
Meta-Learning forQuery Conceptualization at Web Scale
Fred X. Han

University of Alberta
Edmonton, Canada
xuefei1@ualberta.ca

Di Niu
University of Alberta
Edmonton, Canada
dniu@ualberta.ca

Haolan Chen
Tencent

ShenZhen, China
haolanchen@tencent.com

Weidong Guo
Tencent

BeiJing, China
weidongguo@tencent.com

Shengli Yan
Tencent

ShenZhen, China
victoryyan@tencent.com

Bowei Long
Tencent

ShenZhen, China
kamalong@tencent.com

ABSTRACT
Concepts naturally constitute an abstraction for fine-grained enti-
ties and knowledge in the open domain. They enable search engines
and recommendation systems to enhance user experience by discov-
ering high-level abstraction of a search query and the user intent
behind it. In this paper, we study the problem of query conceptual-
ization, which is to find the most appropriate matching concepts
for any given search query from a large pool of pre-defined con-
cepts. We propose a coarse-to-fine approach to first reduce the
search space for each query through a shortlisting scheme and then
identify the matching concepts using pre-trained language models,
which are meta-tuned to our query-concept matching task. Our
shortlisting scheme involves using a GRU-based Relevant Words
Generator (RWG) to first expand and complete the context of the
given query and then shortlisting the candidate concepts through a
scoring mechanism based on word overlaps. To accurately identify
the most appropriate matching concepts for a query, even when
the concepts may have zero verbatim overlaps with the query, we
meta-fine-tune a BERT pairwise text-matching model under the
Reptile meta-learning algorithm, which achieves zero-shot transfer
learning on the conceptualization problem. Our two-stage frame-
work can be trained with data completely derived from a search
click graph, without requiring any human labelling efforts. For
evaluation, we have constructed a large click graph based on more
than 7 million instances of the click history recorded in Tencent QQ
browser and performed the query conceptualization task based on a
large ontology with 159, 148 unique concepts. Results from a range
of evaluation methods, including an offline evaluation procedure
on the click graph, human evaluation, online A/B testing and case
studies, have demonstrated the superiority of our approach over a
number of competitive pre-trained language models and fine-tuned
neural network baselines.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’20, August 23–27, 2020, Virtual Event, CA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00
https://doi.org/10.1145/3394486.3403357

CCS CONCEPTS
• Information systems → Query representation; Query log
analysis; Query suggestion.

KEYWORDS
Information retrieval; query analysis; conceptualization;meta-learning

ACM Reference Format:
Fred X. Han, Di Niu, Haolan Chen, Weidong Guo, Shengli Yan, and Bowei
Long. 2020. Meta-Learning for Query Conceptualization at Web Scale. In
Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD ’20), August 23–27, 2020, Virtual Event, CA, USA. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3394486.3403357

1 INTRODUCTION
Teaching machines to understand search queries and interpret the
user intents behind them is essential to building a more intelligent
web. To fully “understand” a search querymeans that a system is not
only capable of acquiring relevant knowledge about the terms in the
query but is able to extrapolate beyond these terms to discover high-
level user intents, which often reveal additional hidden interests of
the user. Query understanding is thus of profound significance to
many downstream applications such as content recommendation,
intent classification, and user-profiling.

In this paper, we study the problem of search query conceptual-
ization, which is to find one or multiple matching concepts for a
given query from a large pool of pre-defined concepts. A concept
is a short text sequence that could be a phrase or a sentence. It
associates various text entities under the isA relation. For example,
Toyota RAV4 isA real world entity under the concept fuel-efficient
SUV. The major benefit of query conceptualization is that concepts
create a tractable abstraction for the fine-grained knowledge in
queries from the open domain.

We showcase how conceptualizationmay help query understand-
ing through an example in Fig. 1, where the task is to recommend
queries after a user finishes reviewing a page of search results.
We present the top-3 related queries for the input query Toyota
RAV4 recommended by Google, Yahoo and Bing. Most of the rec-
ommended queries are more detailed versions of the original query.
While these can certainly be helpful to the user, in this paper, we are
interested in a different recommendation task, which is to discover
queries that have fewer or even no common words with the input
query but may characterize the query on a higher conceptual level
(e.g., fuel-efficient SUVs). The ability of conceptualization, although

Applied Data Science Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

3064

https://doi.org/10.1145/3394486.3403357
https://doi.org/10.1145/3394486.3403357

native to human intelligence, is what most search engines currently
lack and can benefit from.

We define that a concept is a match to a search query only if there
exists an isA relation between them, i.e., the knowledge conveyed in
the query isA instance of the concept. Prior research on structured
knowledge base and taxonomy construction, such as DBPedia [3],
YAGO [35], Probase [43], ConcepT [22], have provided abundant
sources to create the pool of concepts.

We propose an efficient solution to the query conceptualization
problem based on deep neural networks and meta-learning, which
can effectively learn generalizable knowledge from a large amount
of unlabelled click logs (i.e., the click graph) and transfer it to the
query-conceptmatching problem. Our approach follows a coarse-to-
fine strategy in a two-stage framework. Specifically, we introduce a
reliable shortlisting scheme to reduce the search space for concepts,
where a GRU-based Relevant Words Generator (RWG) takes in a
search query and produces the most relevant concept words, which
helps to reveal the its surrounding context.

To narrow the shortlist down to the most appropriate match-
ing concepts, in the second stage, we meta-train a pairwise neural
text-matching model, where each candidate concept is matched
against the input query, and the result indicates if there is indeed
an isA relation among the pair. The main challenge here is that it
is impossible to manually label an unbiased training set due to the
large number of candidate concepts at the web scale. Realizing that
many concepts are present in and mined from the click graph (i.e.,
most concepts are a part of a searched query or document title), we
believe the problem of query-concept matching shares the same un-
derlying distribution with other similar natural language matching
tasks sampled from the click graph, which naturally links to the idea
of meta-learning [9, 25]. Therefore, we derive four text-matching
tasks by mining the click graph and utilize Reptile [25], which is
a type of Model-Agnostic Meta-Learning (MAML) algorithm, to
meta-tune a BERT [7] model on these tasks.

To train and evaluate our framework, we have collected over 7
million click logs from Tencent QQ Browser mobile app. Each log
contains a search query and the document title a user clicked after
he/she issued that query. We then construct a large click graph
and derive the training data needed by each stage. For the concept
pool, we adopt a version of the ontology presented in [22], which
contains 159, 148 user-centered concepts mined from the web click
logs.

