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Abstract—With an increasing popularity of real-time applica-
tions, such as live chat and gaming, latency prediction between
personal devices including mobile devices becomes an important
problem. Traditional approaches recover all-pair latencies in a
network from sampled measurements using either Euclidean em-
bedding or matrix factorization. However, these approaches tar-
geting static or mean network latency prediction are insufficient
to predict personal device latencies, due to unstable and time-
varying network conditions, triangle inequality violation and
unknown rank of latency matrices. In this paper, by analyzing
latency measurements from the Seattle platform, we propose new
methods for both static latency estimation as well as the dynamic
estimation problem given 3D latency matrices sampled over time.
We propose a distance-feature decomposition algorithm that can
decompose latency matrices into a distance component and a
network feature component, and further leverage the structured
pattern inherent in the 3D sampled data to increase estimation
accuracy. Extensive evaluations driven by real-world traces show
that our proposed approaches significantly outperform various
state-of-the-art latency prediction techniques.

I. INTRODUCTION

Recent years have witnessed a dramatic growth of Internet
traffic of personal devices, among which a large portion comes
from mobile devices such as smartphones and tablets [1].
Due to the increasing popularity of interactive applications
including live video chat (e.g., FaceTime, Skype, Google+)
and gaming, understanding the latencies between personal
devices has become essential to the operation of such real-time
and delay-sensitive applications. A common idea to estimate
end-to-end Internet latencies in a large network is to measure
RTTs for only a subset of all pairs, based on which the
missing latencies of other pairs are recovered. Existing so-
lutions to such an estimation problem either relies on network
embedding (e.g., Vivaldi [2], GNP [3]), which maps nodes
into a space, so that their distances in the space predict their
latencies, or applies matrix factorization [4] assuming the
latency matrix has a certain low rank.

However, the unique characteristics of personal devices have
posed great challenges to latency estimation. First, almost all
existing approaches perform static network latency prediction,
based on one incomplete matrix formed by current, mean or
median RTTs, assuming the latencies are stable or unchanged,
while in reality, latencies between personal devices could vary
dramatically over time due to changing network connectivities.
In other words, the prediction based on such 2D sampling
fails to utilize the significantly useful structures inherent in
the 3D data of delay matrices evolved over time. Second,

network embedding algorithms such as Vivaldi [2], [5] often
attempt to find the network coordinates of nodes in a Euclidean
space. However, it is a widespread belief [4], [6], [7] that
the triangle inequality may not hold for latencies among end
users at the edge of the Internet. Third, matrix factorization
schemes [4] assume a certain rank of the delay matrices to
decide the dimensions of the factors. However, in reality, ranks
of delay matrices of personal devices are either hard to know
or unstable.

In this paper, we conduct an in-depth analysis of latency
measurements collected from Seattle [8], an educational and
research platform of open cloud computing and peer-to-peer
computing. Seattle consist of laptops, servers, and phones,
donated by users and institutions. Compared with another
dataset we collected from the PlanetLab, we observe that the
latencies between personal devices present different properties
in latency distribution as well as time-varying characteristics.

Based on measurements from Seattle, we propose novel
methods for both static and dynamic latency estimation prob-
lems. First, we propose the so-called “Distance-Feature (D-
F) Decomposition” method which can decompose a given
incomplete latency matrix into a distance matrix that models
the impact of geographical distances on propagation delays,
and a low-rank network feature matrix that models correlated
network conditions among nodes. We propose an iterative
learning process using Euclidean embedding and the Penalty
Decomposition (PD) method for matrix completion as subrou-
tines. The proposed decomposition avoids the shortcomings
of both Euclidean embedding and matrix completion, while
exploiting both of their strengths, since the symmetry and
triangle inequality do not have to hold for network features,
while the low-rank assumption is not imposed on distances.

More importantly, to predict changing latencies, we propose
a novel dynamic recovery process to estimate the current
missing latencies based on “frames” of incomplete latency
matrices sampled in the past. By jointly applying different
matrix transformation schemes, we convert the collected in-
complete 3D data into structured 2D matrices, and extend
the proposed D-F decomposition to apply to the transformed
matrices, leveraging the inherent structures both within each
frame and across different frames.

We conduct extensive trace-driven simulations based on
a large number of RTT measurements collected from both
Seattle and PlanetLab, and show that the D-F decomposition
significantly outperforms state-of-the-art latency estimation



techniques, including matrix factorization and Vivaldi with a
high dimension, especially for the Seattle data. The dynamic
recovery based on 3D sampling can further substantially
enhance the prediction accuracy of changing latencies between
personal devices.

