
UNICO: Unified Hardware Software Co-Optimization for Robust
Neural Network Acceleration

Bahador Rashidi
∗

Chao Gao
∗

bahador.rashidi@huawei.com

chao.gao4@huawei.com

Huawei Canda Research Center

Edmonton, AB, Canada

Shan Lu

Huawei Canda Research Center

Edmonton, AB, Canada

shan.828346@huawei.com

Zhisheng Wang

Huawei Hisilicon

Shanghai, China

wangzhisheng1@hisilicon.com

Chunhua Zhou

Huawei Canada Research Center

Edmonton, AB, Canada

zhouchunhua@huawei.com

Di Niu

University of Alberta

Edmonton, AB, Canada

dniu@ualberta.ca

Fengyu Sun

Huawei Hisilicon

Shanghai, China

sunfengyu@hisilicon.com

ABSTRACT
Specialized hardware has become an indispensable component to

deep neural network (DNN) acceleration. To keep up with the rapid

evolution of neural networks, holistic and automated solutions for

jointly optimizing both hardware (HW) architectures and software

(SW) mapping have been studied. These studies face two major

challenges. First, the combined HW-SW design space is vast, which

hinders the finding of optimal or near-optimal designs. This issue

is exacerbated for industrial cases when cycle accurate models are

used for design evaluation in the joint optimization. Second, HW

design is prone to overfitting to the input DNNs used in the HW-SW

co-optimization. To address these issues, in this paper, we propose

UNICO, an efficient Unified Co-Optimization framework with a

novel Robustness metric for better HW generalization. Guided by

a high-fidelity surrogate model, UNICO employs multi-objective

Bayesian optimization to effectively explore the HW design space,

and conducts adaptive, parallel and scalable software mapping

search based on successive halving. To reduce HW overfitting, we

propose a HW robustness metric by relating a HW configuration’s

quality to its sensitivity in software mapping search, and quan-

titatively incorporate this metric to search for more robust HW

design(s). We implement UNICO in open source accelerator plat-

form, and compare it with the state-of-the-art solution HASCO.

Experiments show that UNICO significantly outperforms HASCO;

it finds design(s) with similar quality to HASCO up to 4× faster, and
eventually converges to better and more robust designs. Finally, we

deploy UNICO for optimizing an industrial accelerator, and show

that it generates enhanced HW design(s) for key real-world DNNs.

∗
Equal Contribution

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0329-4/23/10. . . $15.00

https://doi.org/10.1145/3613424.3614282

CCS CONCEPTS
• Hardware→ Emerging tools and methodologies.

KEYWORDS
HW-SW Co-Design, Neural Network Accelerator, HW Robustness,

Multi-Level Optimization

ACM Reference Format:
Bahador Rashidi, Chao Gao, Shan Lu, Zhisheng Wang, Chunhua Zhou,

Di Niu, and Fengyu Sun. 2023. UNICO: Unified Hardware Software Co-

Optimization for Robust Neural Network Acceleration. In 56th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO ’23), Octo-
ber 28–November 01, 2023, Toronto, ON, Canada. ACM, New York, NY, USA,

14 pages. https://doi.org/10.1145/3613424.3614282

1 INTRODUCTION
Deep neural networks (DNNs) [37] are pervasive nowadays, finding

diverse applications in, e.g., computer vision [24], natural language

processing [17], and autonomous driving[5]. DNNs are based on ten-

sor computations, where tensors are data represented and processed

in the form of multi-dimensional arrays. Typically, a deep neural

network consists of multiple layers of tensor operators, where each

operator performs multiple basic tensor computations, e.g., gen-

eral matrix multiply (GEMM), general matrix-vector multiplication

(GEMV), etc. Tensor computations are expensive. Thus, specialized

hardware [8], i.e. neural network accelerators, have been designed to

speed up DNN execution. These accelerators [8, 42, 48] deliver fast

execution by taking advantage of parallel computation while pre-

serving high energy efficiency. Theoretically speaking, there is an

optimal accelerator architecture that best suits every specific deep

neural network workload. In practice, however, considering the cost

of chip design and corresponding tool-chain development, mod-

erately general-purpose hardware is preferred. Consequently, the

success of end-to-end AI acceleration hinges not only on hardware

design but also on the effectiveness of software mapping compila-

tion for the specific input DNN. For example, the hardware could

be designed to execute a fixed-sized GEMM tensor computation;

