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ABSTRACT
Related search query recommendation is a standard feature in many
modern search engines. Interesting and relevant queries often in-
crease the active time of users and improve the overall search
experience. However, conventional approaches based on tag ex-
traction, keywords matching or click graph link analysis suffer
from the common problem of limited coverage and generalizability,
which means the system could only make suggestions for a small
portion of well-formed search queries. In this work, we propose a
deep generative approach to construct a related search query for
recommendation in a word-by-word fashion, given either an input
query or the title of a document. We propose a novel two-stage
learning framework that partitions the task into two simpler sub-
problems, namely, relevant context words discovery and context-
dependent query generation. We carefully design a Relevant Words
Generator (RWG) based on recurrent neural networks and a Dual-
Vocabulary Sequence-to-Sequence (DV-Seq2Seq) model to address
these problems. We also propose automated strategies that have
retrieved three large datasets with 500K to 1million instances, from
a search click graph constructed based on 8 days of search histo-
ries in Tencent QQ Browser, for model training. By leveraging the
dynamically discovered context words, our proposed framework
outperforms other Seq2Seq generative baselines on a wide range
of BLEU, ROUGE and Exact Match (EM) metrics.
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1 INTRODUCTION
It is an essential ability for a modern search engine to extrapo-
late beyond the input query and recommend related queries that
appeal to the user’s interests, therefore improving his/her search
experience. Google displays a list of recommended search queries
in the “Searches related to” at the bottom of the results page, as
illustrated in Figure. 1. Yahoo! offers a similar list of other query
recommendations in “Also Try” before all the results. Search rec-

Figure 1: An example of query recommendation in Google.

ommendation is different from query rewrite [1, 11, 25], the goal
of which is to reformulate a search query into a new query that is
easier for the search engine to process while still maintaining the
overall meaning. In contrast, for example, if we input “what is a diet
for weight loss" in Google, we get search recommendations such
as “how to lose weight at home”, and “7 day diet plan for weight
loss.” These suggested queries do not necessarily have the same
meaning as the original query but are intended to attract the user’s
attention and boost click-through rates. For the same reason, many
news feed apps including Tencent QQ Browser, may also provide
several recommended search queries at the end of an article, aiming
to prolong a user’s activity and increase click-through rates.

It is a natural idea to identify related searches by analyzing the
search logs, which form the click graph, a colossal, bipartite graph
that records the documents that have been clicked on in response to
past queries. For instance, Tencent QQ Browser1 typically records
approximately 100 million click histories per day, where each log
instance consists of a user query and a document title which the
user clicked. Although rich information about connections among
queries and connections between queries and documents can be dug
out from the click graph through extensive link analysis techniques
[1, 13], heavily relying on data mining performed on the click graph
(possibly with the help of semantic analysis) may yield limited
search recommendation performance, mainly due to two reasons:

1 Tencent QQ Browser has the largest market share in the Chinese mobile browser
market with more than 100 million daily active users.
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First, the click graph is inherently sparse. Only for very hot topics,
e.g., “weight loss”, “trade war”, etc., a document is connected with
multiple queries and a query may lead to the clicks of different
documents. However, the vast majority of documents are retrieved
by only a couple of queries, while most queries lead to the clicks of
a single dominant document. This is also the reason that in most
search engines, not all queries or articles would have a related
query suggestion. Second, such a graph mining approach critically
depends on the existence of highly similar queries in the click graph,
while that is not always the case due to the flexibility of natural
language. Similarly, the click graph cannot encapsulate all possible
document titles as new documents are being generated on the web
every day.

We argue that a deep generative model can serve as a generaliz-
able alternative that overcomes the limitations of the graph analysis
mentioned above. However, text generation based on the widely
popular Seq2Seq models [31] suffers from a well-known weakness—
the training complexity in the open domain, i.e., the vocabulary
that is of interest to a search engine or a content feeds app is too
large such that the model must be trained on overwhelmingly large
datasets to yield any reasonable performance.

To tackle these challenges, we propose a two-stage generative
framework to be used for related search query recommendation in
the Tencent QQ Browser. In essence, we break down related query
generation into two stages, context discovery and context-aware
query generation, which are summarized as follows:

First, given either a user query or a document title, we propose a
Relevant Words Generation model (RWG) to extrapolate the query
or document into a set of relevant keywords. For instance, relevant
words for query fuel efficient SUVs include gas-mileage, cars, money-
saving, price, etc. The proposed RWG discovers additional latent
semantical relations among words and learns context-dependent
word co-occurrence patterns from similar queries.

