ),∇2F (x ), . . . ,∇mF (x ).

4.1 The Synchronous Algorithm
In a synchronous setting, we can simply parallelizing a SGD al-

gorithm by updating each parameter block x j concurrently for

all j = 1, . . . ,m, given a coming sample i (t ), i.e., x
j
t+1 := x

j
t −

ηt∇
jFt (x

1

t , . . . ,x
m
t ), where ηt is a predefined learning rate scheme.

Specifically for model (2), according to (4), we can obtain the partial

gradient ∇jFt (x ) for j = 1, . . . ,m as

∇jFt (x ) = λ
∂z j (x j )

∂x j
+

L′
(
σ

( m∑
k=1

αk (xk , ξki (t ) )

))
σ ′

( m∑
k=1

αk (xk , ξki (t ) )
) ∂α j (x j , ξ ji (t ) )

∂x j
(6)

:= H

( m∑
k=1

αk (xk , ξki (t ) )

) ∂α j (x j , ξ ji (t ) )
∂x j

+ λ
∂z j (x j )

∂x j
, (7)

where we simplify the notation of the first few terms related to∑m
k=1 α

k (xk , ξki (t ) ) by a function H (·). In practice, z j could be non-

smooth. This setting is usually handled by proximal methods. In

this work, we are only focused on the smooth case.

This indicates that for the class of models in (2) adopted by FDML,

each party j does not even need other parties’ models xk , where
k , j , to compute its partial gradient∇jFt . Instead, to compute∇jFt
in (7), each party j only needs one term,

∑m
k=1 α

k (xk , ξki (t ) ), which

is the aggregation of the local prediction results from all parties

at iteration t , while the remaining terms in (7) is only concerned

with party j’s local model x j and local features ξ
j
i (t ) . Therefore,

this specific property enables a parallel algorithm with minimum

sharing among parties, where neither local features nor local model

parameters need be passed among parties.

4.2 The Asynchronous Algorithm
The asynchronous implementation of this idea in a distributed set-

ting of multiple parties, with theoretical convergence guarantees,

is significantly more challenging than it seems. As our proposed

algorithm is closely related to asynchronous SGD, yet extends it

from the data-parallel setting [13] to a block-wise model parallel

setting, we would call our algorithm Asynchronous SGD for FDML.

Note that in an asynchronous setting, each party j will update its

own parameters x
j
t asynchronously and two parties may be in dif-

ferent iterations. However, we assume different parties go through

the samples ξi (t ) in the same order, although asynchronously, i.e.,

all the parties share the randomly generated sample index sequence

{i (t ) |t = 1, . . . ,T }, which can easily be realized by sharing the seed

of a pseudo random number generator.

When each party j has its own iteration t , the local model pa-

rameters x
j
t on party j is updated by

x jt+1 = x
j
t − ηt

(
H

( m∑
k=1

αk (xk
t−τ jt (k )

, ξ ki (t ) )
) ∂α j (x jt , ξ ji (t ) )

∂x j
+ λ

∂z j (x jt )
∂x j

)
,

(8)

where the requested aggregation of local predictions for sample ξi (t )
may be computed from possibly stale versions of model parameters,

xk
t−τ jt (k )

on other parties k , j, where τ
j
t (k ) represents how many

iterations of a “lag” there are from party k to party j at the tth
iteration of party j. We abuse the word “lag” here since party k
could be faster than party j . We overflow the notation for that case

by assigning negative value to τ
j
t (k ). We give a convergence speed

guarantee of the proposed algorithm under certain assumptions,

when the lag τ
j
t (k ) is bounded.

5 DISTRIBUTED IMPLEMENTATION
5.1 Implementation
We present a distributed implementation of the proposed asynchro-

nous SGD algorithm for FDML. Our implementation is inspired by

the Parameter Server architecture [5, 17, 18]. In a typical Parameter

Server system, the workers compute gradients while the server

updates the model parameters with the gradients computed by

workers. Yet, in our implementation, as described in Algorithm 1,

the only job of the server is to maintain and update a matrix Ai, j ,
i = 1, . . . ,n, j = 1, . . . ,m, which is introduced to hold the latest

m local predictions for each sample i . We call [Ai, j ]n×m the local
prediction matrix. On the other hand, unlike servers, the workers in

our system each represent a participating party. They do not only

compute gradients, but also need to update their respective local

model parameters with SGD.