The remainder of this paper is organized as follows. Sec. II
reviews the related literature, followed by a comparative study
of latency measurements from both Seattle and PlanetLab
in Sec. III. We propose the distance-feature decomposition
method for latency recovery in Sec. IV and study its perfor-
mance through trace-driven simulations as compared to state-
of-art algorithms. In Sec. V, we propose our dynamic latency
estimation scheme based on the 3D data of latency matrices
evolved over time and again conduct extensive simulations to
evaluate its performance. The paper is concluded in Sec. VI.

II. RELATIONSHIP TO PRIOR WORK

Network coordinate systems (NCSs) embed hosts into a
coordinate space such as Euclidean space, and predict latencies
by the coordinate distances between hosts [9]. In this way,
explicit measurements are not required to predict latencies.
Most of the existing NCSs, such as Vivaldi [2], GNP [3], rely
on the Euclidean embedding model. However, such systems
suffer a common drawback that the predicted distances among
every three hosts have to satisfy the triangle inequality, which
does not always hold in practice. Many studies [5], [10] have
reported the wide existence of triangle inequality violations
(TIV) on the Internet.

To overcome the TIV problem, matrix factorization is intro-
duced in [11] and has recently drawn an increasing attention
in the networking community [4], [12]. The key idea is to
assume a network distance matrix is low-rank and complete
it by factorizing it into two smaller matrices using methods
such as Singular Value Decomposition (SVD) or Non-negative
Matrix Factorization (NMF) [13]. The estimated distances
via matrix factorization do not have to satisfy the triangle
inequality. However, these systems actually do not outperform
Euclidean embedding models significantly, due to reported
problems such as prediction error propagation [6]. Besides,
without considering the geographical distances between hosts
that dictate propagation delays, they have missed a major
chunk of useful information.

Beyond matrix factorization, the general matrix completion
problem, including minimizing the rank of an incomplete
matrix subject to limited deviation from known entries [14]
and minimizing the deviation from known entries subject to
a fixed rank [15], has also been widely studied recently for
numerous applications in control, image recovery and data
mining. Besides, measurement studies have been conducted
for different kinds of networks, such as WiFi networks [16],
Cellular networks [17], and 4G LTE networks [18], reporting
the latencies and other properties. The latency measurement
on Seattle is cross-network in nature, as Seattle involves
many different types of nodes from servers to laptops and
smartphones.
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Fig. 1. RTT distributions in Seattle and PlanetLab. a) CDFs of all measured
RTTs. b) CDFs of the maximum RTT measured for each pair of nodes.

II1. Seattle vVS. PlanetLab: MEASURING THE LATENCIES

In this section, we characterize the latencies between per-
sonal devices according to the measurements we have col-
lected from Seattle [8]. Seattle is a new open peer-to-peer
computing platform that provides access to personal computers
worldwide. In contrast to PlanetLab [19], which is a global
research network comprised of computers mostly located in
stable university networks, the Seattle nodes include many
personal devices, such as mobile phones, laptops, and desktop
computers, donated by users and institutions. Due to the
diversity, mobility and instability of these personal devices,
there is significant difference between Seattle and PlanetLab
in terms of latency measurements.

We have collected the round trip times (RTTs) between 99
nodes in the Seattle network in a 3-hour period commencing at
9 pm on a day in summer 2014. The measurement has resulted
in 688 latency matrices containing 6, 743, 088 latencies, each
of which has a size of 99 x 99 and represents the pairwise
RTTs between 99 nodes collected in a 15.7-second timeframe.
In the sequence, we may refer to each matrix as a “frame” in
such 3D measurement data. Our data collection on Seattle was
limited to 99 nodes because as a new platform that includes
both personal computers and servers, Seattle is yet to receive
more donations of personal devices. However, it will be clear
in Sec. IV and Sec. V that the collected data is rich enough
for the purpose of studying latency prediction algorithms.

As a benchmark dataset, we have also collected the RTTs
between 490 PlanetLab nodes in a 9-day period in 2013 and
obtained 18 matrices containing 4,321, 800 latencies, each of
which has a size of 490490 and represents the pairwise RTTs
collected in a 14.7-hour timeframe. We compare the collected
Seattle data and PlanetLab data in terms of inter-node RTTs,
rank properties, and time-varying characteristics.