given a DNNmodel, it is the responsibility of software mapping opti-
mizer to decide how to split the workload into sub-tasks and invoke

corresponding GEMM intrinsics on hardware for best end-to-end

efficiency. Therefore, the quality of software mapping optimization

77
Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 17,2024 at 17:30:14 UTC from IEEE Xplore. Restrictions apply.

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Bahador et al.

becomes another crucial factor for achieving the fast execution

promised by the hardware. To ease this difficulty, deep learning

compiler frameworks [6, 40] have been proposed, aiming at au-

tomatically synthesizing efficient mappings for different neural

network models and AI accelerators.

While AI hardware and software stacks conventionally evolve

separately, the solutions found may be suboptimal when jointly

deployed, resulting in compounded end-to-end performance loss.

Recently, holistic approaches [33, 56, 64, 66] aspiring to jointly

optimize both the hardware architecture and software mapping

have been investigated. While this is a more appealing paradigm,

the major challenge is that the space for hardware-software co-

optimization can be gigantic. For example, it is estimated that ad-

dressing the bottlenecks of EfficientNet [58] by joint optimization

would require an exploration of a large search space ofO(102300) [66].
To counter this challenge, different solutions have been proposed

to reduce the size of the search space, mainly focusing on 1) de-

sign space pruning or 2) design space approximation. For example,

HASCO [64] uses a notion of unified IR to prune the search space;

FAST [66] introduces several approximation techniques such that

the design space exploration only needs to be done in a smaller

and approximated space. Despite these efforts, the hardware and

software design choices are still explored in isolation from an algo-

rithmic perspective.

Moreover, new neural network architectures are emerging con-

stantly, which may negate the effectiveness of hardware/software

co-design obtained for specific prior DNN workloads.

In this paper, we propose a Unified Co-Optimization framework

for AI accelerator co-design. UNICO approaches this bi-level large

design space exploration in a symbiotic way such that it focuses

on performing software exploration more for promising hardware

candidates while discarding unfavorable hardware configurations

progressively. In the meantime, UNICO is designed to find robust

hardware configurations that can better generalize to new work-

loads unseen in the co-optimization. We show that by taking addi-

tional quantitative measures in software exploration, UNICO can

alleviate the effect of overfitting hardware to input workloads as in

prior approaches. Specifically, our contributions can be summarized

as follows:

• We propose a batched hardware sampling strategy, to enable

parallel hardware evaluation, yet guided by multi-objective

Bayesian optimization (MOBO) with a surrogate model that

is refined with high-fidelity data samples selected adaptively

by a data-driven approach.

• We propose software mapping exploration with successive

halving for sampled hardware configurations, with effective

candidate promoting criterion, to speed up the HW-SW co-

search process.

• We devise a method to enhance the generalization of hard-

ware configurations to unseen workloads, by introducing

an additional quantitative robustness measure into the co-

optimization process.

We conduct extensive experiments on spatial accelerator co-design

for a wide range of DNN workloads under edge and cloud device

power constraints based on the open-source micro-architectural

Figure 1: A typical 2D spatial accelerator HW design compo-
nents (e.g. (𝑃𝐸𝑥 , 𝑃𝐸𝑦), 𝐿1 and 𝐿2 buffer sizes)

accelerator model MAESTRO [35]. We also perform HW-SW co-

search on a cycle-accurate simulator for Ascend-like Architecture

[42], where each evaluation of HW-SW co-design is costly. Ex-

periments show that UNICO achieves consistently better perfor-

mance on the identified Pareto front in terms of power, latency and

area compared to the state-of-the-art methods, at a significantly

smaller search cost. Moreover, the hardware discovered by UNICO

by searching on multiple input workloads achieves better perfor-

mance on a range of newer (in age and operators’ dimensions)

DNNs that are not involved in HW-SW co-optimization.