Furthermore, since each worker performs local updates individ-

ually, each worker can even further employ a parameter server

cluster or a shared-memory system, e.g., a CPU/GPU workstation,

to scale up and parallelize the computation workload related to

any local model it adopts, e.g., a DNN or FM. A similar hierarchical

cluster is considered in Gaia [14], though for data-parallel machine

learning among multiple data centers.

First, we describe how the input data should be prepared for the

FDML system. Before the training task, for consistency and effi-

ciency, a sample coordinator will first randomly shuffle the sample

indices and generate the sample presentation schedule i (t ), which
dictates the order in which samples should be presented to the

training algorithm. However, since features of a same sample are

located on multiple parties, we need to find all the local features

ξ 1i , ξ
2

i , . . . , ξ
m
i as well as the label yi associated with sample i . This

can be done by using some common identifiers that are present in

all local features of a sample, like user IDs, phone numbers, data



Algorithm 1 A Distributed Implementation of FDML

Require: each worker j holds the local feature set {ξ
j
i ,yi }

n
i=1,

j = 1, . . . ,m; a sample presentation schedule i (t ), t = 1, . . . ,T , is
pre-generated randomly and shared among workers.

Output: model parameters xT = (x1T , . . . ,x
m
T ).

Server:
Initialize the local prediction matrix [Ai, j ]n×m .

while True do
if Pull request (worker: j, iteration: t ) received then

if t is not τ iterations ahead of the slowest worker

then
Send

∑m
k=1Ai (t ),k to Worker j

else
Reject the Pull request

if Push request (worker: j, iteration: t , value: c) received
then

Ai (t ), j := c .
Worker j (j = 1, . . . ,m) asynchronously performs:

for t = 1, . . . ,T do
Push c := α j (x

j
t , ξ

j
i (t ) ) to Server

while Pull not successful do
Pull

∑m
k=1Ai (t ),k from Server

∇jFt :=

(
H (

∑m
k=1Ai (t ),k ) ·

∂α j (x jt ,ξ
j
i (t ) )

∂x j + λ
∂z j (x jt )
∂x j

)
Update the local weights as

x jt+1 := x
j
t − ηt∇

j Ft . (9)

of birth plus name, item IDs, etc. Finally, the labels yi will be sent
to all workers (parties) so that they can compute error gradients

locally. Therefore, before the algorithm starts, each worker j holds

a local dataset {ξ
j
i ,yi }

n
i=1, for all j = 1, . . . ,m.

Let us explain Algorithm 1 from a worker’s perspective.

To solve for x collaboratively, each worker j goes through the

iterations t = 1, . . . ,T individually and asynchronously in parallel,

according to the (same) predefined sample presentation schedule

i (t ) and updates its local model x j according to (9). In a particular

iteration t , when worker j updates x
j
t with the current local features

ξ
j
i (t ) , it first sends its updated local prediction about sample i (t )

to the server in order to update Ai (t ), j , i.e., Ai (t ), j := α j (x
j
t , ξ

j
i (t ) ).

And this update is done through the value c uploaded to the server

in a Push request from worker j with iteration index t and value

c . After this update, it pulls the latest
∑m
k=1Ai (t ),k from the server

based on the latest versions of local predictions,Ai (t ),k , maintained

on the server for all the workers k = 1, . . . ,m. Then x
j
t is updated

into x
j
t+1 locally by (9).

Since the workers perform local model updates asynchronously,

at a certain point, different workers might be in different iterations,

and a faster worker may be using the stale local predictions from

other workers. We adopt a stale synchronous protocol to strike a

balance between the evaluation time for each iteration and the total

number of iterations to converge—a fully synchronous algorithm

takes the least number of iterations to converge yet incurs large

waiting time per iteration due to straggler workers, while on the

other hand, an asynchronous algorithm reduced the per iteration

evaluation time, at the possible cost of more iterations to converge.

In order to reduce the overall training time, we require that the

iteration of the fastest party should not exceed the iteration of

the slowest party by τ , i.e., the server will reject a pull request if
the t from the Pull request(worker: j, iteration: t ) is τ iterations

ahead of the slowest worker in the system. A similar bounded

delay condition is enforced in most Parameter-Server-like systems

[1, 5, 14, 17, 19] to ensure convergence and avoid chaotic behavior

of a completely asynchronous system.

In real applications, the SGD algorithm can easily be replaced

with the mini-batched SGD, by replacing the sample presentation

schedule i (t ) with a set I (t ) representing the indices of a mini-batch

of samples to be used iteration t , and replacing the partial gradient

in (8) with the sum of partial gradients over the mini-batch I (t ).