Round Trip Times. Fig. 1(a) shows that the Seattle RTTs
are greater than those in PlanetLab, with values spread in a
wider range. The mean RTT of the two datasets are 0.36 sec-
onds for Seattle and 0.15 seconds for PlanetLab, respectively.
While the largest measured RTT in PlanetLab is 7.90 seconds,
the maximum RTT measured in Seattle is 90.50 seconds,
which maybe because a corresponding node is not online, a
frequent case for cellular devices out of the service region.
The long tail in Seattle RTTs implies that triangle inequality
violation may be prevalent in Seattle.
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Fig. 2. The heat maps and singular values of a Seattle RTT matrix and a
PlanetLab RTT matrix.

Rank of Latency Matrices. Fig. 2(a) and Fig. 2(b) plot the
heat maps of a typical frame (one of the 688 latency matrices)
in the Seattle data and a typical frame in the PlanetLab
data (with white representing large RTT values and black
representing small RTTs). We can observe that redundant
patterns exist in Fig. 2(a) and Fig. 2(b) and obtain an intuitive
knowledge that the latency matrices in both datasets may be
low-rank. We further perform singular value decomposition
(SVD) [20] on both latency matrices, and plot the singular
values of both latency matrices in Fig. 2(c) and Fig. 2(d). We
can observe that the singular values of both matrices decrease
fast. The 15th singular value of the Seattle latency matrix
is 4.9% of its largest one, while the 7th singular value of
the PlanetLab latency matrix is 4.7% of its largest one. This
confirms the low-rank nature of Internet RTTs reported in
previous measurements [21].

Time-Varying Characteristics. Unlike PlanetLab, since
Seattle contains personal devices including laptops and mobile
phones, the diversity and mobility of these personal devices
may greatly affect the stability of latency measurements.
Fig. 3 plots the RTT measurements evolved over time for 3
typical pairs of nodes in Seattle and PlanetLab, respectively.
In contrast to the latencies in PlanetLab which almost remain
unchanged over 9 days, the 3 pairs of nodes in Seattle have
latencies that vary frequently even in only 30 minutes. The
average standard deviation of the latencies between each pair
of nodes is 0.36s in Seattle and 0.01s in PlanetLab.

To get a further idea about the evolution of the entire frame
of data over time, we denote M (t) the n x n matrix of RTTs
measured at time ¢, where M;;(t) represents the RTT between
node ¢ and node j. Then, we define the Relative Varying
Percentage (RVP) of M (¢) relative to the first matrix M (1) as

RVP(t,1) = i 300 [ M () — My (1)]/ My (1).
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Fig. 3. The time-varying latencies of 3 pairs of nodes in Seattle and PlanetLab,
respectively.
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Fig. 4. The relative varying percentage of each measured latency matrix
relative to the first latency matrix in Seattle and PlanetLab, respectively.

We compare the RVPs of the Seattle RTTs over time with
those of the PlanetLab RTTs, by plotting the RVP of every
frame at time ¢ relative to the first frame of data in Fig. 4,
which shows a huge difference between the two datasets.
While the largest RVP of the PlanetLab frames over 9 days
is only 0.09, the RVPs of the Seattle frames measured for
3 hours vary from 0 to 5.8 x 10° with a mean of 1.5 x 10°.
This demonstrates the time-varying nature of Seattle latencies,
which makes it hard to predict the latency between two
Seattle nodes. Traditional network coordinate embedding is
not suitable to model the latencies in personal device networks.
For example, if a Seattle node is a cellphone, whenever the
phone user moves, its coordinate will change greatly according
to the changes in surrounding network environments.

IV. STATIC LATENCY ESTIMATION
VIA DISTANCE-FEATURE DECOMPOSITION

In this section, we propose a new algorithm for the static
network latency recovery problem, given a frame of latency
matrix with missing values. Our new algorithm exploits both
the underlying geographical distances and the low-rank struc-
ture of the RTT matrix at hand. Traditional Euclidean embed-
ding [2], [3] assumes symmetry and triangle inequalities for



pairwise latencies, which may not be true in reality, especially
for mobile devices with poor connectivity. On the other hand,
matrix factorization approaches [4] rely on the assumption
of a fixed low rank in the latency matrix. However, it is
hard to know such a rank a priori. And this method may
ignore the true Euclidean component in latencies dictated by
geographical distances.

Our algorithm combines the strengths of both methods
by modeling the pairwise latencies with two components: a
distance component, representing geographic information that
dictates propagation delay, and a network feature component,
representing correlated network connectivity. The essence of
our algorithm is a learning process that iteratively decomposes
both components.