The rest of the paper is organized as follows. Section 2 presents

the background and HW-SW co-optimization challenges. Section

3.2 explains details on how UNICO performs hardware design ex-

ploration using high-fidelity multi-objective Bayesian optimization

(MOBO). Section 3.3 presents using early stopping rule for SW

mapping exploration. Then, section 3.4 introduces the concept of

hardware design generalizability. Moreover, section 3.5 explains par-

allel and scalable UNICO implementation details. Section 4 shows

a variety of experimental studies to highlight the algorithmic im-

plication and industrial competitiveness of UNICO. Finally, section

6 concludes the paper.

2 BACKGROUND
A number of studies have been conducted for designing customized

hardware accelerators for providing real-time processing of deep

neural networks [30, 31, 50]. These accelerators are mostly spatial

in nature. They use an array of interconnected processing elements

(PEs) for parallelism. The internal dataflow between the PEs is op-

timized via network-on-chips(NoCs) for efficient data reuse (e.g.

input activations, weights, or output activations). Such a design

reduces memory access and thus preserves high energy efficiency.

Figure 1 illustrates a general design template of a typical 2D spatial

accelerator where the key design choices are the number of process-

ing elements (PE) in X and Y axis (𝑃𝐸𝑥 , 𝑃𝐸𝑦), private scratchpad
size (𝐿1), global memory size (𝐿2) and network-on-chip bandwidth

(NoCBW).

Once HW design is fixed, for a given input DNN workload, the

remaining task is optimizing SW mapping choices. DNN accelera-

tors invariably expose a number of runtime parameters where the

78
Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 17,2024 at 17:30:14 UTC from IEEE Xplore. Restrictions apply.

UNICO: Unified Hardware Software Co-Optimization for Robust Neural Network Acceleration MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

programmers have to explicitly manage how computation is sched-

uled both spatially and temporally. Indeed, it is known that different
scheduling choices result in large variations in efficiency [28]. Tradi-

tionally, tensor SW mapping generation largely relies on manually

optimized, high-performance tensor kernel libraries, such as cuDNN.
However, these manual operator-level libraries development is not

only laborious but also difficult to maintain as it demands timely

updates whenever there is a change in the HW configuration.

To ease this difficulty, there have been auto-scheduling frame-

works [6, 51] aiming to automatically synthesize efficient software

mapping for various hardware targets. These frameworks assume

DNNs as programs of domain-specific languages (DSLs), then in-

troduce a set of optimization primitives where the compiler can

translate the high-level DNN DSL into low-level code; the process

is thus named as scheduling. For example, commonly used primi-

tives for loop transformation include loop split, reorder, fuse, and
tiling. As demonstrated in Figure 1, SWmapping space is composed

by a particular set of scheduling primitives that can be applied in

a specific order to the original loop representation such that the

smallest computation unit (e.g. inner-most loop) can be mapped

directly to certain HW resources spatially or temporally [35, 68].

Apparently, the best SW mapping choice depends on what HW

topology and parameters are selected.

2.1 Formulation of HW-SW Co-optimization
We can intuitively formalize HW-SW co-design as a co-optimization

such that the choice of HWparameters serves as the hyper-parameters

for SW mapping exploration. Thus, the HW-SW co-design para-

digm is a bi-level optimization, as the SW mapping choices are

affected by selected HW config (e.g. #PEs, 𝐿1 and 𝐿2), and the lat-

ter must be sampled first such that it induces constraints for the

SW mapping parameters search space. This sequential dependency

naturally implies a bi-level optimization scheme shown in Fig. 2. In

other words, for a given tensor workload𝑤 , a HW design config-

uration ℎ is sampled in the outer level and is passed to the inner

level to find the best choice of SWmapping 𝑠 (𝑤,ℎ,𝑏) given a search

budget 𝑏. The inner-level SW mapping exploration shown in Fig.