5.2 Privacy
In FDML, one of the primary concerns is to preserve the privacy of

the local feature data. Due to the specific model structure and the

well designed algorithm, no model weights or features are uploaded

from any parties. The only shared information is the intermediate

local prediction results for each training or testing sample, which

is some comprehensive function over both the local features and

model weights. Therefore, there is little chance to leak the original

features to honest servers or other parties.

To further protect the feature data at each party from malicious

servers and parties, we apply differential privacy based methods by

perturbing the local predictions to be uploaded [9, 10, 27]. In partic-

ular, we add some noise to the local prediction result α j (x
j
t , ξ

j
i (t ) )

at party j to protect the privacy of all the input features at party j.

6 CONVERGENCE ANALYSIS
Inspired by a series of studies [13–15] on the convergence behavior

of convex objective functions, we analyze the convergence property

of the proposed asynchronous algorithm by evaluating a regret
function R, which is the difference between the aggregated training

loss and the loss of the optimal solution, defined as

R =
1

T

∑
t

Ft (xt ) − F (x∗), (10)

wherex∗ is the optimal solution for F (x ), such thatx∗ = argminx F (x ).
During training, the same set of data will be looped through for

several epochs. This is as if a very large dataset is gone through till

T th iteration. We will prove convergence by showing that R will

decrease to 0 with regard to T . Before presenting the main result,

we introduce several notations and assumptions. We use Dt to de-

note the distance measure from xt to x∗, i.e., Dt := 1

2
∥xt − x∗∥

2

2
.

We make the following common assumptions on the loss function,

which are used in many related studies as well.

Assumption 1. (1) The function Ft is differentiable and the
partial gradient ∇j f are Lipschitz continuous with Lj , namely,

∥∇jFt (x1) − ∇
jFt (x2)∥ ≤ Lj ∥x1 − x2∥, (11)

for ∀x1,x2 ∈ RD . We denote Lmax as the maximum among
the Lj for ∀j.

(2) Convexity of the loss function Ft (x ).



Table 1: The performance on Tencent MyApp data.

Algorithm Train loss Test loss Test AUC Time(s)

LR local 0.1183 0.1220 0.6573 546

LR centralized 0.1159 0.1187 0.7037 1063

LR FDML 0.1143 0.1191 0.6971 3530

NN local 0.1130 0.1193 0.6830 784

NN centralized 0.1083 0.1170 0.7284 8051

NN FDML 0.1101 0.1167 0.7203 4369

Table 2: The performance on a9a data.

Algorithm Train loss Test loss Test AUC Time(s)

LR local 0.3625 0.3509 0.8850 41

LR centralized 0.3359 0.3247 0.9025 45

LR FDML 0.3352 0.3246 0.9026 99

NN local 0.3652 0.3484 0.8864 53

NN centralized 0.4008 0.3235 0.9042 57

NN FDML 0.4170 0.3272 0.9035 110

(3) Bounded solution space. There exists a D > 0, s.t., Dt ≤
1

2
D2

for ∀t .

As a consequence of the assumptions, the gradients are bounded,

i.e., ∃G > 0, s.t., ∥∇F (x )∥2
2
≤ G2

ãĂĆ for ∀x ∈ RD With these

assumptions, we come to our main result on the convergence rate

of the proposed SGD algorithm.

Proposition 1. Under circumstances of the assumptions in As-
sumption 1, with a learning rate of ηt =

η
√
t
, and a bounded staleness

of τ , the regret R given by the updates (8) for the FDML problem is
R = O ( 1√

T
).

Proof. Please refer to Appendix for the proof.

7 EXPERIMENTS
We are testing the application of the proposed FDML system in

an app recommendation task at Tencent MyApp, which is a major

Android market with an extremely large body of users in China.

In this task, user features, including the past download activities in

MyApp, are recorded. In the meantime, the task can also benefit

from cross-domain features about the same users logged in two

other apps (run by different departments of the same company),

including QQ Browser that tracks user interests based on their

content viewing history, as well as TencentMobile Safeguard, which

records the app invoking and usage history of users.

The goal here is to leverage the additional user features available

from the other domains to improve the app recommendation in

MyApp, yet without having to download the raw user features

from other apps to avoid regulatory issues, as customer data in

different departments are protected under different security levels

and even under different customer agreements. Some sensitive

features under strong protection are prohibited to be moved to

other parties, including other departments.