We have performed extensive comparisons with several base-
lines based on pre-trained word embeddings, contextualized word
representations, and conventionally fine-tuned BERT models. As a
labelled test set is costly to acquire, we have designed an evaluation
procedure using the click graph, which enables us to report aver-
aged F1 scores for the matching results and indicates the closeness
of a query and its matching concept(s) on the click graph. We also
hired human judges to examine and score the results returned by
each method under a blind policy. Finally, we performed online
A/B tests on QQ Browser to verify the effectiveness of the proposed
approach in a production environment for a query recommendation
task.

The remainder of the paper is organized as follows. We present
the detailed methodology in Sec. 2 and describe how to mine
the click graph to collect necessary training data in Sec. 3. Sec. 4

presents the experiment setup and results, while we discuss their
implications and conduct further analysis in Sec. 5. Finally, we
review related work in Sec. 6 and conclude the work in Sec. 7.

2 FRAMEWORK
We begin by formalizing the learning objective. Suppose that we
are given a fixed set C consisting ofm unique concepts, i.e., C =
{c1, c2, ...cm }. For a search query q, assume that there exists a non-
empty set Cqt ⊂ C , where each concept in Cqt is a match to q. Our
goal is to learn a model f to predict Cqt for every query with the
following objective,

max
f

∑
q∈Q

∑
ci ∈C

q
t

log p(ci |q,C; f), (1)

where Q represents the set of search queries available for training.
The dependence on C indicates that the cost of learning is pro-
portional tom. Since we lack a large amount of labelled training
query-concept pairs, supervised classification is not feasible when
m is large. A shortlisting mechanism is thus needed to reduce the
concept search space for each query.

Let us define a shortlisting model д, which takes in q and the
complete concept set C , and then outputs a new set Cqs ⊂ C . The
purpose of д is to constrain the search space for each query from
C to C

q
s . The original objective from Eq. 1 then becomes more

tractable since |Cqs | ≪ |C |, and it is expressed as

max
f

∑
q∈Q

∑
ci ∈C

q
t

log p(ci |q,C
q
s ; f). (2)

To transform Eq. 2 into a text-matching problem, we define the
matching degree between a concept and a query as r , where r is a
binary label of either 0 or 1, and the objective becomes

max
f

∑
q∈Q

∑
ci ∈C

q
+,−

log p(rq,ci |q, ci ; f), (3)

where Cq+,− represents the set of positive (matching) and negative
(non-matching) concepts for q. Fig. 2 depicts the overall training
and testing procedure. We provide a more detailed description of
each stage in the following subsections.

2.1 Shortlisting by Relevant Words
Simple ideas for shortlisting include comparing the mean word
embedding of a query with that of each concept or comparing the
embeddings (encoded with some pre-trained language models) of
the query and each concept directly. However, pre-trained word
or query embeddings suffer from the Lexical Chase problem [28]–
the surrounding context of a search query cannot be accurately
established by considering only the words in the query. Therefore,
retrieving a shortlist of concepts according to only the information
in query words verbatim is not sufficient and tends to neglect truly
relevant concepts. To address this challenge, inspired by [13], we
propose to use a Relevant Words Generator (RWG) as the very first
step in our shortlisting stage to expand the set of terms conveyed
by a query.

We denote a concept c as a sequence of words (tokens), i.e.,
c = {wc

1 ,w
c
2 , ...}. Similarly, a queryq is denoted byq = {wq

1 ,w
q
2 , ...}.

Let VC be a vocabulary of all the unique words that appear in the

Applied Data Science Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

3065

Google

Toyota RAV4 Canada
Toyota RAV4 hybrid
Toyota RAV4 2019 Canada
...

Search Query

Toyota RAV4

Concepts

Fuel-efficient SUV
Compact SUV
Fuel-efficient Vehicle
...

(a) Conventional Approaches

(b) With Conceptualizaion

Bing

2019 RAV4 hybrid reviews Canada
2019 Toyota RAV4 reviews Canada
2019 RAV4 pricing Canada
...

Yahoo

Toyota RAV4 2019
Toyota Canada
Toyota RAV4 2014
...

Concept
Matching

Recommended Queries

Best Fuel-efficient SUV 2019
Best Compact SUV for daily-driving
Top Fuel-efficient Cars of 2019
...

Figure 1: A comparison of the related search queries recommended a) by popular search engines and b) with conceptmatching.
Note that even though the results of b) have fewer word overlaps with the original query, they are also likely to be attractive
to the user as they match the user intent on a conceptual level.

Click Graph

Collect

Collect

Queries Relevant Words

Toyota RAV4 vehicle, fuel-efficient, SUV, price, ...
Python tutorials programming, online, learning, ...
... ... Train

Post-processing of RW

Concept words

 Part-Of-Speech (POS)

Relevant Words Generator

Bi-GRU Feedforward +
Softmax

Query

Probability distribution over
concept words

BERT Classifier

BERT

Input pair

0/1 Binary label
Meta-fine-tune

Relevant
Words

Generator

Test Query

Diet for losing body fat

Related Concepts

- Weight-loss diet
- How to lose weight
- Diet for arthritis
- Diet for gout
...

Concepts

Shortlisting by
word-overlaps

BERT pairwise
classifier

Matched Concepts

- Weight-loss diet
- How to lose weight
...

Relevant Words

- weight-loss
- diet
- weight
- overweight
...

(a) Training procedure

(b) Testing procedure

LabelsTitlesQueries

RAV4 fuel-ecnonmy The all-new RAV4 SUV 1
...

LabelsTitlesTitles

Global news today 24-hour weather report 0
...

LabelsRelevant WordsQueries/Titles

RAV4 fuel-ecnonmy fuel-efficiency 1
...

LabelsQueriesQueries

Resident Evil 7 Resident card renewal 0
...

Figure 2: The training a) and testing b) procedures for our query-concept matching framework.

concepts. In reality, we normally havem > |VC |, since the words in
VC can be combined to generate a large number of concepts. In other
words, the size ofVC does not increase linearly with the number of
conceptsm. Therefore, as opposed to directly shortlisting candidate
concepts from C , for a given input query, we first generate (select)
the most relevant words in the vocabulary VC , which is precisely
what the RWG model achieves. The selected relevant words can
then be used to fast retrieve a shortlist of candidate concepts.