2 can be done by adopting existing mature heuristic tools such

that they aim to find a better SW Mapping 𝑠 (𝑤,ℎ,𝑏) by minimizing

an objective (e.g. latency and/or energy-delay-product (EDP)). An

important characteristic of a mature SW mapping exploration tool

is that given a search budget 𝑏, the objective loss is monotonically

non-increasing during the course of the SWmapping search. For in-

stance, FlexTensor[68] guides SW mapping choices by a Q-learning

policy, and assigning a higher search budget 𝑏 for SW mapping

exploration intrinsically improves the quality of selected mapping

choice 𝑠 (𝑤,ℎ,𝑏). Another choice of SW-mapping exploration tool

is GAMMA [32] which utilizes an evolutionary genetic approach

to iteratively find the best SW mapping choice.

2.2 Challenges to HW-SW Co-optimization
In practice, HW-SW co-design faces the following major challenges:

Large co-optimization space: The combined HW-SW space for

optimization can be huge. Suppose HW design space is of O𝐻𝑊 (.),
and SW space is of O𝑆𝑊 (.). Clearly, the joint space would be

≈ O𝐻𝑊 (.) × O𝑆𝑊 (.). For a given convolution workload expressed

Figure 2: Schematic illustration of HW/SW co-search.

as a 7D loop shown on the right side of Fig. 1, the corresponding

unconstrained SW mapping space is of O𝑆𝑊 (260). For the spatial
accelerator template as in Fig. 1, there are O𝐻𝑊 (222) hardware
parameters. For commercial accelerators, assuming the overall ar-

chitecture is fixed, the parameter choices of buffer capacities and

PE array shapes can still be huge, e.g. for TPU [66], it is O𝐻𝑊 (244).
Expensive HW-SW PPA evaluation: During the course of SW

mapping exploration shown in the inner level of Fig. 2, a power-

performance-area (PPA) estimator is required to evaluate the quality

of a given HW-SW candidate. Analytical cost models such as MAE-

STRO [35] and TimeLoop[49] are cheap to run and output PPA

in order of milliseconds. However, when it comes to commercial

custom-designed accelerators, cycle-accurate models (CAModels)

(e.g. [42]) are typically utilized for PPA estimation that is highly

time-costly (i.e. order of minutes) due to its simulation complexity.

As a result, the combination of expensive PPA evaluation and the

aforementioned large co-optimization space dictates a crucial need

for an efficient unification of HW-SW co-optimization.

Generalizing to unseen DNNworkloads: The other challenge
that has not been well investigated in previous research is HW de-

sign generalization ability to unseen DNN workloads. We argue

that this is a crucial issue since HW accelerators are typically de-

signed w.r.t specific DNN workloads, such that the Pareto-optimal

HW configurations achieve the best PPA for that time being for

those specific workloads. However, the same HW design may not

achieve top performance for future DNN models that are different

in architecture and/or operator type, weights, and activation di-

mensions. This is particularly pressing for automatic HW design,

since, in essence, the HW configurations being explored are invari-

ably aimed to best fit the input DNNs. It is important to consider

generality in HW-SW co-optimization from the co-search aspect,

ensuring that the PPA optimization is not overfitting to a narrow

set of DNNs.

79
Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 17,2024 at 17:30:14 UTC from IEEE Xplore. Restrictions apply.

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Bahador et al.