A. The Static Network Latency Prediction Problem

Let R™ denote the n-dimensional Euclidean space. The set
of all m x n matrices is denoted by R™*™. Assume a network
contains n nodes, and the latency matrix measured between
these nodes is M € R™ ", with M;; representing the RTT
between node ¢ and node j. We use © to denote the set of index
pairs (7, j) where the measurements M;; are missing. For
missing entries (i, j) € ©, we denote their values as M;; =
unknown. We define the sample rate R as the percentage of
known entries in M.

The static prediction problem is—given an RTT matrix M
with missing entries, recover the values of the missing entries.
We let M € R"*™ denote the recovered RTT matrix.

B. lIterative Distance-Feature Decomposition

We model the RTT matrix M as the Hadamard product (or
entry-wise product) of a symmetric distance matrix D € R™*"
and an asymmetric network feature matrix F' € R™*", i.e.,

M=DoF, (1)

where M;; = Dy Fi;, 1 <4, j < n, D;; represents the
distance between nodes ¢ and j in a Euclidean space, and Fj;
represents the “network connectivity” from node ¢ to node j:
a smaller F;; indicates a better connectivity. The rationale is
that while the geographical distance of two nodes on the earth
dictates the propagation delay between them, other factors
such as network congestions and node status can also affect
the RTT values.

We assume that only the network feature matrix F' is low-
rank. This is because there exists correlation between network
connectivities on all incoming (or outgoing) links of each
node. Another interpretation is through feature vectors. If the
rank of F'is r, F' can be represented by

F=F'F, F,eR™" F.cR™*", )

We call the i*” column of F}, denoted by fi, the left feature
vector of node 7, which represents the network feature from
node 7 to other nodes. Similarly, we call the it" column of
F., denoted by fﬁ, the right feature vector of node i, which
represents the network feature from other nodes to node <.

Algorithm 1 Iterative Distance-Feature Decomposition
1: DV :=M
2: for k =1 to maxlter do
Perform Euclidean Embedding on D*~! to get the
complete matrix of distance estimates DF
; {AD” (i, j) ¢ ©
4: F ij = ij o
unknown V(i, j) € ©
5: Perform Matrix Completion (4) on F* to get the
complete matrix of network feature estimates Fk

M;; -
6 k I:"kj V(Z? ]) ¢ ©
. AR ij
ij unknown V(i, j) € ©
7: end for R )
8 M,;; = D?wjaxlterFianjaxlter’ 1<i, j<n

Hence, the network connectivity from node ¢ to node j can
be determined by the feature vectors, i.e., F;; = ffT fi.

Our model overcomes the weaknesses of both Euclidean
embedding and low-rank matrix completion, since symmetry
and triangle inequalities only need to hold for the distance
matrix D but not F', and the low-rank property is only assumed
for network connectivity F'.

To learn both the distance matrix D and network feature
matrix F' from a latency matrix M with missing entries, we
propose an iterative algorithm, described in Algorithm 1, that
incorporates both Euclidean embedding and low-rank matrix
completion as subroutines. Denote the estimated matrix D
and F at iteration k as D and F'*. First, we initialize D°
to be the original latency matrix M with missing entries.
In each iteration, we estimate the distance matrix DF with
Euclidean embedding. We then obtain the remaining ratio
matrix between M and DF, which is the incomplete network
feature matrix F*. By applying low-rank matrix completion
on F*, we get the estimated complete network feature matrix
F'* at iteration k. We then divide M by F* to get D, which
is the input for Euclidean embedding in the next iteration,
and so on. After a few iterations, D and F' will approach the
real geographical distance component and the network factor,
respectively. Finally, the predicted latency between nodes ¢
and j is given by (1).

The two critical subroutines in our algorithm are Euclidean
embedding on D* and low-rank matrix completion on F*.
There are various algorithms available for these two tasks.
We apply the Vivaldi algorithm [2] for Euclidean embedding,
and the Penalty Decomposition (PD) method [15] for low-rank
matrix completion.

1) Euclidean Embedding: Given the input matrix M €
R™"™ Vivaldi predicts network latencies by assigning every
node a coordinate and estimating the latency between two
nodes by their Euclidean distance, i.e., the estimated latency
Mij between nodes ¢ and j is given by

M;j = ||z — 4], 3)

where z; is the coordinate assigned to node <.



2) Low-Rank Matrix Completion: Given an input matrix
X € R™*™ with missing entries, the problem of low-rank
matrix completion is to find a complete matrix X by solving

minimize rank(X)
XeRmxn (4)
subject to | X;; — Xy <7, (i, j) ¢ O,

where T is a parameter to control the error tolerance on known
entries of X [15].