Given an input query q and VC , we learn a model θ such that
the log probabilities of choosing the words, which are relevant to
q, are maximized. Suppose that the set Rq contains all the target

relevant words of q, our objective then becomes

max
θ

∑
q∈Q

∑
wc ∈Rq

log p(wc |q; θ), (4)

where the generated relevant words wc ∈ VC . The RWG model
[13] includes Bi-directional Gated Recurrent Unit (GRU) [6] that
encodes a query word-by-word to learn a contextual representation,
followed by a fully-connected layer, a Dropout layer [34], and a
Softmax operation. The output is a probability distribution over all
words in VC .

Applied Data Science Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

3066

Let us define R̂qk as the set of predicted relevant words for a query
q, which is constructed by taking the top-k results from the output
probability distribution of the RWG model. We then define Ĉqk as
the set of all concepts where each concept has at least one word
that is in R̂

q
k . Finally, we define Ĉ

q
s as the output set of candidate

concepts, where Ĉqs ⊆ Ĉ
q
k . Ĉ

q
s is obtained as follows:

Ĉ
q
s = {c | c ∈ Ĉ

q
k , score(c) ≥ γ }, (5)

where for each concept c ∈ Ĉqk , we compute an overlap score as
the percentage of unique words in c that are also in R̂

q
k , the set of

predicted relevant words for query q, i.e.,

score(c) =
1
|{c}|

∑
wc ∈{c }

λ(wc , R̂
q
k), (6)

where {c} denotes the set of unique words in c and λ(wc , R̂
q
k) is an

indicator function that returns 1 ifwc is in R̂
q
k and 0 otherwise.

2.2 Meta-Learned Matching Model
Without a large amount of labelled training data, we could not
directly learn the query-concept matching model f under Eq. 3.
Fortunately, since a significant portion of concepts is originated and
extracted from click histories [22], we assume that there exist distri-
butional similarities between the task of query-concept matching
and other pairwise text-matching tasks that can be derived from a
large click graph.

For this reason, we take a meta-learning approach in the second
stage to train f . A key assumption behind optimization-based meta-
learning algorithms [9, 25] is that in a machine learning problem,
there exists a distribution of tasks p(T). According to the idea of
Model-Agnostic Meta-Learning (MAML) [9], it is possible for a
model ϕ to learn to adapt to p(T) as opposed to a sampled task Ti
by minimizing the following loss function:

min
ϕ

∑
Ti∼p(T)

L(ϕ − α∇ϕL(ϕ,D
train
i),Dtest

i), (7)

where Dtrain
i and Dtest

i are the train and test set for the i-th task,
and α is the meta-learning rate. The intuition behind Eq. 7 is that
we meta-learn a model ϕ, by learning how training ϕ on a task Ti
affects its generalizability on a held-out test set for the same task.
We repeat this process on several tasks sampled from p(T) to learn
ϕ. A successful ϕ would have low test error on every task, i.e., ϕ
adapts well to the underlying distribution p(T).

The main advantage of model ϕ is that for an unseen task Tj
sampled from p(T), we could directly transfer ϕ to Tj and expect
decent performance. If a small amount of labelled data is available
forTj ,ϕ also provides the best possible starting point for fine-tuning
a new model ϕ̂, which is known as the adaptation [9], where

ϕ̂ = argmax
ϕ

log p(ϕ |Df ine−tune
j , ϕ). (8)

With a large number of concepts, it becomes impossible to manually
label an unbiased dataset, even for fine-tuning purposes. Therefore,
we do not perform any adaptation here and use ϕ for the zero-shot
matching of query-concept pairs.

Instead of performing the second-order differentiation in Eq. 7,
we utilize Reptile [25], a first-order meta-learning algorithm to
learn ϕ. Reptile converts the outer loss function into a simple step
in the direction of ∇ϕL(ϕ,Dtrain

i) after K batches of training on
Ti . Similar to conventional supervised training, Reptile iteratively
updates a model, where every iteration is made up of a task-learning
phase followed by ameta-learning phase. In the task-learning phase,
we first make a copy of the current model, and then sample a new
task and train the copied model by performing K steps of gradient-
descent on this task, where K > 1. In the meta-learning phase, we
update the original model by the difference between its current
weights and the weights of the copied model after task-learning,
which is expressed by

ϕ ← ϕ + α(ϕ̃ − ϕ), (9)

where ϕ̃ is the copied model after the task-learning phase and
α is the meta-learning rate. Under the definition of Reptile, the
objective for query-concept matching becomes the objective for
the task-learning phase,

max
ϕ̃

∑
ui ,uj ∈U

log p(rui ,uj |ui ,uj ; ϕ̃), (10)

whereui ,uj andU denote the two input candidates and the training
data for the current task, respectively. rui ,uj is still a label of 0 or 1.
The meta-learning objective for our problem setting is

max
ϕ

log p(ϕ |Dmeta), (11)

whereDmeta = {Dtrain
1 ,Dtrain

2 , ...}, i.e., it encapsulates all the
tasks used for training ϕ.

To establish a good starting point for learning ϕ, we utilize the
pre-trained BERT model [7], which is shown to capture generaliz-
able semantic knowledge that could easily be transferred to other
NLP tasks through fine-tuning. BERT contains 12 layers of Trans-
former [39] blocks, where each block has a hidden dimension of
768. We convert a pre-trained, general-purpose BERT model into a
deep matching model by first concatenating the input candidates
ui , uj from Eq. 10 into one sequence, separated by a [SEP] token.
Then, we append a FeedForward layer after BERT to project its
output into a 2-dimensional space. We meta-train BERT under the
Reptile-learning procedures defined by Eq. 10 and 11.

3 GENERATING DATA FROM CLICK GRAPHS
All necessary training data are automatically mined from a click
graph without any human labelling efforts. A click graph is a bi-
partite graph that records the click histories of many users in a
search engine and is easy to retrieve. Each vertex in a click graph
corresponds to either a search query or a document title. An edge
between a query vertex and a title vertex indicates that the user
who issued the query clicked through the corresponding title. We
believe a click graph is an excellent source of collective intelligence,
where the click behavior naturally reflects the relations between
various entities in the open domain. Therefore, we generate the
training data by following a k-hop breadth-first strategy on a click
graph. We define 1 hop as going from a query vertex to a neigh-
boring query vertex through a title vertex, or vice versa. We then
denote the k-hop neighbors set for a vertex v in a click graph G

Applied Data Science Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

3067

by Sv,k
[.]