3 UNICO: A UNIFIED AND ROBUST
CO-OPTIMIZATION FRAMEWORK

In this section, we present the design of UNICO to address the

aforementioned challenges. Fig. 3 illustrates the overall workflow

of UNICO, which formalizes HW-SW co-search as a bi-level co-

optimization task such that the choices of HW are the hyper-

parameters and SW mapping exploration is assumed as an iterative

evaluation procedure. How UNICO components interact with each

other is described in Algorithm 1.

3.1 Notations
To facilitate exposition, we introduce the following notations. The

input is a (DNN) workload𝑤 for conducting HW-SW optimization.

Let ℎ ∈ 𝐻 be a hardware sample, and 𝑠 (𝑤,ℎ,𝑏) ∈ 𝑆 is the best

SW mapping generated with search budget 𝑏 for workload𝑤 and

hardware ℎ using a SW mapping tool. The SW mapping search is

driven by minimizing some cost function with an objective, e.g.,

latency: 𝑙 (𝑠) ∀𝑠 ∈ 𝑆 , such that it is clear ∀𝑏1 ≤ 𝑏2, 𝑙 (𝑠 (𝑤,ℎ,𝑏1)) ≥
𝑙 (𝑠 (𝑤,ℎ,𝑏2)). That is, the software mapping search objective is

monotonic. To ease presentation, in the remaining text, we drop

𝑤 when the context is clear.

3.2 HW Design Exploration
As shown in Algorithm 1, UNICO adopts a bi-level co-optimization

strategy such that the MOBO guides the HW design space explo-

ration (DSE) in outer loop. Following conventional MOBO [47], for

the HW-SW co-optimization problem, the surrogate model inputs

are HW design configurations and its outputs are co-optimization

objectives that need to be minimized. We use the Gaussian Process

(GP) as the surrogate model for MOBO. Each 𝑦 𝑗 ∈ 𝑌 refers to a co-

optimization objective in (latency, power, area, sensitivity).
In Section 3.4, we elaborate on how the sensitivity value is de-
fined and how it is used for more robust HW search.

As shown in Algorithm 1 (line 1), in UNICO, the surrogate model

is initialized randomly. Then, as in line 4, we sample a batch of

𝑁 hardware candidates 𝐻0. Each HW is sampled with an acqui-

sition function that balances exploration and exploitation, i.e., it
recommends a HW with decreased objective value predicted by the

surrogate model while taking into account the uncertainty of this

prediction. From lines 5-9, UNICO performs adaptive SW mapping

search for each hardware configuration in 𝐻0. We explain the de-

tails in Section 3.3. At the end of each MOBO iteration, as in line

11, the surrogate model is updated with high-fidelity data points

collected from that iteration, such that in the next MOBO iteration

a better batch of hardware configurations can be sampled.

After one MOBO iteration, a major question is which HW-SW

design samples among the batch of 𝑁 samples should be used for

updating MOBO surrogate model, as we have to make a trade-off

between the amount of selected samples and the quality of these

samples. To help the selection, in UNICO, we collapse the multiple

objectives 𝑦 𝑗 ∈ 𝑌 into a single objective as in [34], and then choose

top candidates based on a single fidelity objective, which is defined

in below.

𝑣ParEGO = max

𝑗∈1,2,3,4
(𝑤 𝑗𝑦 𝑗) + 𝜌𝑌𝑇𝑊,

(1)

Here, each𝑤 𝑗 ∈𝑊 is an importance weight for objective 𝑦 𝑗 , and∑
𝑗 𝑤 𝑗 = 1. Also, 𝜌𝑌𝑇𝑊 (where 𝜌 = 0.2 by default) is the weighted

sum of all four objectives. We add this term to ensure the inclusion

of all objectives in the scalar computation. Using this scalarization,

as in line 10 of Algorithm 1, we empirically form a high-fidelity

dataset D by selecting top hardware configurations among a batch

of 𝑁 candidates, as illustrated by the bottom of Fig. 3. The following

steps explain the details of our proposed High Fidelity Update
Rule:
• Step 1: Given an objective vector 𝑌 for each of the 𝑁 hard-

ware configurations in every MOBO iteration, use Eq. (1) to

calculate the fidelity scalar 𝑣ParEGO.