Second, to generate the target query for recommendation, we
propose the Dual-Vocabulary Sequence-to-Sequence (DV-Seq2Seq)
model. It maintains two output vocabularies: a static vocabulary
consisting of top X most frequent words, and a dynamic vocabulary
composed of the input query words and relevant words discovered
by the RWGmodel. During generation, DV-Seq2Seq selects the next
predicted word from one of the two vocabularies with an attention
mechanism based on a Multi-Head Attentional Relevant Words
Selector (RWS) module, which is inspired by the Transformer [32].

Finally, we propose and describe an automatic procedure to gen-
erate the training data required by our two-stage framework, by
analyzing word relations and the rich click behavior present in a
large click graph constructed from 8 days of click logs. We eval-
uate our framework with around 1 million records for the RWG
model, 1million records for the query-to-query generation task and
500K records for the title-to-query generation task. We compare
our proposed framework against several Seq2Seq generative base-
lines including the CopyNet. Evaluation results suggest that our
approach outperforms all baselines on metrics including BLEU-n
[23], ROUGE-n [17] and Exact Match (EM) ratio. We show in Sec. 5
and Sec. 6 that our proposed approach also strikes a good balance
between performance, time-complexity, and interpretability.

2 RELATEDWORKS
Our work draws inspiration from several recent research achieve-
ments in the field of Natural Language Processing (NLP), deep
learning and Information Retrieval (IR).

2.1 Generative Models
Generative models construct phrases and sentences from an output
vocabulary in aword-by-word fashion. Themost popular generative
models follow a sequence-to-sequence (Seq2Seq) architecture and
composes of an Encoder Recurrent Neural Network (RNN) and a
Decoder RNN [31]. Seq2Seqmodels are proven to be performant in a
number of NLP tasks like Automatic Summarization [19], Dialogue
Systems [28] and Reading Comprehension [18, 37].

The most influential augmentation to the Seq2Seq model is the
attention mechanism [2, 21], where the next decoder output is com-
bined with a weighted sum of encoder hidden representations. The
copy mechanism (CopyNet) [9] is another useful augmentation. It
permits the decoder to directly copy words from the input, which
allows the model to generate words that are not from the static
output vocabulary. CopyNet is a major inspiration to our work, in
fact, we discuss in Sec. 3 that it is a special case of employing a
dynamic output vocabulary, where the contextually relevant words
are only taken from the input. More recently, [32] proposes a new
generative model called the Transformer, which relies only on a
Multi-Head Attention mechanism to directly learn complex seman-
tic relations among words. Even without an RNN, the Transformer
achieves state-of-the-art performance on multiple NLP tasks [5].

The idea of incorporating a dynamic output vocabulary into
generative models has been touched upon by prior researches,
with [34] being the most recent work on this subject. The main
difference is between [34] and our model is that [34] constructs
an end-to-end trainable Seq2Seq chatbot that jointly learns output
generation and dynamic vocabulary selection. Although an end-to-
end model may appear simpler, we argue that it is less practical for
real-world applications. First, an end-to-end model with a dynamic
vocabulary is trickier to train, since the loss function needs to be
carefully designed. Second, it is more difficult to control the quality
of the dynamic vocabulary. In [34], the loss on dynamic vocabulary
construction is approximated with Monte Carlo sampling, which
means the performance of the model is sensitive to the sample size.
Third, dynamic vocabulary within an end-to-end model is less likely
to be transferable to other tasks. Therefore, we explicitly assign the
tasks of dynamic vocabulary generation and query generation to
two models and train each individually.

Other works on machine translation [12, 16, 22] leverage bilin-
gual word co-occurrence and word alignment features to find the
semantically related words. However, such features are often task-
specific. To the best of our knowledge, we are the first to apply a
generative Seq2Seq model with a dynamic output vocabulary to
search query recommendation.

2.2 Query Expansion and Generation
Query Expansion (QE) is classic research topic in IR. The goal of
QE is to expand around the context of a search query and discover
additional keywords or concepts, which is closely related to the
problem of related query recommendation. [35] is an early work
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that jointly combines word context features from the query and the
retrieved documents. [4] is the first work to propose a probabilistic
query expansion approach. [6] relies on association rules to build
a query relation graph, then extract relevant concepts to expand
on the input query. [14] retrieves the expansion candidates by
considering word co-occurrences during a click session. [7, 8, 25, 26]
train SMTmodels to learnword and phrase correspondence features
from large amounts of click-through data.

More recently, direct generation of queries using Seq2Seq models
is attracting increased attention. [20] incorporates an additional
pointer decoder to directly copy words from the input text. [33]
proposes a multi-tasking Seq2Seq model for title compression and
query generation on E-commerce product titles. [36] and [11] per-
form direct query-to-query generations, while [10] combines a
hierarchical Encoder and a Graph Convolutional Network (GCN)
to generate queries from long documents.