The dataset we use contains 5, 000, 000 labeled samples indicating

whether a user will download an app or not. Each sample is a user-

app pair, which contains around 8, 700 (sparse) features in total,

among which around 7, 000 features come from Tencent MyApp

itself, while the remaining 1, 700 features are from the other two

apps. We randomly shuffle the data and split it into a 4.5 million

training set and a 0.5 million testing set.

We also evaluate FDML on another public data set a9a [8], a

classical census dataset, where the prediction task is to determine

whether a person makes over $50K a year. There are 48, 842 samples,

each with 124 features. 32, 661 samples are training data and 16, 281

samples are testing data. We split the 124 features into two sets of

67 and 57. We run both a logistic regression (LR) and a two layered

fully connected neural network (NN) under three different training

schemes for both data sets:

• Local: only use the 7, 000 local features from MyApp or the

67 features of a9a to train a model.

• Centralized: collect all the 8, 700 features from all three apps

to a central server or using all the 124 features in a9a and

train the model using the standard mini-batched SGD.

• FDML: use FDML system to train a joint model for app rec-

ommendation based on all 8, 700 features distributed in three

apps or train the a9a classification model on all 124 features

from two different parties, without centrally collecting data.

For FDML, there is a single server with several workers, each of

which equipped with an Intel Xeon CPU E5-2670 v3 @ 2.30GHz.

Eachworker handles the features from one party. The systemwill be

asynchronous as the lengths of features handled by each worker are

different. The FDMLNN only considers a fully connected NNwithin

each party while merging the three local predictions in a composite

model, whereas the Centralized NN uses a fully connected neural

network over all the 8, 700124 features, thus leading to a more

complex model (with interactions between the local features of

different departments) than FDML NN.

For all training schemes, a mini-batched SGD is used with a

batch size of 100. For each epoch, we keep track of the optimization

objective value for training data, the log loss, the AUC for test-

ing data and the elapsed time. Fig. 2 and Fig. 3 present the major

statistics of the models during the training procedure for LR and

NN for Tencent MyApp dataset, respectively. Table 1 presents the

detailed statistics at the epoch when all the algorithms yield a stable

and good performance on the testing data. Table 2 presents the

performance for a9a dataset. The results show that FDML outper-

forms the corresponding Local scheme with only local features, and

even approaches the performance of the Centralized scheme, while

keeping the feature sets local to their respective workers.

For LR, as shown by Fig. 2, Table 1 and Table 2, we can see

that Centralized LR and FDML LR both achieve a smaller training

objective value as well as significantly better performance on the

testing set than Local LR. As we have expected, additional features

recorded by other related services could indeed help improve the

app recommendation performance. Furthermore, Centralizd LR and

FDML LR have very close performance, since these two methods

use the essentially the same model for LR, though with different

training algorithms.

For NN shown in Fig. 3, Table 1 and Table 2, by leveraging addi-

tional features, both FDML NN and Centralized NN substantially

outperform Local NN. Meanwhile, Centralized NN is slightly better

than FDML NN, since Centralized NN has essentially adopted a

more complexmodel, enabling feature interaction between different

parties directly through fully connected neural networks.
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Figure 2: A comparison between the three model training schemes for the LR model. All curves are plotted for epochs 1–40,
including the time curve in (d).
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Figure 3: A comparison between the three model training schemes for the NN model. All curves are plotted for epochs 1–40,
including the time curve in (d).
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Figure 4: Testing AUC under different levels of added noise
during training for a9a data set

Fig. 2(d) and Fig. 3(d) compare the training time and speed among

the three learning schemes for Tencent MyApp dataset. Without

surprise, for both the LR and NN model, the Local scheme is the

fastest since it uses the smallest amount of features and has no

communication or synchronization overhead. For LR in Fig. 2(d),

FDML LR is slower than Centralized LR since the computation load

is relatively smaller in this LR model and thus the communication

overhead dominates. On the contrary, for NN, as shown in Fig. 3(d),

the Centralized NN is slower than FDML NN. This is because Cen-

tralized NN has much more inner connections and hence much

more model parameters to train. Another reason is that FDML dis-

tributes the heavy computation load in this NN scenario to three

different workers, which in fact speeds up training. Interestingly,

for the smaller dataset a9a, in Table 2, the NN FDML is slower than

the centralized one since in this case, the model is small and the

communication overhead dominate the processing time in FDML.