• Step 2: Let 𝑣BestParEGO be the smallest fidelity scalar value that

has been seen thus far. Measure the 𝐿2-norm distance 𝑑 =

| |𝑣ParEGO − 𝑣BestParEGO | |2 for each hardware configuration.

• Step 3: Update surrogate model with high-fidelity hardware

configurations that satisfy 𝑑 ≤ 𝑈𝑈𝐿 and add these 𝑑 to the

set D.

• Step 4: Recompute the Upper Update Limit (𝑈𝑈𝐿) by the

95% percentile value of D.

In particular, the upper update limit parameter𝑈𝑈𝐿 gets updated

at the end of each MOBO trial, which is then used as a new high-

fidelity sample selection threshold for the next MOBO trial. In

practice,𝑈𝑈𝐿 tends to decrease over time, leading to a more strict

selection criterion. This is desirable for MOBO, since we want more

exploitation of high-quality samples as MOBO progresses.

3.3 Adaptive SW Mapping Search with
Successive Halving

After a batch of 𝑁 hardware configurations are sampled, we need

to call the software mapping search for each hardware ℎ. Ideally,

for hardware ℎ1 and ℎ2, if ℎ1 is superior to ℎ2, we would hope more

search budget can be given to ℎ1 than ℎ2. In UNICO, as shown

in Algorithm 1 (Line 2–9), we use successive halving (SH) [29] for

this goal. However, in default SH, the succeeding candidates selec-

tion criterion is only based on terminal value (TV) at the end of

the current round of budget 𝑏 𝑗 such that only the best half candi-

dates are selected for further exploration. For the software mapping

search, we observe that the hardware configurations with relatively

steep convergence rates are also likely to be promising, i.e., those

steep-converging candidates should be given a second chance to be

evaluated with higher budgets in the next round. Fig. 4 illustrates

the difference between default SH and our modified successive halv-

ing (MSH) for SW mapping search. Specifically, We quantify the

convergence rate of each hardware configuration ℎ by measuring

the area under the curve (AUC) of its mapping history (see Fig. 4b

for the definition of the AUC). In other words, hardware sample ℎ

with higher AUC tends to converge faster, resulting in better final

outcomes than those with relatively smaller AUC.

As in Fig. 4, given a batch of 𝑁 hardware configurations, SW

mapping exploration is conducted in multiple rounds such that each

time only a portion of candidates can survive to the next round. To

identify the succeeding candidates at each round, both TV and AUC

are used. Let 𝐻TV represent the list of hardware configurations ac-

cording to TV sorted in ascending order. Let 𝐻AUC represent the list

of hardware configurations according to AUC sorted in descending

80
Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 17,2024 at 17:30:14 UTC from IEEE Xplore. Restrictions apply.

UNICO: Unified Hardware Software Co-Optimization for Robust Neural Network Acceleration MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

Figure 3: Implementation of UNICO with multi-objective Bayesian optimization and successive halving.

Algorithm 1: UNICO
Input:𝑤 : workload

Output: Pareto-Front set of HW configurations X
Parameters: 𝑁 : HW batch size; MaxIter : maximum MOBO iterations; 𝑏𝑚𝑎𝑥 : Maximum SW mapping search budget

1 Randomly initialize MOBO’s Surrogate model

2 𝑏 = 𝑏max𝜂
−⌊log𝜂 𝑏max ⌋

3 for 𝑖 ∈ {1, . . . ,MaxIter} do
4 𝐻0 ← Sample a batch of 𝑁 HW configurations using Surrogate model