3 MODEL
In this section, we review the details of our proposed related search
query recommendation framework, as depicted in Fig. 2.

3.1 Relevant Words Generator
As identified by other works [20, 25], a major issue limiting query
understanding is the problem of incomplete context, also known
as the Lexical Chase problem [25]. For search queries, this problem
is commonly caused by missing keywords, or unknown Named-
Entities. For example, in the query “xs max price”, the user is refer-
ring to “Apple iPhone”. However, when building a generative search
recommendation model, if the word “xs” is not in the output vocab-
ulary and we do not explicitly specify that “xs” is related to “Apple
iPhone”, the model will then generate solely from “<OOV> max
price”, which often results in poor performance. To provide a more
refined context, we design a novel RelevantWords Generator (RWG)
to infer additional keywords given a query. It maintains a large
output vocabulary to learn a more complete, context-dependent
word co-occurrence pattern. This alleviates the prediction difficulty
of the second stage Seq2Seq model, allowing it to carry a much
smaller output vocabulary, which in turn improves performance
and training efficiency.

Formally, we define the problem of relevant words generation
as given an input query Q of n words, Q = {w

Q
1 ,w

Q
2 , ...,w

Q
n }, and

a large vocabulary of VRWG words. We learn a model θRWG to
maximize the probability of a relevant words set RQ of t words,
RQ = {wR

1 ,w
R
2 , ...w

R
t }. This objective consolidates into

θRWG = argmaxθ
t∏
i=1

P(wi |Q ; θ ), (1)

for everywi ∈ RQ . Note that RQ could contain words from Q .
We employ a Bi-directional Gated Recurrent Unit (GRU) [3] as a

context encoder. For a query Q , we first embed each of its words,
then feed the embedding vectors into the Bi-GRU one by one in
forward and reverse directions. The output hidden states from both
directions are concatenated together to form the context vector
of Q . Next, we feed this vector through a fully-connected [27] +
Softmax layer to project into a VRWG -dimensional space.

For input queryQ , we train themodel tomaximize the probability
of in RQ in a single iteration, by minimizing the Binary Cross-
Entropy between the output distribution and the binary target
distribution. During inference, we take the top-k predicted words
as relevant words for the next stage, where k is a hyper-parameter.

3.2 Dual-Vocab Seq2Seq
Formally, we define the problem of context-aware query gener-
ation as given an input sequence I = {w I

1,w
I
2, ...w

I
n }, either a

search query or a document title, and given a set of relevant words
RI = {wR

1 ,w
R
2 , ...w

R
t }, our model θSeq2Seq predicts an output

search query O = {wO
1 ,w

O
2 , ...w

O
h } in a word-by-word fashion,

by maximizing the following conditional probability distribution:

argmaxθ
h∏
i=1

P(wO
i |wO

i−1,w
O
i−2, ...w

O
1 ,Q,RQ ; θ ). (2)

The only difference between (2) and the traditional Seq2Seq learning
objective [31] is the incorporation of RQ .

Similar to the RWG, our Seq2Seq model also adopts a Bi-GRU
encoder for the input sequence I . We denote the output context
vector from the encoder asC I , with a dimension of n × 2d , where d
is the hidden size of the Bi-GRU. In the decoder, when predicting
the ith output wordwo

i , we combine features from three sources:
1) the encoder context vectorC I , 2) the embedding vector ewo

i−1
of

the previously decoded word, and 3) the relevant words set RQ .
Since RQ has been generated from a much larger vocabulary in

the RWG model, it likely contains words that are out-of-vocabulary
(OOV) for the Seq2Seq model. Therefore, we cannot define a fixed-
size fully-connected + Softmax projection output layer. Instead,
we need an architecture that outputs a probability distribution
over vocabularies of varying sizes and contents. Conveniently, the
attention mechanism [2, 21, 32] achieves this. A generalized version
of the attention mechanism can be written as

ci = σ ( f ( hDeci ·CTI ) ), (3)

hCi =
n∑
j=1

s
j
iC

j
I , (4)

hDeci = д( hCi , h
Dec
i ), (5)

where hDeci denotes the current hidden state of the decoder. σ
denotes a Softmax layer. “·” represents matrix multiplication. ci is
a 1 x n dimensional vector of attention scores which captures the
importance of each word in the input sequence for the ith output
word. Furthermore, j in (4) indexes the jth element in ci and the jth
row ofC I . And f and д are customized operations. In general, the
attention mechanism first computes attention scores overC I and
use them to calculate a weighted sum ofC I , i.e. a weighted context
hCi which is then combined with the previous hidden state.