Fig. 4 shows the performance when different levels of noise is

added according to the differential privacy mechanism during the

training procedure for a9a dataset. Conforming to the intuition,

we can see that a higher level of noise will bring worse results.

However, for a noise level no more than 3, we can still expect a

performance improvement over learning only based on local data,

while achieving stronger privacy guarantee due to the perturbations

introduced to the shared local prediction results.

8 CONCLUSIONS
We study a feature distributed machine learning (FDML) prob-

lem motivated by real-world recommender applications at Tencent

MyApp, where the features about the same training sample can

be found at three different apps. However, the features of one app

should be kept confidential to other parties due to regulatory con-

straints. This motivation is in contrast to most existing literature

on collaborative and distributed machine learning which assumes

the data samples (but not the features) are distributed and works

in a data-parallel fashion. We propose an asynchronous SGD algo-

rithm to solve the new FDML scenario, with a convergence rate

of O (1/
√
T ), T being the total number of iterations, matching the

existing convergence rate known for data-parallel SGD in a stale

synchronous parallel setting [13].

We have developed a distributed implementation of the FDML

system in a parameter server architecture and performed extensive

evaluation based on both a public data set and a large dataset of



5, 000, 000 records and 8, 700 decentralized features from Tencent
MyApp, Tencent QQ Browser and Tencent Mobile Safeguard for a

realistic app recommendation task. Results have shown that FDML

can closely approximate centralized training (the latter collecting

all data centrally and using a more complex model allowing more

interactions among cross-domain features) in terms of the testing

AUC, while significantly outperforming the models trained only

based on the local features of MyApp. Currently, we are deploying
the FDML system at Tencent MyApp and improving the robustness

of the system by adding momentum based techniques. We are also

developing schemes that can support more sophisicated models,

taking more interactions between cross-party features into account.
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9 APPENDIX
Proof of Proposition 1. By the proposed algorithm and from (8),

we havex
j
t+1 = x

j
t − ηt∇

jF (x̃t (j )), where x̃t (j ) is the concatenated

model parameters with staleness in which x̃ it (j ) = x it−τ j (i ) . Note

that we always have τ j (i ) ≤ τ ,∀i, j . To help proving the proposition,
we first prove a lemma.

Lemma 1.

< xt − x∗,∇Ft (xt ) >=
1

2

ηt

m∑
j=1
∥∇jF (x̃t (j ))∥

2 −
Dt+1 − Dt

ηt

+

m∑
j=1
< x

j
t − x

j
∗,∇

jFt (xt ) − ∇
jFt (x̃t (j )) > . (12)

Proof. Dt+1 − Dt

=
1

2

m∑
j=1

(
∥x

j
t − ηt∇

jF (x̃t (j )) − x
j
∗∥

2 − ∥x
j
t − x

j
∗∥

2

)
=

m∑
j=1

(
1

2

∥ηt∇
jF (x̃t (j ))∥

2 − ηt < x
j
t − x

j
∗,∇

jF (x̃t (j )) >
)

=
1

2

η2t

m∑
j=1
∥∇jF (x̃t (j ))∥

2 − ηt < xt − x∗,∇F (xt ) >

+ ηt

m∑
j=1

〈
x
j
t − x

j
∗,∇

jF (xt ) − ∇
jF (x̃t (j )) > . (13)

http://archive.ics.uci.edu/ml


Dividing the above equation by ηt , we can get the lemma. □

Another important fact for our analysis is

b∑
t=a

1

√
t
≤

∫ b

a−1

1

√
t
dt = 2(

√
b −
√
a − 1). (14)

We now come to evaluate the regret R up to iteration T . By the

definition in (10) and, we have

R =
1

T

∑
t

Ft (xt ) − F (x∗) =
1

T

T∑
t=1

Ft (xt ) −
1

T

T∑
t=1

Ft (x∗) (15)

=
1

T

T∑
t=1

(
Ft (xt ) − Ft (x∗)

)
≤

1

T

T∑
t=1
< xt − x∗,∇Ft (xt ) > (16)

where (16) follows from the convexity of the loss functions. Insert-

ing the result from lemma 1, we can get

T · R ≤
T∑
t=1

(
1

2

ηt

m∑
j=1
∥∇jF (x̃t (j ))∥

2 −
Dt+1 − Dt

ηt

+

m∑
j=1
< x

j
t − x

j
∗,∇

jFt (xt ) − ∇
jFt (x̃t (j )) >

)
=

T∑
t=1

1

2

ηt

m∑
j=1
∥∇jF (x̃t (j ))∥

2 −

T∑
t=1

Dt+1 − Dt
ηt

+

T∑
t=1

m∑
j=1
< x

j
t − x

j
∗,∇

jFt (xt ) − ∇
jFt (x̃t (j )) > . (17)

We look into the three terms of (17) and bound them.