5 for 𝑗 ∈ {1, ..., ⌈log
2
𝑁 ⌉} do

6 𝑏 𝑗 ← ⌊𝑏𝜂− 𝑗 ⌋
7 for ℎ ∈ 𝐻 𝑗−1 parallel do
8 {𝑠 (ℎ,𝑏1), ..., 𝑠 (ℎ,𝑏 𝑗)} ← Software_Mapping_Search(ℎ,𝑏 𝑗)
9 𝐻 𝑗 ← top 𝑘 HW samples from 𝐻 𝑗−1 by assessing ∪𝑏=1,...,𝑏 𝑗

𝑠 (ℎ,𝑏), ∀ℎ ∈ 𝐻 𝑗−1

10 Form high-fidelity HW sample set D by assessing 𝑠 (ℎ,𝑏), ∀ℎ ∈ 𝐻0,∀𝑏 ∈ [1, 𝑏max]
11 Update Surrogate model using D
12 Update HW Pareto Front X
13 return HW Pareto Front X

order. Then, we select top-𝑘 succeeding hardware configurations

as 𝐻𝑘 = 𝐻
(𝑘−𝑝)
TV ∪ 𝐻 (𝑝)AUC subject to 𝐻

(𝑘−𝑝)
TV ∩ 𝐻 (𝑝)AUC = ∅. According

to this constraint, when we select top-𝑝 candidates to form 𝐻
(𝑝)
AUC ,

we ensure the same hardware candidate be not selected if it was

already in 𝐻
(𝑘−𝑝)
TV . In this way, 𝐻

(𝑝)
AUC guarantees to always promote

at least 𝑝/𝑁 portion of hardware candidates to the next round with

respect to convergence rate criterion.

Essentially, our modified SH is a generalized version of the de-

fault SH, and would degenerate to the SH by setting 𝑘 = ⌊0.5𝑁 ⌋ and

𝑝 = ⌊0⌋. To balance the contribution of TV and AUC, for UNICO,

we use 𝑘 = ⌊0.5𝑁 ⌋ and 𝑝 = ⌊0.15𝑁 ⌋ for all experiments.

3.4 Hardware Robust to SW Search and Unseen
DNNs

To reduce HW over-fitting to specific workloads used during co-

optimization, one has to consider two questions: (1)How tomeasure

81
Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 17,2024 at 17:30:14 UTC from IEEE Xplore. Restrictions apply.

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Bahador et al.

(a) Illustration of candidate promoting criteria and comparison be-
tween SH and proposed MSH.

(b) AUC measures the area that is trapped between the curve and the
horizontal line corresponding to the end loss value of the curve. For
this toy example.

Figure 4: A modified successive halving (MSH) that uses both AUC and terminal value to select candidates.

Figure 5: (a) SW mapping objective convergence during search and indication of two promising SW mapping choices. The
orange point is thought of as “sub-optimal“, while the green one is “optimal” point found by SW search. (b) Illustration of
latency and power for two hypothetical scenarios. (c) Analytical function 𝐹 (𝜃) to quantify the power variation behaviour with
respect to latency change.

the robustness of hardware configurations which reflects its gen-

eralization to different SW mapping choices. (2) How to integrate

such measurement into HW-SW co-optimization.

For question (1), we design metric 𝑅 to quantify HW’s robust-

ness to SW search. Specifically, after performing parallel SW map-

ping search for the batch of 𝑁 hardware configurations using

successive halving, for evaluation of each hardware ℎ, what we

obtain is a list of best mapping history at different budgets, i.e

{𝑠 (ℎ,𝑏1), 𝑠 (ℎ,𝑏2), . . . , 𝑠 (ℎ,𝑏max)} where 𝑏max is the maximum bud-

get eventually spent on a hardware configuration ℎ. As an assess-

ment of the quality of hardware samples, 𝑌 (ℎ, 𝑠 (ℎ,𝑏max)) provides
a three-dimensional measurement of (power, latency, area)
for a given hardware configuration ℎ with the best-found software

mapping 𝑠 (ℎ,𝑏max). However, this assessment on ℎ is arguably frag-

ile since it evaluates ℎ solely by the best-seen software mapping

and omits how the mapping optimization landscape looks during

the mapping search. In other words, 𝑌 contains no information on

the correlation between performance and different promising SW

mapping choices. We thus introduce a new metric for quantifying

such a correlation. Specifically, we might say a hardware ℎ is robust

to SW search when the performances (e.g., latency) have negligible

variation with SW mappings at a range of different budgets.