, where [.] indicates the type(s) of vertices to be included.

For example, Sv,k
[Q] includes only neighboring queries while Sv,k

[Q ,T]
includes both queries and document titles. Regardless of whether v
is a query or title, Sv,k

[.]
satisfies the following conditions:

• S
v,k
[.]

is non-empty.
• There exists a shortest path in G between any two vertices
in Sv,k

[.]
.

• The number of edges passed by any shortest path is no more
than 2k .

Each query-title edge in G is also weighted, where the weight
reflects the number of click-throughs (by any user) from the query
to the title.

3.1 Generating Relevant Words Data
LetRqt denote the set of target relevant words for a queryq. For each
query vertex q, we first retrieve its 3-hop neighboring queries set
S
q,3
[Q]. Next, we iterate through every query q̂ in Sq,3

[Q] and perform
Part-Of-Speech (POS) tagging using the StanfordCoreNLP tagger
[23]. For every wordw in q̂, we add it to Rqt only if it satisfies the
following conditions:

(1) w ∈ VC , i.e.,w is a concept word.
(2) w has a tag of Named Entity (NR), Noun (NN), or Verb (VV).

Once Rqt is formed in the above way, we add the pair (q,Rqt) as a
new sample into the RWG dataset, if Rqt is non-empty. We repeat
the above process for every query vertex q in the click graph to
derive the complete dataset, from which we then split into train,
dev and test sets.

3.2 Generating Data for Meta-learning
Meta-learning requires a set of tasks that are sampled from the
same underlying task distribution. Based on Eq. 10, we derive and
sample the following tasks from the click graph:
• Query-to-query (Q2Q), where the goal is to classifywhether
two queries are related. For a query q from G, we create pos-
itive matching instances by randomly pairing q with 3 of
its neighbors from Sq,2

[Q]. For the next two tasks, positive in-
stances are created in the same fashion, thoughwith different
inputs and 2-hop neighbor sets.
• Query-to-title (Q2T), where the goal is to classify whether
a query is related to a document title.
• Title-to-title (T2T), where we decide whether two docu-
ment titles are related.
• Query/title-to-word (QT2W). The first input is a sequence,
either a query or title, and the second input is a word. We
create positive instances by pairing an input vertex v to
all the relevant words in Sv,3

[Q ,T], following the same proce-
dure in Sec. 3.1. Yet, the relevant words here are no longer
constrained by Condition (1) from Sec. 3.1.

We sample negative instances by randomly selecting other inputs
of the same type, i.e., for each positive pair (q,q+) from the Q2Q
task, we randomly select a q− from the set of all unique queries
Q . The same procedure applies to the Q2T and T2T tasks. For the

Table 1: Statistical information on datasets for training the
RWGmodel.

Train Dev Test
Size 7.9M 980K 880K
Avg # of words in inputs 6.95 6.94 6.94
Avg # of relevant words 4.94 4.94 4.93
Input vocabulary size 435, 642
Output vocabulary size 18, 717

QT2W task, we randomly choose 3 words from all possible relevant
words to create 3 negative pairs for every positive pair.

4 EXPERIMENTATION
4.1 Datasets
Before deriving any data from the click graph, we randomly sample
398, 447 queries from it as a held-out test set for query-concept
matching. To avoid information leakage, we then prune these
queries and their corresponding links from the click graph. Finally,
we extract training data by following the procedures in Sec. 3.

Table 1 and 2 provide useful statistical information on the datasets.
To ensure an even contribution from every task whenmeta-learning
the text-matching model, we constrain the train/dev set of each
task to have the same size by randomly pruning larger datasets.

4.2 Baseline Models
We compare our framework against the following baseline models.

MoWE. This baseline follows the conventional Mean-of-Word-
Embeddings setup. We utilize the Tencent AI Lab pre-trained Chi-
nese word embedding [32]. We set a cosine similarity threshold
of 0.75 as the decision boundary. In other words, for every input
query, we find the most similar concepts and only keep a concept
if its cosine similarity with the input query is larger than or equal
to 0.75. We select this threshold because on the test set, it results
in a final coverage similar to our proposed framework.

ELMo-pre-train. As a contextualized representation, ELMo [26]
incorporates the context of the sequence when generating word
embeddings. We use the pre-trained Chinese ELMo model with a
hidden size of 1024, which is provided by [5, 8]. The procedure to
select the matching concepts is the same as the MoWE baseline.

BERT-pre-train. We are interested in how much of the gener-
alizable knowledge learn by the pre-trained BERT language model
could directly transfer to the problem of query-concept matching.
Therefore, we set up a pre-trained BERT-base model 1 in the same
fashion as the ELMo-pre-train baseline.

RW. The Relevant Words (RW) baseline is only our proposed
first stage. We use the shortlisted concepts as the matching results.
This baseline serves as an ablation comparison to help verify the
effectiveness of the second stage models.

In addition to the above baselines, we report the performance of
the following two-stage frameworks.

MoWE-BERT-ft. We fine-tune a pre-trained BERT-base model
as a matching model on only the Q2Q task. We then pair it with a

1We use the pre-trained Chinese BERT model from https://github.com/huggingface/
pytorch-transformers

Applied Data Science Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

3068

https://github.com/huggingface/pytorch-transformers
https://github.com/huggingface/pytorch-transformers

Table 2: Statistical information on datasets for meta-fine-tuning BERT.

Q2Q Q2T T2T QT2W
Train Dev Train Dev Train Dev Train Dev

Size 4.85M 539K 4.85M 539K 4.85M 539K 4.85M 539K
Avg # of words in inputs 4.65 4.65 7.78 7.78 10.87 10.87 4.06 4.06
Vocabulary size 406K 162K 755K 245K 586K 235K 222K 63K

Table 3: Top-N recall scores on the RWG test set.

Coverage Top-10 Top-50 Top-100 Top-500
ELMo 1.0 0.139 0.216 0.258 0.383
TAL 0.957 0.411 0.523 0.567 0.668
RWG 0.884 0.726 0.843 0.882 0.951

MoWE shortlisting scheme, which is constructed the same way as
the MoWE baseline except that we do not set a similarity threshold.