We utilize the Penalty Decomposition (PD) method [15] to
solve the low-rank matrix completion problem in Algorithm 1.
The PD method can solve general rank minimization problems
like the following:

mini}gnize f(X) + v rank(X)
subject to  ¢g(X) <0, h(X)=0, X €e®N,

for v > 0, where ® is a closed convex set and V¥ is a closed
unitarily invariant convex set in R”"*™, and f : R™*" —
R, g : R™*™ — RP and h : R™*"™ — RY are continuously
differentiable functions.

The PD method solves problem (5) by reformulating it as

f(X) 4+ v rank(Y)
subject to  ¢(X) <0, h(X)=0, X €®, Y €,
and defining a corresponding quadratic penalty function as
Py(X,Y) = f(X) + v rank(Y)
4%
+ 5 (lgCOTFIE + 1AX5 + 1X = YI%),

(&)

minimize
X

(6)

)

where ¢ > 0 is a penalty parameter, [-]* denotes the non-
negative part of a vector that z+ = max(x,0) given a vector
x € R™, and || - ||r is the Frobenius norm of a real matrix
X € R™" e, | X||r = Tr(XYT), with Tr(-) denoting
the trace of a matrix. Then the PD method minimizes (7) by
alternately solving two subproblems: minimizing over X with
Y fixed and minimizing over Y with X fixed, each of which
can be approximately solved by a block coordinate descent
(BCD) method, which is widely used to solve large-scale
optimization problems [22].

It is easy to see that problem (4) is a special case of problem
B) with f(X) =0, p=¢=0, v=1, ¥ =R™*" and

b = {X e Rm*" . ‘X” — Mij| <, (’L,j) S @} (8)
Thus, the two subproblems to be alternately solved are
minimize {IX —AY)|%: X € ®},

9
minimize {rank(Y) + o||Y — B(X)||% : Y € R™*"} ®
for some p > 0, A, B € R™*", respectively. Thus, the PD
method can be suitably applied to solve (4). Please refer to
[15] for more details about the PD completion method.

C. Performance Evaluation

We evaluate our algorithm based on both the Seattle data
and PlanetLab data, in comparison with various state-of-the-
art approaches. We define the relative estimation error (RE) on
missing entries as |M;; — M,;|/M;, for (i, j) € ©, which
will be used to evaluate prediction accuracy.

1) Comparison with Other Algorithms: We compare our
algorithm with the following approaches:

« Vivaldi with dimension d =3, d =7, and d = 3 plus a

height parameter;

o PD matrix completion (MC) directly applied to the
latency matrix M;

« DMFSGD Matrix Factorization [4] that attempts to
approximate M by the product of two smaller matrices
UeceR™* and V € R™*", ie., M = UTV, such that a
loss function based on M — M is minimized, where 7 is
the assumed rank of M.

For our method, the Euclidean embedding part on D is done
using Vivaldi with a low dimension of d = 3 without heights.

We randomly choose 100 frames from the 688 frames in
the Seattle data. For PlanetLab data, as differences among
the 18 frames are small, we randomly choose one frame to
test the methods. Recall that the sample rate R is defined
as the percentage of known entries. Each chosen frame is
independently sampled at a low rate R = 0.3 (70% latencies
are missing) and at a high rate R = 0.7, respectively.

For DMFSGD, we set the rank of M to r = 20 for Seattle
data and r = 10 for PlanetLab data, respectively, since the
20" (or 10*") singular value of M is less than 5% of the
largest singular value in Seattle (or PlanetLab). In fact, r =
10 is adopted by the original DMFSGD work [4] based on
PlanetLab data. We have tried other ranks between 10-30 and
observed similar performance. We plot the relative estimation
errors on missing latencies in Fig. 5 and Fig. 6, for the Seattle
data and PlanetLab data, respectively, under 6 methods.

For the Seattle results in Fig. 5, we can see that the
D-F decomposition outperforms all other algorithms by a
substantial margin. We first compare with Vivaldi. Even if
Vivaldi Euclidean embedding is performed in a 7D space, it
only improves over 3D space slightly, due to the fundamen-
tal limitation of Euclidean assumption. Furthermore, the 3D
Vivaldi with a height parameter, which models the “last-mile
latency” to the Internet core [2], is even worse than the 3D
Vivaldi without heights in Seattle. This implies that latencies
between personal devices are better modeled by their pairwise
core distances multiplied by the network conditions, rather
than by pairwise core distances plus a “last-mile latency”.
Thus, we adopt 3D Vivaldi without heights as the Euclidean
embedding algorithm in our D-F decomposition.