ci already resembles a probability distribution over the words in
I , because its values are between 0 and 1. The CopyNet [9] takes
advantage of this by treating each attention score as a probabil-
ity of copying over the corresponding word. We propose that the
CopyNet already provides all the necessary construct for handling
a dynamic vocabulary. In fact, it is a special case where all the
relevant words inside the dynamic vocabulary are from the input
sequence. After experimenting with several network architectures,
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Figure 2: Our proposed two-stage generative framework. For simplicity, only one decoding step is shown.

we find that simply concatenating the relevant words after the in-
put sequence and then utilizing the copy mechanism on this new
sequence achieves the best performance. Therefore, this concate-
nated new sequence constitutes the dynamic vocabulary. For the
ease of reference, we re-name our copy mechanism the relevant
words selector (RWS). Different from the original CopyNet [9], we
adopt a variant of the Multi-Head Attention proposed by [32] to
formulate a novel Multi-Head attentional RWS module. We discuss
its details in the following subsection.

The backbone of our decoder is a uni-directional GRU, which
is initialized with the last hidden state of the encoder. A single
decoding step involves the following operations,

hGRUi = GRU ( [ewo
i−1

;hCi−1] ), (6)

hCi ,P
DV
i = RWS( hGRUi ), (7)

PSVi = σ f (Maxm ( [ewo
i−1

;hCi ;h
GRU
i ] ) ), (8)

where [] represents the concatenation of vectors. PDVi denotes the
probability distribution over the dynamic vocabulary and PSVi is the
probability distribution over the static vocabulary. ewo

i−1
and hCi−1

are the previous word embedding and weighted context vectors.
Maxm stands for a Maxpooling layer with a window ofm. σ f is
the standard fully-connected + Softmax projection setup. We use
a special Start-of-Sequence token as the first input word to the
decoder and initialize hC0 to all zeros.

Another important decision our model must make is which vo-
cabulary to select for output. After the execution of (6) and (7), we
perform the following operation alongside (8),

pcDVi = sig f ( [hCi ;h
GRU
i ] ), (9)

where sig f is a fully-connected layer followed by a Sigmoid ac-
tivation. The output is a scalar probability value for choosing the
next output word from the dynamic vocabulary. We train on the
CopyNet objective functions, where the loss from RWS corresponds

to the copy loss, while the loss from word prediction on the static
vocabulary corresponds to the generative loss. We omit details on
these objectives and refer interested readers to [9].

3.2.1 Multi-Head Attentional RWS. The computational workload
of the attention mechanism increases as more words are added
to the input. Specifically, the matrix multiplications in (3) and (4)
become slow and memory-hungry. Therefore, we adopt the Multi-
Head Attention from [32]. It addresses this issue by first dividing
each input vector into h heads. Then, it executes h head-to-head
attentions in parallel, where eachmatrixmultiplication is performed
on a dimension that is h times smaller.

Since our decoder already includes a strong GRU learner, we
further simplify the Multi-Head Attention to construct a Multi-
Head Attentional RWS module, as illustrated by Fig. 3. Instead of
three inputs [32], our module takes inhDeci andC I . We also remove
the last Feedforward layer after the concatenation of heads. From
repeated experiments, we found that our module achieves similar
performance compared to the original Multi-Head Attention. To
generate a probability distribution over the dynamic vocabulary,
we compute a weighted sum of the pre-Softmax attention heads
through a fully-connected layer, followed by a Softmax projection.

4 DERIVING DATA FROM CLICK GRAPHS
We now introduce how to automatically retrieve training data from
a click graph for both stages of our framework. Given an undirected,
bipartite click graph G consisting of query vertices VQ , document
title verticesVD , and weighted edges E, where the weight of an edge
e(q,d) represents how many clicks of document d are attributed to
query q, we define the K-hop sibling queries set SK ⊂ VQ as a
set of query vertices such that

(1) SK contains at least two unique queries;
(2) There exists a shortest path onG between any two queries

in SK .
4



Figure 3: An illustration of the Multi-Head Attentional Rel-
evant Words Selector (RWS) module with 4 heads.

(3) The maximum number of title vertices inVD passed through
by any shortest path in SK is K .