RW-BERT-ft. We adopt the same fine-tuned BERT model from
MoWE-BERT-ft and instead pair it with our RW first stage.

We name our proposed two-stage framework RW-BERT-meta.
We refer interested reader to the supplementary information section
for more details about the overall training setup.

4.3 Offline Evaluation
4.3.1 Evaluating the RWG model. We want to showcase that our
RWG model is learning the word relevance features conveyed in a
click graph. We also wish to demonstrate that such features cannot
be accurately captured by pre-trained representations. Therefore,
we report the top-N recall scores on the test set of the RWG model.
For our model, the top-N recall score as the percentage of truth rel-
evant words that appear in the top-N predicted words. We compare
our approach to the Tencent AI Lab (TAL) pre-trained embeddings
and the pre-trained ELMo representations. For these baselines, the
query representation is the mean of its word embeddings, and we
find the top-N most similar words to it. We also report the coverage
to ensure that the recall scores are reliable. Table 3 reports the
results of this experiment. Some coverages are not 1.0 because we
reject inputs that contain Out-Of-Vocabulary (OOV) words.

4.3.2 Offline evaluation using click graphs. In the absence of a
labelled test set, we evaluate the results of query-concept matching
using our click graph. Considering the fact that many concepts are
also popular queries, we thoroughly examine our click graph and
find that it contains 2997 concepts as query vertices. Under our
previous assumption, the hop distance between two vertices is a
rough estimate for their relatedness. Therefore, we propose that
if a concept is a good match to a query, and they are in the same
click graph, then they should be within a certain number of hops
from each other. We assume the truth label between a concept and
a query is 1 if both are in our click graph, and they could reach each
other within H hops. Note that the click graph used for evaluation
here is the original graph containing all the test queries. With the
derived truth labels, we could then compute the macro-averaged F1
score on the query-concept matching results. The definition of this
metric is introduced in the supplementary section. We experiment
with several H values and report the F1 scores in Table 4.

Table 4: F1 scores with different hop limits (H).

H = 6 H = 8 H = 10 H = 12 H = 14
MoWE 0.702 0.657 0.627 0.605 0.589
ELMo-pre-train 0.750 0.699 0.626 0.561 0.521
BERT-pre-train 0.827 0.755 0.691 0.637 0.608
RW 0.494 0.497 0.494 0.491 0.491
MoWE-BERT-ft 0.595 0.600 0.608 0.611 0.631
RW-BERT-ft 0.682 0.709 0.725 0.738 0.743
RW-BERT-meta 0.873 0.866 0.854 0.847 0.842

Table 5: Human evaluation results on 500 randomly selected
test instances.

of 1s assigned # of 2s assigned Total
score

MoWE 436 81 598
ELMo-pre-train 199 58 315
BERT-pre-train 86 32 150
RW 532 62 656
MoWE-BERT-ft 285 29 343
RW-BERT-ft 435 31 497
RW-BERT-meta 621 117 855

4.4 Human Evaluation
Since the offline evaluation does not explicitly reflect which model
is better at predicting isA relations, we further conduct human
evaluations. Specifically, we randomly select 500 test instances and
take the top-3 matched concepts of every model 2. We then hire 2
human judges through crowdsourcing and ask each one to evaluate
half of the instances according to the following criteria,
• For a test instance, the judge reviews the top-3 concepts
matched by each model without given any knowledge about
the models and assigns a score for each concept.
• A concept receives a score of 2 if there exists an isA relation
between it and the input query. If a concept only matches
part of the query, then the judge assigns a score of 1 for this
concept. Otherwise, for every non-related concept, a score
of 0 is assigned.
• On a test instance, the maximum attainable score for a model
is 6, and the minimum score is 0.

We report the results of human evaluation in Table 5. In Sec. 5,
We discuss the implications behind these results and conduct case
studies to get a more intuitive visualization of the matching results.

2We randomly take 3 concepts if there are more than 3 top concepts with the same
similarity/score

Applied Data Science Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

3069

4.5 Online A/B Testing
We conduct online A/B testing on the Tencent QQ browser to eval-
uate the usefulness of our framework in a production environment.
For a user’s search query, we discover its matching concepts and
present them at the end of the article which the user clicked on, i.e.,
we directly recommend the matched concepts to the user. Fig. 3
reports the results of the A/B test. The control group here is the
MoWE baseline. We sample 50 hours of click behavior from real
users, where each point in the plot represents the average num-
ber of clicks on the recommended concepts in an hour. We also
report the interquartile range box-plot with the 25th to the 75th
percentiles.

Figure 3: Average number of clicks per hour on the recom-
mended concepts. The experiment groups is our framework
and the control group is the baseline.

5 RESULT ANALYSIS & DISCUSSION
Table 3 suggests that the RWG model easily outperforms the other
two pre-trained word representations. This indicates that the word-
relatedness information derived from a click graph is different
from the word similarities learned by pre-trained embeddings. For
the results of query-concept matching, we observe in Table 4 that
our two-stage setup outperforms all baselines by a large margin
regardless of the hop limit H . Specifically, by adding a second stage
text-matching model to the RW baseline, the performance increases
significantly.

We believe that while the imaginative nature of the RWG model
enables us to discover additional relevant words, it could “wander-
off” too far and match completely irrelevant concepts. Therefore,
another stage of quality assurance is crucial, and our meta-learned
BERT text-matching model is a better candidate for this role com-
pared to the simple fine-tuned version (RW-BERT-ft). According
to the human evaluation results in Table 5, our framework scores
highest in every category. In particular, it receives more scores of
2 than the baselines, which proves its superiority in discovering
matching isA relations between queries and concepts. We observe
the same pattern in the A/B testing results, where the concepts
matched by our framework consistently attract more clicks than
the baseline.

Figure 4: F1-score and coverage results produced with differ-
ent combinations of k and γ values.

5.1 Hyper-parameter Sensitivity
We run the offline evaluation procedure with H = 10 to observe
how the performance changes under different hyper-parameter
settings. We test several values of k , which controls how many top
relevant words to take from the output of the RWG model, and
γ , which determines the percentage threshold of word-overlaps
between the candidate concepts and the predicted relevant words.
We report the changes in F1 scores and coverage, i.e., the percent
of test instances that we could find at least one matching concept.