We now look at the matrix completion algorithms in Fig. 5.
Both PD matrix completion and DMFSGD are inferior to our
algorithm because they solely rely on the low-rank assumption,
which may not hold for pairwise core distances. As has been
pointed out in Sec. IV, ignoring the underlying Euclidean part
which does model geographical distances will not yield the
best performance, especially for unstable latencies in a mobile
network.

For the PlanetLab results in Fig. 6, our algorithm is only
slightly better than other algorithms, which again implies the
much different behavior of Seattle and PlanetLab latencies.
The improvement in PlanetLab is not as great as in Seattle,
because network conditions in PlanetLab are more stable,
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Fig. 7. Influence of rank(F') and maxlIter for the Seattle dataset.

which makes the network feature matrix F' less useful. This
fact again shows the unique strength of our algorithm to cope
with unstable personal device networks.

2) Impact of Parameters: We investigate the impact of
three parameters to our algorithm: the sample rate R, the rank
of network feature matrix rank(F’) and the number of iterations
maxlter. Fig. 5(a) and Fig. 5(b) reveal the robustness of our
algorithm at both high (R = 0.7) and low (R = 0.3) sample
rates. We have also tested other sample rates and observed
similar results.

We then study the impact of the achieved rank(F') from
the PD matrix completion part in our algorithm by tuning
7 in (4) to indirectly control the produced rank(F'). Recall
that rank(F) also represents the dimension of node left/right
feature vectors. Fig. 7(a) shows how the median and mean
of relative estimation errors change as rank(F') varies. Our

experimental experience suggests that the best results are
usually achieved when 1 < rank(F') < 10 (the best result
is achieved at 7 in this figure).

Finally, Fig. 7(b) evaluates the impact of the number of
iterations, which shows the best accuracy is often achieved in
just the 2"¢ or 3" iteration. The performance degrades when
more iterations are performed due to the overfitting effect.

V. DYNAMIC LATENCY ESTIMATION VIA 3D SAMPLING

Traditional network latency estimation [2], [4], [11] all
attempt to predict static (median/mean) network latencies.
However, as shown in Sec. III, the latencies between personal
devices may change over time. This motivates us to study
the dynamic latency estimation problem to fill the missing
entries in the current frame 7" based on a window of frames
measured from ¢t = 1 to t = T. We call such an approach
dynamic latency estimation from “3D sampling”, since the
network latencies are sampled over time, where each frame of
data contains only partial measurements of RTTs.

Although the latency between a pair of Seattle nodes
changes frequently, it may stay in a state for a while before
hopping to a new state, as shown in Fig. 3. Therefore, if we
utilize the autocorrelation between frames at different times
in addition to the inter-node correlation in the network feature
matrix, we may improve the prediction accuracy.

Suppose we have measured the latency matrix of n nodes
for T time frames, where T is called the prediction window.
Denote the incomplete matrix measured at time ¢ by M (t),



2 M, Current@Frame gA
2 | 2 ? My, ?
Myq | My 77 ?
?2 | 2 — ? M,,
T=3 ?

i

Op

Frame-Stacked Matrix ~ Original Matrices Column-Stacked Matrix

Fig. 8. An illustration for frame-stacking and column-stacking operations.

1 , 800
8 600
2 2
S £ 400
> (o))
©
8 6000 g .
Z 8000 L

%8000 300 500
Time Frame Index

(a) Column-Stacked Matrix Heat Map (b) Column-Stacked Matrix SVD

688 01 20 40 60 80 99

Singular Value

Fig. 9. The heat map and singular values of the column-stacked Seattle
dataset. The size of the compound matrix is 9801 X 688, and every column
of the matrix contains all the latencies measured in one frame.

then our objective is to predict the missing entries in the
current latency matrix M (T') based on M(1),..., M(T).

A. D-F Decomposition from 3D Sampled Data

The main idea of our algorithm is to stack the latency matri-
ces measured at different times in different ways to obtain 2D
compound matrices, and then exploit the low-rank nature of
the compound matrices. We use two kinds of stack operations:
frame-stacking and column-stacking, as illustrated in Fig. 8.
In column-stacking, every latency matrix M (t) € R™*™ is
transformed into a column vector V(t) € R™ containing
the latencies of all pairs of nodes. Then, the column-stacked
matrix © € R"**T consists of vectors V(t) ordered by their
measured time. In frame-stacking, we directly concatenate all
the measured latency matrices sorted by time to form the
frame-stacked matrix U € R"T>",

Fig. 9 shows the heat map and singular values of the
column-stacked matrix that consists of 688 frames of the
Seattle data. As we can see, the heat map reveals the low-
rank nature of the compound matrix: even though the column-
stacked matrix has a size of 9801 x 688, the 22"¢ singular value
of the matrix is only 5% of the largest one. This implies that
the latency matrices measured at different times are highly

correlated while evolving with time.