For the first term, we have

T∑
t=1

1

2

ηt

m∑
j=1
∥∇jF (x̃t (j ))∥

2 ≤

T∑
t=1

1

2

ηtmG2 =

T∑
t=1

1

2

η
√
t
mG2 ≤ ηmG2

√
T .

(18)

For the second term, we have

−

T∑
t=1

Dt+1 − Dt
ηt

=
D1

η1
−
Dt+1
ηt
+

T∑
t=2

Dt

(
1

ηt
−

1

ηt−1

)
(19)

≤
D2

η
− 0 +

T∑
t=2

D2

η

(√
t −
√
t − 1

)
=

D2

√
T

η
. (20)

Finally we come to the third term. We have

T∑
t=1

m∑
j=1
< x

j
t − x

j
∗,∇

jFt (xt ) − ∇
jFt (x̃t (j )) >

≤

T∑
t=1

m∑
j=1
∥x

j
t − x

j
∗∥ · ∥∇

jFt (xt ) − ∇
jFt (x̃t (j ))∥ (21)

≤

T∑
t=1

m∑
j=1
∥x

j
t − x

j
∗∥ · Lj ∥xt − x̃t (j )∥ (22)

≤

T∑
t=1

m∑
j=1

Lj ∥x
j
t − x

j
∗∥ ·

m∑
i=1
∥x it − x

i
t−τ j (i ) ∥. (23)

If τ j (i ) ≥ 0, we have

∥x it − x
i
t−τ j (i ) ∥ =





t−1∑

q=t−τ j (i )

(x iq+1 − x
i
q )



 ≤

t−1∑
q=t−τ j (i )

∥ηq∇
iFq (x̃q (i ))∥

≤

t−1∑
q=t−τ j (i )

ηqG . (24)

If τ j (i ) < 0, by similar technique, we can also get (24). Inserting

(24) into (23), we have

T∑
t=1

m∑
j=1
< x

j
t − x

j
∗,∇

jFt (xt ) − ∇
jFt (x̃t (j )) >

≤Gm
T∑
t=1

m∑
j=1

Lj ∥x
j
t − x

j
∗∥ ·

t−1∑
q=t−τ

ηq (25)

≤GmLmax

T∑
t=1

t−1∑
q=t−τ

ηq

m∑
j=1
∥x

j
t − x

j
∗∥ (26)

≤Gm
3

2 Lmax

T∑
t=1

t−1∑
q=t−τ

ηq ∥xt − x∗∥ (27)

≤GDm
3

2 Lmax

T∑
t=1

t−1∑
q=t−τ

ηq . (28)

(21) is from triangle inequality. (22) comes from the Assumption 1’s

blockwise Lipschitz continuity. (27) comes from the fact

1

m

m∑
j=1
∥x

j
t − x

j
∗∥ ≤

1

√
m

√√√ m∑
j=1
∥x

j
t − x

j
∗∥

2 =
1

√
m
∥xt − x∗∥. (29)

For the last parts of (28), we have

T∑
t=1

t−1∑
q=t−τ

ηq ≤
τ∑
t=1

η1t +
T∑

t=τ+1

t−1∑
q=t−τ

ηq ≤
ητ (τ + 1)

2

+

T∑
t=τ+1

τη
√
t − τ

(30)

≤
ητ (τ + 1)

2

+ 2τη
√
T − τ (31)

=
ητ

2

(τ + 1 + 4
√
T ), (32)

where (31) is from the fact (14). Combining (28) and (32), we get

T∑
t=1

m∑
j=1
< x

j
t − x

j
∗,∇

jFt (xt ) − ∇
jFt (x̃t (j )) >

≤
1

2

GDm
3

2 Lmaxητ (τ + 1 + 4
√
T ) (33)

Combining (17), (18), (20) and (33), and dividing by T , we have

R ≤
ηmG2

√
T
+

D2

η
√
T
+
1

2

GDm
3

2 Lmaxητ
1

√
T
(
τ + 1
√
T
+ 4) = O (

1

√
T
).
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