From Fig. 4, we first observe that a larger value of γ produces
higher F1 scores and lower coverage. This makes sense because a
lower γ means we allow a candidate concept to contain more words
that are not from the predicted relevant words, which increases the
chance of mismatches. Another trend we notice is that decreasing
k values often leads to an increase in F1 scores. However, this does
not mean that we should prefer a smaller k because smaller k values
also produce a much lower coverage. In a real-world application, we
want our framework to handle as many queries as possible while
maintaining decent performance metrics. We set k = 15 to strike a
balance between F1 score and coverage.

5.2 Case Study
In Table 6, we show a representative example of the top-10 relevant
words generated by our RWG model and compare with the top-
10 most similar words found by the Tencent AI Lab (TAL) word
embeddings. In general, the RWG model discovers more words
related to the input query on a higher conceptual-level, especially
the highlighted ones. For instance, our RWG model knows that
“RongWei rx5” is a car, and the query is asking for tutorials on how
to project displays between a cell phone and a car. Therefore, it
discovers conceptually relevant words like “car”, “inter-connect”
and “tutorial”, while in the baseline approach, taking the average of
word embeddings for the query cannot capture its overall meaning
and the majority of related words are only similar to “screen”.

In Table 7, we show the top-3 matched concepts found by our
framework and competitive baselines for a test query. Overall, our
framework is superior at both finding potential candidates and
picking out the best matching concepts. Here, Omen and Legion are
gaming laptop models from HP and Lenovo, respectively. Clearly,
the MoWE baseline does not have this knowledge and base its
matching solely on the word “Legion”. In contrast, our proposed
RW stage captures this relation. Then, the second stage reliably
filters out non-matching concepts such as “Laptop keyboard”.

Applied Data Science Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

3070

Table 6: Comparison of the top-10 words found by the RWG
model and the TAL pre-trained word embeddings.

Input query Model Top-10 words

荣威rx5映射
手机屏幕
RongWei rx5 project
cellphone screen

RWG

荣威,手机,映射,汽车,屏幕,论坛,问题,
互联,教程,大屏.
RongWei, cellphone, project, car, screen,
forum, question, inter-connect, tutorial,
big-screen.

TAL

墨水屏,显示屏,屏幕,运存,曲面屏, koobee,
amoled,全面屏,折叠屏,投屏.
ink screen, display screen, screen, RAM,
curved screen, koobee, amoled,
bezel-less display, folding display,
screen projection.

Table 7: Comparison of the top-3 concepts matched by our
proposed framework and competitive baseline models.

Input query Model Matched concepts

暗夜精灵和拯救者
Omen and Legion

RW-BERT-meta 游戏笔记本电脑,联想笔记本电脑.
Gaming laptop, Lenovo laptop.

RW

游戏笔记本电脑,笔记本电脑键盘,
联想笔记本电脑.
Gaming laptop, Laptop keyboard,
Lenovo laptop.

MoWE 拯救者小说.
Legion novel.

RW-BERT-ft

游戏笔记本电脑,笔记本电脑键盘,
联想笔记本电脑.
Gaming laptop, Laptop keyboard,
Lenovo laptop.

6 RELATEDWORK
6.1 Search Query Understanding
We review related works related to search query understanding
from the perspectives of query expansion, query reformulation,
query generation and query-concept matching. Query expansion
tackles the Lexical Chase problem. [10] performs expansions through
a relation graph. [11, 12, 28, 29] approach the problem from the
perspective of statistical machine translation.

Query reformulation re-writes a search query such that it is
easier to process, while maintaining the original meaning. Early
methods either delete unnecessary terms in a query [18] or substi-
tute ambiguous terms [37]. [45] proposes an active-learning-based
method. SimRank and SimRank++ [2, 16] compute similarities be-
tween queries using the links in a click graph. More recently, meth-
ods based on machine translation [28] or recurrent neural networks
[15] further improves the quality of the reformulated queries.

When generating search queries directly using Sequence-to-
Sequence models, the process of query understanding is implicitly
captured by the encoder part of the model. [41] considers the com-
pression of E-commerce product titles and the generation of search
queries in a multi-task learning setup. [15, 44] perform generative
query re-writing, while [14] represents documents as graphs and
reverse-engineers the most appropriate queries from them. Finally,
[13] proposes a two-stage generative framework for query recom-
mendation, where the Relevant Words Generator model is proven
to be extremely useful in mitigating the Lexical Chase problem.

Query-concept matching is a relatively unexplored topic due
to the need of a pre-defined concept set. [42] proposes a Bayesian
inference mechanism for query-concept matching. Specifically, the
matching degree between a query and a concept is derived from
the conditional probabilities between their related instances and
attributes. [33] refines the Probase [43] ontology by adding more
relations extracted from web documents, then presents a random
walk strategy to discover the matching concepts. [22] proposes a
probabilistic approach according to the co-occurrence of context
words as well as a similarity-based method using TF-IDF vectors.

6.2 Meta-Learning
Meta-learning studies the problem of learning how to learn [24, 38].
Early works focus on the design of meta-trainers, i.e., a model that
learns how to train another model such that it performs better
on a given task [4, 30]. [1] transfers this idea to neural networks
and proposes an optimizer-optimizee setup, where each compo-
nent is learned with an iterative gradient-descent procedure. [20]
follows a guided policy search strategy and automatically learns
the optimization procedure for updating a model. Meta-learning
is also studied as a promising solution to few-shot classification
problems, where a model learns to recognize new classes given a
limited amount of training data for each class. [27] proposes an
LSTM meta-learner to learn an optimization procedure for few-
shot image classification. [21] develops an SGD-like meta-learning
process and experiment on few-shot regression and reinforcement
learning problems. MAML [9] is another popular approach that
does not impose a constraint on the architecture of the learner.
Finally, Reptile [25] simplifies the learning process of MAML by
conducting first-order gradient updates on the meta-learner.

Meta-leaning could also be achieved with non-parametric meth-
ods. [19] meta-learns a Siamese network to classify whether two
images are from the same class. Matching networks [40] refines this
idea by imitating the meta-testing procedure during meta-training,
where the learned embedding of a test input is compared to embed-
ding vectors of inputs from known classes, and the most matching
class is selected by the method of weighted k-nearest-neighbors.
Prototypical Networks [31] learn an entirely new metric space for
comparing the similarities between inputs. [36] proposes that sepa-
rating embedding learning and relation matching further improves
the accuracy of meta-learned few-shot classification models.