Given a prediction window of T" frames of latency matrices,
we use O to denote the set of index pairs (4,;j) for which
M,;;(T) are missing at the current time 7. We can further
divide © into two subsets:

O4 = {(4,7)|M;;(t) is known for at least one t € {1,...,T — 1}}
Op = {(4,7)|M;;(t) is missing for all ¢t € {1,...,T —1}}

Algorithm 2 D-F Decomposition for 3D Sampled Data
1: procedure PREDICTING MISSING PAIRS IN O 4
2: Column-stack M (¢t) for 1 <t < T to get 2. Perform
matrix completion (4) on {2 to get the complete matrix Q.
Unstack 2 to get M_(t) as an estimate of each M (t).

3: end procedure
4: procedure PREDICTING MISSING PAIRS IN Op
5: Initially, let DO(t) := M (t)
6: for k£ = 1 to maxlIter do
7: Perform Euclidean embedding on D¥~1(¢) to get

the complete estimag:d(rglatrix DF(t) for each t.

45 (t .o
5 Fi(t) = {ﬁw v )¢ 0
unknown V(i, j) € ©

9: Frame-stack F*(t) for 1 < t < T to get Uk.

Perform matrix completion (4) on U’} to get the complete
estimated matrix O%. Unstack U% to get F*(t) € R"*",

Mi; (t) V(i i o
10: DE(t) = { F50 (i, j) ¢
unknown V(i, j) € ©

11: end for R R
12: My ;(T) := D;"jax'ter(T)Fi'}?aX'te'(T), 1<, 7<n.
13: end procedure

MCJ'J'(T) V(Z, j) €0y
14: M;;(T) M;i;(T) V(i, j) € Op
M (T) (i, j) ¢ ©

We use two different procedures to recover the missing
pairs in © 4 and ©p. For ©4, we simply apply PD matrix
completion to the column-stacked matrix ) to recover the
missing values. The predicted values of M;,;(T) are denoted by
M..;;(T) for (i,j) € © 4. The intuition is that when some past
values M;;(t) are measured, we could directly take advantage
of the low-rank property of 2, i.e., the auto-correlation of
measurements across times as shown in Fig. 9, to estimate the
current missing values.

For ©p, we assume each M (t) can be decomposed into
a distance matrix D(¢) and network feature matrix F(t),
and apply a variation of the proposed Algorithm 1 (D-F
Decomposition) to the frame-stacked matrix U to recover the
missing values. This requires us to iteratively apply Euclidean
Embedding for every frame of the distance component D(t)
in the prediction window ¢ € {1,...,T}, and apply PD matrix
completion to the entire frame-stacked matrix Op formed
by all the network feature frames F'(t) for ¢t € {1,...,T}.
Therefore, Algorithm 1 must be extended to handle the frame-
stacking (before PD matrix completion) and the unstacking
(before Euclidean embedding).

We have treated © i differently, since for (¢, j) € ©p where
no past value of M;;(t) is measured, the column-stacked
matrix is not useful to predict M;;(T'), since the entire row
in © composed of M;;(t) for 1 <t¢ < T is missing. In this
case, the completed values of M;;(T") will be meaningless,
because the rank of {2 will not change if we scale up or down
the entire estimated row. Therefore, we exploit the low-rank
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Fig. 10. The CDFs of relative estimation errors on the missing values in the current frame with sample rate R = 0.3 and R = 0.7 for the Seattle dataset.

nature of U, containing frame-stacked feature matrices F'(t)
for 1 <t < T. Algorithm 2 describes the detailed steps of
our sparse recovery process based on 3D data.

B. Performance Evaluation

1) Comparison with Other Algorithms: We test our dy-
namic prediction algorithm on 50 3D matrices, each randomly
selected from the Seattle dataset. Every 3D matrix contains
T = 3 latency frames. The objective is to recover all the
missing values in the last frame. We compare our algorithm
with the static prediction methods described in the previous
section. Besides, we also compare to four other methods:

¢ Column-Stack+MC: column-stack the latency matrices
and perform PD matrix completion on €2;

o Column-Stack+Algorithm 1: column-stack the latency
matrices and perform D-F decomposition on €2;

o Frame-Stack+MC: frame-stack the latency matrices and
perform PD matrix completion on U;

o Frame-Stack+Algorithm 1: frame-stack the latency ma-
trices and perform D-F decomposition on U;

Notice that when we perform D-F decomposition on 2 or U,
we perform Euclidean embedding for each unstacked latency
frame individually and perform matrix completion on the big
stacked network feature matrix in each iteration.