Additionally, we define the set of document titles passed through
by queries in SK as D(SK ). With this setup, two queries in SK are
likely to be semantically related, where the value of K determines
the degree of relatedness. Fig . 4 is an example of two semantically
related queries. As we can observe, with K = 1, the sibling queries
are more likely to be semantically identical. When K increases, we
discover additional related queries. After determining an appropri-
ate value for K through statistical analysis, we discover all the SK
clusters withinG . To reduce noise and computational cost, we limit
the number of out-going edges by keeping only the top-p weighted
edges in G for each query vertex, where a weight is the number
of times that click occurs. We also constrain that each query can
only appear in one cluster to avoid conflicts during data generation.
If a query appears in more than one sibling set, we re-assign it to
the set where the weight of the connecting edge is the highest and
prune its other out-going edges.

Next, we separately retrieve training data for both stages of our
framework:

Relevant Words Discovery. For every query Q in a sibling
set SK , we define its corresponding relevant words set RQ as the
keywords from all queries in SK . Therefore, we have a single target
RQ for all queries in SK .

Target Query Selection. To constrain the training data size, for
every sibling set SK , we select a query from it as the representative
of the set, which will be the target query to generate for all other
queries in SK , and similarly, for all document titles in D(SK ) as
well. We also constrain that each unique document title can have
only one corresponding target query by randomly pruning repeated
entries.

Figure 4: An example showing two sibling queries discov-
ered with (a) one document hop and (b) two document hops,
as highlighted in red.

The representative query for a sibling set SK is select based on
the following criteria:

• The cumulative weight of outgoing edges of a query is a strong
indicator for its popularity, generalizability and correctness.
We compute the sum of weights of outgoing edges for every
query in SK and normalize the results between 0 and 1. We
denote this score cclick .

• The number of words in a query usually reflects its specificity.
We want to constrain the complexity of target queries. There-
fore, we normalize the number of words for every query in
SK between 0 and 1, and record a score clen as 1 minus its
normalized length.

• The percentage of overlapping keywords between keywords in
a query in SK and keywords in document titles from D(SK )
is a strong indicator of relatedness. Similarly, we normalize
this measure for every query among SK between 0 and 1,
denoted by cover lap .

We compute a final score for each query q ∈ SK by taking a
weighted sum of all features scores, namely,

cf inal (q) = α cclick (q) + β clen (q) + γ cover lap (q), (10)
where the weights are hyper-parameters and the query with the
highest score is selected as the representative.

5 EXPERIMENTATION
We present the detailed experimental procedures 2 and results
here. Table. 4 records the results for query-to-query generation
while Table. 5 showcases the results for document title-to-query
generation.

5.1 Dataset & Pre-processing
We collect 8 days of anonymous click logs recorded in the Tencent
QQ mobile browser, which spans November and December, 2018. It
contains over 800million query to document-title entries in Chinese.
We first execute the following sequential pre-processing steps:

(1) We remove vulgar entries using a tool developed by Tencent.
2Code is available at: https://github.com/xuefei1/RWG_DV-Seq2Seq
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Table 1: Statistical information on datasets generated from our click graph.

RWG Query-to-Query Title-to-Query
Train Dev Test Train Dev Test Train Dev Test

Size 894K 99K 99K 894K 99K 99K 530K 88K 88K
Avg # of words in inputs 5.08 5.04 5.05 5.08 5.04 5.05 11.40 11.37 11.34
Avg # of words in outputs 9.29 10.03 10.04 4.21 4.20 4.19 4.27 4.21 4.20
Avg # of overlapping words 2.19 2.17 2.18 1.98 1.99 1.98 2.42 2.46 2.45
Input vocabulary 209K 62K 62K 209K 62K 62K 210K 74K 74K
Output vocabulary 177K 84K 83K 143K 51K 51K 143K 51K 51K

Table 2: Examples of RWG and query-to-query generation training data.

Input query Truth relevant words for training RWG Truth query for training DV-Seq2Seq

箱货汽车大全 箱货,汽车,大全,微卡,商务车,轻卡,重卡,货车,报价,价格,系列,车型,牵引车 轻卡之家
cargo vehicles catalog cargo, vehicle, catalog, micro-truck, van, light-truck, semi-truck, boxer-truck,

quote,price, series, model, tow-truck
home of light-trucks

上海医院招聘 上海,医院,招聘,官网,医学,卫生,信息,护士,招聘会,报名,工作,面试,中心,单位,
医生,平台,公立医院,卫生局

上海卫生人才网

Shanghai hospital hiring Shanghai, hospital, hiring, official-site, medical, hygiene, information, nurse, career fair,
enroll, job, interview, center, employer, doctor, platform, public hospital, bureau of health

Shanghai medical human resource
web

双硬盘怎么装 双硬盘,怎么,装,电脑,教程,安装,主板,接线,固态硬盘,华硕,方法,硬盘,金士顿,
固态,台式电脑,台式机

固态和机械硬盘一起用

How to install two hard-drives dual hard-drive, how to, install, compute, tutorial, installation, motherboard, wiring, SSD,
Asus, method, hard-drive, Kingston, solid-state, desktop computer, desktop

using solid-state and mechanical
hard-drives together

(2) We remove entries that do not contain any Chinese words
in either the query or the title.