7 CONCLUSION
In this paper, we propose a meta-learned neural framework for
matching a search query to its high-level concepts. We begin by
discovering potentially matching candidates with a novel shortlist-
ing scheme, where a recurrent Relevant Words Generator performs
context-completion for a query. To ensure that each concept is
indeed a match to the query, we meta-fine-tune a BERT pairwise
text-matching model with the Reptile meta-learning algorithm,
which performs binary classification on a query-concept pair to
determine the final matching degree. We train our framework with
data derived from a large click graph that contains over 7 million
click histories, without any manual labelling. Through offline eval-
uations, human assessments, online tests and case studies, we have
verified the effectiveness of our proposed framework, especially its

Applied Data Science Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

3071

ability to infer and discover higher-level concepts for search queries,
as compared to a range of competitive baselines. We conclude that
a combination of deep neural language models and meta-learning
may open up avenues for natural language conceptualization and
inference, an ability that is native to human intelligence and is
critical to enhancing human-computer interaction through search
engines.

REFERENCES
[1] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David

Pfau, Tom Schaul, Brendan Shillingford, and Nando De Freitas. 2016. Learning to
learn by gradient descent by gradient descent. In Advances in neural information
processing systems. 3981–3989.

[2] Ioannis Antonellis, Hector Garcia Molina, and Chi Chao Chang. 2008. Simrank++:
query rewriting through link analysis of the click graph. Proceedings of the VLDB
Endowment 1, 1 (2008), 408–421.

[3] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. 2007. Dbpedia: A nucleus for a web of open data. In The
semantic web. Springer, 722–735.

[4] Samy Bengio, Yoshua Bengio, Jocelyn Cloutier, and Jan Gecsei. 1992. On the
optimization of a synaptic learning rule. In Preprints Conf. Optimality in Artificial
and Biological Neural Networks. Univ. of Texas, 6–8.

[5] Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng, and Ting Liu. 2018. Towards
Better UD Parsing: Deep Contextualized Word Embeddings, Ensemble, and Tree-
bank Concatenation. In Proceedings of the CoNLL 2018 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies. Association for Computational
Linguistics, Brussels, Belgium, 55–64.

[6] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555 (2014).

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[8] Murhaf Fares, Andrey Kutuzov, Stephan Oepen, and Erik Velldal. 2017. Word
vectors, reuse, and replicability: Towards a community repository of large-text re-
sources. In Proceedings of the 21st Nordic Conference on Computational Linguistics.
Association for Computational Linguistics, Gothenburg, Sweden, 271–276.

[9] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70. JMLR. org, 1126–1135.

[10] Bruno M Fonseca, Paulo Golgher, Bruno Pôssas, Berthier Ribeiro-Neto, and Nivio
Ziviani. 2005. Concept-based interactive query expansion. In Proceedings of the
14th ACM international conference on Information and knowledge management.
ACM, 696–703.

[11] Jianfeng Gao, Xiaodong He, Shasha Xie, and Alnur Ali. 2012. Learning lexicon
models from search logs for query expansion. In Proceedings of the 2012 Joint Con-
ference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning. 666–676.

[12] Jianfeng Gao and Jian-Yun Nie. 2012. Towards concept-based translation models
using search logs for query expansion. In Proceedings of the 21st ACM international
conference on Information and knowledge management. ACM, 1.

[13] Fred X Han, Di Niu, Haolan Chen, Kunfeng Lai, Yancheng He, and Yu Xu. 2019.
A deep generative approach to search extrapolation and recommendation. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. ACM.

[14] Fred X. Han, Di Niu, Weidong Guo, Kunfeng Lai, Yancheng He, and Yu Xu. 2019.
Inferring Search Queries fromWeb Documents via a Graph-Augmented Sequence
to Attention Network. In Proceedings of The Web Conference 2019.

[15] Yunlong He, Jiliang Tang, Hua Ouyang, Changsung Kang, Dawei Yin, and Yi
Chang. 2016. Learning to rewrite queries. In Proceedings of the 25th ACM In-
ternational on Conference on Information and Knowledge Management. ACM,
1443–1452.

[16] Glen Jeh and Jennifer Widom. 2002. SimRank: a measure of structural-context
similarity. In Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 538–543.

[17] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-scale similarity
search with GPUs. arXiv preprint arXiv:1702.08734 (2017).

[18] Rosie Jones and Daniel C Fain. 2003. Query word deletion prediction. In Pro-
ceedings of the 26th annual international ACM SIGIR conference on Research and
development in informaion retrieval. ACM, 435–436.

[19] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. 2015. Siamese neural
networks for one-shot image recognition. In ICML deep learning workshop, Vol. 2.

[20] Ke Li and Jitendra Malik. 2016. Learning to optimize. arXiv preprint
arXiv:1606.01885 (2016).

[21] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. 2017. Meta-SGD: Learning
to learn quickly for few-shot learning. arXiv preprint arXiv:1707.09835 (2017).

[22] Bang Liu, Weidong Guo, Di Niu, Chaoyue Wang, Shunnan Xu, Jinghong Lin,
Kunfeng Lai, and Yu Xu. 2019. A User-Centered Concept Mining System for
Query and Document Understanding at Tencent. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM.

[23] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J.
Bethard, and David McClosky. 2014. The Stanford CoreNLP Natural Language
Processing Toolkit. In Association for Computational Linguistics (ACL) System
Demonstrations. 55–60.

[24] Devang K Naik and RJ Mammone. 1992. Meta-neural networks that learn by
learning. In [Proceedings 1992] IJCNN International Joint Conference on Neural
Networks, Vol. 1. IEEE, 437–442.

[25] Alex Nichol, Joshua Achiam, and John Schulman. 2018. On first-order meta-
learning algorithms. arXiv preprint arXiv:1803.02999 (2018).

[26] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word
representations. arXiv preprint arXiv:1802.05365 (2018).

[27] Sachin Ravi and Hugo Larochelle. 2016. Optimization as a model for few-shot
learning. (2016).

[28] Stefan Riezler and Yi Liu. 2010. Query rewriting using monolingual statistical
machine translation. Computational Linguistics 36, 3 (2010), 569–582.

[29] Stefan Riezler, Yi Liu, and Alexander Vasserman. 2008. Translating queries into
snippets for improved query expansion. In Proceedings of the 22nd International
Conference on Computational Linguistics-Volume 1. Association for Computational
Linguistics, 737–744.