Fig. 10(a) and Fig. 10(d) compare Algorithm 2 with the
static prediction algorithms. For both low and high sample
rates R = 0.3 or R = 0.7, Algorithm 2 that exploits 3D
sampled frames significantly outperforms the static latency
prediction methods. It verifies the significant benefit of utiliz-
ing historical information, and reveals the strong correlation
between different latency frames over timeline. By exploiting
the low-rank structure of the column-stacked latency matrix {2

and the frame-stacked network feature matrix U, Algorithm 2
takes full advantage of the implicit information in the 3D data.

Fig. 10(b) and Fig. 10(e) compare Algorithm 2 with two
other methods based on the column-stack operation: perform
PD matrix completion on €2, and perform D-F decomposition
on (). Compared with the method that perform PD matrix
completion on €, our Algorithm 2 outperforms it a lot when
the sample rate is low (R = 0.3). The improvement is due to
the different treatment to latencies for node pairs (i, j) € ©p
in our algorithm. When the sample rate is high (R = 0.7), the
difference between Algorithm 2 and the method that performs
PD matrix completion on {2 is tiny. Because the proportion of
node pairs (i, j) € ©p will be small if sample rate is high.
For the method that performs D-F decomposition on 2, it is
even worse than performing PD matrix completion directly
on (2. This reveals the fact that we can benefit more from
historical values of M;; when they are available rather than
using network condition correlations between different nodes
for estimation.

Fig. 10(c) and Fig. 10(f) compare Algorithm 2 with two
other methods based on the frame-stack operation: performing
PD matrix completion on U, and performing D-F decomposi-
tion on U. As we can see, our algorithm outperforms both of
them at both high (R = 0.7) and low (R = 0.3) sample
rates. Furthermore, compared with performing PD matrix
completion on U, the effect of performing D-F decomposition
on U is better, which again implies that utilizing the low-rank
structure of the network feature matrix is more reasonable than
utilizing the low-rank property of the original latency matrices.

Through all the comparisons above, we show the benefits of
incorporating historical latency frames and prove the necessity
of different treatments to unknown node pairs (i, j) € © 4 and
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(i, j) € Op, i.e., the column-stack operation is suitable for
node pairs (i, j) € © 4 and the frame-stack operation is better
for node pairs (i, j) € ©Op. It is shown that the combined
strategy in our hybrid Algorithm 2 is optimal.

2) Impact of Prediction Window 7: Fig. 11 shows how
the median and mean relative estimation errors for missing
values in frame 7' vary when the prediction window T
increases. We make two interesting observation. First, the best
performance is achieved by T' = 3 when the sample rate
is 0.7, but is achieved by T' = 7 when the sample rate is
0.3. Second, the prediction errors increase if we add more
frames. When the sample rate R is high, a few recent frames
are enough to predict the current missing latencies. However,
when R is low, the latency between each pair of nodes is
less frequently measured, and thus more historical frames
are needed to recover the current latencies. However, once
we have obtained enough information from some historical
frames, adding more frames will hurt performance, since the
rank of the column-stacked matrix will increase, making it
harder to complete the stacked matrix with low error.

VI. CONCLUDING REMARKS

Based on measurements collected from the Seattle network
that consists of user-donated personal devices, in this paper, we
study the new challenges in estimating the less stable and time-
varying latencies in personal device networks. We propose
the distance-feature decomposition algorithm that avoids the
defects of both Euclidean embedding and matrix factorization.
By decomposing the network latency matrix into a distance
matrix and a network feature matrix, our approach is able to
capture the underlying geographical distance as well as varying
network conditions among the nodes. To predict changing
latencies, we further formulate the dynamic network latency
estimation problem that aims to predict the current missing
latencies based on frames of incomplete latency matrices
collected in the past, and extend our distance-feature decom-
position algorithm for such 3D sampled data, with the aid of
a hybrid matrix transformation scheme. Extensive evaluation
based on both Seattle and PlanetLab data shows that our
algorithms outperform state-of-the-art network embedding al-
gorithms (e.g., high-dimensional Vivaldi with/without heights)
and matrix factorization (e.g., DMFSGD) by a substantial mar-
gin, especially for personal device networks. The prediction
accuracy is further significantly improved by exploiting the

structure inherent in the 3D sampled data through the proposed
hybrid dynamic estimation mechanism.
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