(3) We remove entries that contain more than 25words in either
the query or the document title.

(4) To reduce noises generated by misclicks, we remove entries
that appears less than 2 times.

About 6.5 million entries remain after the above steps. Next, we
build a click graph and apply the data retrieval steps in Sec. 4.

To select the most appropriate K and p values, i.e., the number
of document hops and top-p query out-going edges, when building
the sibling sets SK , we first analyze the edge properties of the click
graph. Fig. 5 showcase two insightful distributions, (a) reports the
percentage of queries with the corresponding number of unique
out-going edges. We conclude that most queries (82.84%) only has a
single corresponding document. However, a sizable portion (11.71%)
of queries click two distinct documents. Second, in the case of more
than one unique out-going edges, we investigate the differences
among their weights, i.e. the number of times that click occurred.
(b) suggests that on average, the second-largest weights (rank 2)
are 0.76 times the largest weights (rank 1), which means that these
edges are likely leading to another highly relevant document. Com-
bining these statistics, we select K = 2 and p = 2. For simplicity,
we define keywords as any verb or noun that are not stop-words.

For weights α , β,γ in (10), their purpose is to balance the three
scores and prevent any one of them from dominating the results.
Therefore, we manually sampled 1000 sibling sets and examined the
representatives. After trying several combinations, we found that a
setup of α = 0.4, β = 0.3, γ = 0.3 well balances all three scores. We
then generate data for relevant words discovery, query-to-query
generation and title-to-query generation. Table. 1 reports statistical
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Figure 5: Percentage distribution of unique out-going edges
fromqueries (a) and average ratio of secondary edgeweights
vs. the highest weights (b) in the click graph.

information on the three generated datasets. Table. 2 showcases
examples of training data. Observe that all the retrieved words and
queries are closely related to the input.

5.2 General Experimental Setup
We implement our two-stage framework using PyTorch 0.4[24].
We initialize all word embedding layers with the pre-trained, 200d
Tencent AILab Chinese embedding [29] and allow each layer to
be further fine-tuned. We select top-X most frequent words in the

6



training output when building a limited static vocabulary of size X
and replace all out-of-vocabulary words with <OOV> tokens.

We train all models using the Adam optimizer [15] with an initial
learn-rate of 0.01 and apply a simple learn-rate decay strategy: If the
train/dev loss of one epoch is higher than the previous epoch, decay
the learn rate by 0.9, lower-bounded by aminimum learn-rate of 1e−
4. For generative models, we choose the BLEU-4 score as the metric
for selecting the best hyper-parameters and terminate training if
the dev set performance does not improve for 5 consecutive epochs.
For all models, we decode using beam-search with a beam-width of
2 during parameter-tuning and a beam-width of 4 during testing.

5.3 Training and Evaluating the RWGModel
We train the RWG model first by minimizing the Binary Cross-
Entropy loss. The input and output word embedding dimensions
are set to 209K and 177K, as indicated in Table. 1.We employ top-100
recall rate, i.e. the percentage of truth relevant words that appear in
the top-100 predictions, as the metric for selecting the best hyper-
parameters. We found that a hidden size of 512 for the Bi-GRU
works best on the dev set. The RWG model converges in 35 epochs,
with a batch size of 256 on an Nvidia GTX-1070 GPU. Each epoch
takes about 30 minutes. We report the average top-|T |, top-2|T |,
top-50, top-100 and top-500 recall rates on the test set in Table. 3,
where |T | is the number of truth relevant words for an input query.

Table 3: Top recall rates of the RWGmodel on the test set.

Top-|T | Top-2|T | Top-50 Top-100 Top-500
0.6522 0.7704 0.7967 0.8555 0.9207

Consider the fact from Table. 1 that the average number of rel-
evant words per input query is around 10, we believe 20 is an
appropriate choice for the top-k words to append after the input.

5.4 Training the DV-Seq2Seq Model
We train two DV-Seq2Seq models for query-to-query and title-to-
query generation tasks. We use the same RWG model to generate
the top-20 relevant words. We found that an encoder GRU hidden
size of 256 works well on both tasks. For regularization, we utilize
a Dropout [30] probability of 0.1 in the decoder.