[30] Jürgen Schmidhuber. 1992. Learning to control fast-weight memories: An alter-
native to dynamic recurrent networks. Neural Computation 4, 1 (1992), 131–139.

[31] Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical networks
for few-shot learning. In Advances in Neural Information Processing Systems.
4077–4087.

[32] Yan Song, Shuming Shi, Jing Li, and Haisong Zhang. 2018. In Proceedings of the
2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 2 (Short Papers). Association
for Computational Linguistics, 175–180.

[33] Yangqiu Song, Haixun Wang, Zhongyuan Wang, Hongsong Li, and Weizhu
Chen. 2011. Short text conceptualization using a probabilistic knowledgebase. In
Twenty-Second International Joint Conference on Artificial Intelligence.

[34] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. Journal of Machine Learning Research 15 (2014), 1929–1958.

[35] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. Yago: a core of
semantic knowledge. In Proceedings of the 16th international conference on World
Wide Web. ACM, 697–706.

[36] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M
Hospedales. 2018. Learning to compare: Relation network for few-shot learning.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
1199–1208.

[37] Egidio Terra and Charles LA Clarke. 2004. Scoring missing terms in information
retrieval tasks. In Proceedings of the thirteenth ACM international conference on
Information and knowledge management. ACM, 50–58.

[38] Sebastian Thrun and Lorien Pratt. 2012. Learning to learn. Springer Science &
Business Media.

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[40] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. 2016.
Matching networks for one shot learning. In Advances in neural information
processing systems. 3630–3638.

[41] Jingang Wang, Junfeng Tian, Long Qiu, Sheng Li, Jun Lang, Luo Si, and Man Lan.
2018. A Multi-task Learning Approach for Improving Product Title Compression
with User Search Log Data. arXiv preprint arXiv:1801.01725 (2018).

[42] Zhongyuan Wang, Kejun Zhao, Haixun Wang, Xiaofeng Meng, and Ji-Rong Wen.
2015. Query understanding through knowledge-based conceptualization. In
Twenty-Fourth International Joint Conference on Artificial Intelligence.

[43] Wentao Wu, Hongsong Li, Haixun Wang, and Kenny Q Zhu. 2012. Probase: A
probabilistic taxonomy for text understanding. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data. ACM, 481–492.

[44] Zi Yin, Keng-hao Chang, and Ruofei Zhang. 2017. Deepprobe: Information di-
rected sequence understanding and chatbot design via recurrent neural networks.
In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2131–2139.

[45] Wei Vivian Zhang, Xiaofei He, Benjamin Rey, and Rosie Jones. 2007. Query rewrit-
ing using active learning for sponsored search. In Proceedings of the 30th annual
international ACM SIGIR conference on Research and development in information
retrieval. ACM, 853–854.

Applied Data Science Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

3072

8 SUPPLEMENTARY INFORMATION
8.1 Training Setup
To pre-processing the click graph, we first prune any edges that
do not appear more than once to avoid noise caused by mis-clicks.
We then keep the top-3 weighted outgoing edges of each query
vertex, because we found that over 90% of vertices have less than 3
outgoing edges.

We utilize the FAISS [17] tool for fast similarity searches. For
all the two-stage setups, we limited the first stage to only pass the
top-10 most similar concepts to the second stage. For all the RW
setups, we take the top-15 predicted relevant words and set γ = 1.0.
The decision threshold for all classifiers is 0.5.

We implement both stages of our model using Pytorch 0.4 and
trainwith theAdamoptimizer.We train the RWGmodel byminimiz-
ing the Binary Cross-Entropy loss on the target relevant words. The
input and output vocabulary sizes are set to the values presented in
Table 1. We initialize the embedding layer with the Tencent AI Lab
200d pre-trained word embeddings. We choose the top-100 recall
rate, i.e., the percentage of truth words that appear in the top-100
predictions, as the metric for hyper-parameter tuning. We select a
hidden size of 2048 for the Bi-GRU and a dropout probability of 0.5.
For the optimizer, We set an initial learn-rate of 0.001 and follow a
simple learn-rate decay strategy: If the train/dev loss of the current
epoch is higher than the previous epoch, decay the learn-rate by
0.5, where the minimum possible learn-rate is 0.0001. The RWG
model converges in 20 epochs with a batch size of 256 on an Nvidia

RTX-2080Ti GPU. Each epoch takes approximately 90 minutes to
finish.

In the task-learning phase of Reptile, we minimize the Cross-
Entropy loss on the predicted labels. We set K = 10. We choose a
fixed task-learn-rate of 0.0001 for the optimizer, and a fixed meta-
learn-rate of 0.1. On two RTX-2080Ti GPUs, we carry out the meta-
fine-tuning with a batch size of 32, and we terminate the process if
the loss on the development set does not change by more than 0.01
between two epochs. In the end, our BERT-meta model converges
in 5 epochs with an average classification accuracy of 95.5% on the
dev sets, and each epoch takes approximately one day to complete.

8.2 Evaluation Setup
We derive the macro-averaged F1 score from Mean Average Preci-
sion (MAP) and Mean Average Recall (MAR) as,

MAP = 1
N

N∑
i=1

TP i
TP i + FP i

, (12)

MAR = 1
N

N∑
i=1

TP i
TP i + FN i

, (13)

F1 = 2 · MAP ·MAR
MAP +MAR , (14)

whereN is the number of results with positive predictions.TP , FP ,
FN denotes the number of true-positives, false-positives and false
negatives.

Applied Data Science Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

3073

	Abstract
	1 Introduction
	2 Framework
	2.1 Shortlisting by Relevant Words
	2.2 Meta-Learned Matching Model

	3 Generating Data from Click Graphs
	3.1 Generating Relevant Words Data
	3.2 Generating Data for Meta-learning

	4 Experimentation
	4.1 Datasets
	4.2 Baseline Models
	4.3 Offline Evaluation
	4.4 Human Evaluation
	4.5 Online A/B Testing

	5 Result Analysis & Discussion
	5.1 Hyper-parameter Sensitivity
	5.2 Case Study

	6 Related Work
	6.1 Search Query Understanding
	6.2 Meta-Learning

	7 Conclusion
	References
	8 Supplementary Information
	8.1 Training Setup
	8.2 Evaluation Setup