We test two model variants, one with a static vocabulary size
of 20K and another with a static vocabulary size of 40K. On the
query-to-query generation task, our models converge in about 60
epochs, and 10 more epochs are needed to on the document-title-
to-query task. RWG+DV-Seq2Seq-20K model variants are trained
with a batch size of 64 on an Nvidia GTX-1070 GPU, where each
epoch takes about 90 minutes, while the 40K variants are trained
with a batch size of 32 and each epoch costs 120 minutes.

5.5 Baseline Models
We compare our generative framework against the following base-
line models. We found an encoder hidden size of 256 for all baseline
models also results in the best performance on the dev set, without
running into memory problems. We also utilize a Dropout proba-
bility of 0.1 in the decoder of all baseline models.

Seq2Seq-X : Seq2Seq is the original sequence-to-sequence gen-
erative model [31]. We implement this baseline with a Bi-GRU
encoder and a Uni-GRU decoder. X denotes the output vocabulary
size. We experiment with several sizes to test its effect on the per-
formance. When X = full, we use the complete output vocabulary.

Seq2Seq-Attn-full : We augment the Seq2Seq model with the
general attention mechanism from [21].

CopyNet-X : We adopt the CopyNet implementation from [37].
We cannot include a f ull variant here because the copy mechanism
is only useful where there are OOV words in the target query.

5.6 Evaluation Metrics
We report and compare performance on the following metrics:

BLEU-1, 2, 3, 4: BLEU-n [23] is a widely adopted word-overlap
metric for evaluating generative models. n means that variant con-
siders at most n-gram overlaps. We reported the macro-averaged
BLEU-1, 2, 3, 4 scores on the test set. Higher BLEU-n scores indicate
more overlapping words between the generated output and truth.

ROUGE-1, 2,L: ROUGE-n[17] is another popular word-overlap
metric. We report the macro-averaged uni-gram, bi-gram, and the
longest common sub-sequence (L) variants of ROUGE.

Exact Match (EM): We are also interested in the average ratio
of generated queries that exactly match the truth queries.

% OOV: The generation of <OOV> tokens significantly limits
the real-world applicability of a generative model, since it usually
renders the entire output useless. We examine the percentage of
<OOV> among all the generated words. Smaller % OOV indicate
less <OOV> are generated, but not necessarily, better performance.

6 EVALUATION
We begin by analyzing the effect of output vocabulary sizes. From
Tables. 4 and 5, we notice that limiting the output vocabulary size
often improves the performance. This makes sense because it al-
leviates the prediction difficulty of the projection layer. However,
when the vocabulary size is too small, i.e. 20K, the BLEU, ROUGE,
and EM scores decrease. This is likely caused by a large number of
generated <OOV> tokens, as indicated by the increase in % OOV.

On both tasks, our best model variant with a 40K static vocab-
ulary outperforms all baseline models on all metrics excluding %
OOV. This proves the effectiveness of employing two vocabularies,
i.e. a static output vocabulary with a fully-connected + Softmax
projection layer and a context-aware dynamic vocabulary with
an attention + copy mechanism, in a generative Seq2Seq model.
A dual-vocabulary setup also results in considerably less <OOV>
tokens in the output, compared to a standard Seq2Seq model or a
CopyNet with the same sized static vocabulary.

Additionally, our approach achieves better performance on the
title-to-query generation task, even if the first stage RWG model
is trained on query/relevant words data. This suggests that the
RWG model is able to learn useful, generalizable, context word
co-occurrence patterns, and not just overfitting to the input.

As for the time-complexity, our two-stage framework is more
efficient to train and use, because the RWG does not have sequential
decoding steps and the DV-Seq2Seq has a smaller output vocab-
ulary. Each stage can be trained on a consumer-grade GPU like

7



Table 4: Performance of query-to-query generation on the test set.

Models ROUGE-1 ROUGE-2 ROUGE-L BLEU-1 BLEU-2 BLEU-3 BLEU-4 EM % OOV

Seq2Seq-f ull 43.54 28.46 40.68 35.67 29.62 25.92 16.52 0.1237 0.0
Seq2Seq-120K 45.13 30.35 42.47 38.09 31.81 28.19 18.23 0.1498 0.918
Seq2Seq-80K 45.70 31.71 43.17 38.81 32.87 29.42 18.73 0.1552 4.36
Seq2Seq-40K 45.37 31.29 43.09 39.28 32.89 29.55 19.03 0.1609 9.14
Seq2Seq-20K 42.70 27.51 40.35 36.54 29.58 25.87 16.72 0.1273 17.21
Seq2Seq-Attn-f ull 52.18 41.49 51.05 49.55 43.89 41.25 32.68 0.3406 0.0
CopyNet-120K 48.87 37.88 47.67 46.00 40.27 37.43 29.24 0.2932 2.95
CopyNet-80K 55.12 45.03 54.04 52.61 42.27 44.60 35.19 0.3712 1.55
CopyNet-40K 56.72 46.66 55.66 54.37 48.95 46.20 36.74 0.3871 4.75
CopyNet-20K 55.14 44.19 54.02 52.74 46.77 43.60 34.69 0.3446 7.59

RWG+DV-Seq2Seq-20K 58.10 47.05 56.99 55.84 49.74 46.72 37.46 0.3864 2.74
RWG+DV-Seq2Seq-40K 58.25 47.93 57.16 55.99 50.37 47.63 38.22 0.4047 1.88

Table 5: Performance of document-title-to-query generation on the test set.

Models ROUGE-1 ROUGE-2 ROUGE-L BLEU-1 BLEU-2 BLEU-3 BLEU-4 EM % OOV

Seq2Seq-f ull 52.14 34.52 47.92 41.02 34.65 29.76 18.69 0.1248 0.0
Seq2Seq-120K 52.34 35.25 48.77 43.13 36.24 31.67 20.10 0.1512 1.82
Seq2Seq-80K 56.60 41.22 53.30 47.64 41.47 37.19 23.18 0.1927 4.34
Seq2Seq-40K 56.08 40.66 53.06 47.94 41.40 37.21 23.43 0.1998 8.68
Seq2Seq-20K 53.50 37.27 50.71 46.15 38.84 34.33 22.06 0.1800 14.77
Seq2Seq-Attn-f ull 59.29 47.67 57.78 55.63 49.82 46.94 35.95 0.3845 0.0
CopyNet-120K 58.10 47.05 56.99 55.84 49.74 46.72 37.46 0.3864 2.74
CopyNet-80K 68.97 60.50 67.91 66.54 62.12 59.64 47.51 0.5244 1.90
CopyNet-40K 72.11 63.82 71.16 69.97 65.54 62.98 50.52 0.5577 3.50
CopyNet-20K 71.65 62.64 70.73 69.71 64.79 61.76 49.66 0.5350 6.21

RWG+DV-Seq2Seq-20K 72.0 63.34 71.17 70.25 65.47 62.63 50.62 0.5502 4.85
RWG+DV-Seq2Seq-40K 72.75 65.18 71.93 71.00 66.90 64.61 52.32 0.5840 2.89

the GTX-1070 with 8GB of VRAM. During decoding, our frame-
work only needs to project to a large vocabulary once in the RWG,
whereas end-to-end baselines with larger output vocabularies, such
as the Seq2Seq-f ull , Seq2Seq-Attn-f ull need to perform this time-
consuming operation in every step. Even on a GPU with twice the
VRAM, like the Nvidia Tesla-P100, these baselines can only train
with a maximum batch size of 16.

Furthermore, our proposed framework offers better interpretabil-
ity, because relevant words generated by the RWG are directly ap-
pended to the inputs for the next stage, hence, they are fully visible
to the end-users and be customized to suit a variety of applications.

6.1 Case Study
We conduct a simple case study on the query-to-query genera-
tion task. In Table. 6, we compare the outputs from two strong
competitors, i.e. CopyNet-40K and RWG+DV-Seq2Seq-40K.

Consider the first two cases in Table. 6. Our model generated
higher quality queries compared with CopyNet-40K. We believe
this is attributed to the relevant words provided by the RWGmodel,
because output words such as Apple, or Kirin 970 (another CPU
model) are not from the original input query. Even if the target
query does not include any additional words, such as case 3, our
model still outperforms the competitor. We speculate that the ad-
ditional relevant words also helped to better define the overall
context. In other words, the decoder in our model has access to
more conceptually-related clues through the attention mechanism,
therefore, its outputs are much more predictable.

7 CONCLUSION AND FUTUREWORK
We introduce a two-stage learning framework for related queries
generation. We first retrieve massive amounts of training data from
a click graph. Next, our framework breaks down related query
generation from input queries as well as document titles into two
steps, namely, relevant words discovery and context-aware query
generation. We carefully design a Relevant Words Generator (RWG)
model and a Dual-Vocabulary sequence-to-sequence (DV-Seq2Seq)
model for each sub-problem. A RWG+DV-Seq2Seq setup with a
40K static output vocabulary surpasses all baseline models on both
query-to-query and title-to-query generation, in terms of BLEU-
1, 2, 3, 4, ROUGE-1, 2,L and Exact Match (EM) metrics. Additionally,
these results verify the feasibility and practicality of a deep genera-
tive model in tackling the query recommendation task. For future
work, we plan to deploy our model in a production environment
and further improve its decoding efficiency to meet the strict time-
complexity requirements of real-world applications.
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