Fig. 5(a) shows SW mapping optimization losses for a given

hardware configuration during SW mapping search, where we call

a SW mapping choice “optimal” if it is the final converged SW, and

“sub-optimal” if the mapping objective value is the (1−𝛼) (e.g. 95%)
right-tail percentile of the whole loss history. In practice, SW search

affects both latency and power and they do not always decrease

simultaneously, thus our metric has to model the sensitivity of

latency change and power change jointly. Therefore, we refer to
a geometric formula for defining the sensitivity:

𝑅 = Δ(1 + 𝐹 (𝜃)), (2)

where Δ is the 2-norm distance of the two selected candidates, as

in Fig. 5(a), and 𝜃 is the angle of the two mapping choices in the

space of latency and power with reference to the horizontal line

(as shown in Fig. 5(b)). It is clear that Δ = 0 implies ideal robustness,

i.e., 𝑅 = 0, since this means there is no variation between optimal
and sub-optimal SW choices for both latency and power.

If Δ > 0, we use the second term (1 + 𝐹 (𝜃)) to penalize Δ by

considering the relation of latency change and power change. To
have more emphasis on power change, we design 𝐹 (𝜃) as follows
(shown in Fig. 5(c)).

𝐹 (𝜃) = 6

𝜋2
𝜃2 − 5

𝜋
𝜃 + 1.

82
Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 17,2024 at 17:30:14 UTC from IEEE Xplore. Restrictions apply.

UNICO: Unified Hardware Software Co-Optimization for Robust Neural Network Acceleration MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

Therefore, we see that when 𝜃 = 𝜋/2, (1 + 𝐹 (𝜃)) = 1, thus

𝑅 = Δ. Consider two cases: (i) 𝜃 ∈ [0, 𝜋/2] and (ii) 𝜃 ∈ [𝜋/2, 𝜋].
For (i), (1 + 𝐹 (𝜃)) decreases from 2Δ to Δ as 𝜃 increases. For (ii),

(1 + 𝐹 (𝜃)) increases from Δ to 3Δ as 𝜃 increases. The asymmetry

of Fig. 5(c) implies that our design prefers 0 ≤ 𝜃 ≤ 𝜋/2 more than

𝜋/2 ≤ 𝜃 ≤ 𝜋 . The intuition is that, for the latter case, from point

“orange” to “green”, power is increased, which is less favorable than

the other case (first circle quarter) when both latency and power

decrease.

For question (2), we compute sensitivity 𝑅 at the end of

each MOBO trial for each hardware configuration in the sampled

batch. Then, we include 𝑅 as the fourth dimension objective, i.e.,

𝑌 = (latency, power, area, sensitivity). In this way, the impact

of metric 𝑅 on HW-SW co-optimization is twofold: First, MOBO

surrogate model considers 𝑅 as an optimization target and learns

to sample hardware configurations with less 𝑅 value as MOBO iter-

ations advance. Second, the MOBO surrogate update mechanism

incorporates 𝑅 in Eq. (1) when generating scalar 𝑣ParEGO. That is,

we also refer to 𝑅 for selecting high-fidelity samples for updating

the surrogate model. This further encourages the MOBO to learn

to sample hardware configuration that is more robust to SW search.

By reducing HW sensitivity, we speculate that the HW being gen-

erated would also yield better generalization on unseen workloads

that are not used for co-optimization.

3.5 Scalable and Parallel Implementation
To enhance practical applicability, we describe how to implement

UNICO using parallel computation. This is particularly impor-

tant when the co-optimization space is vast and when (power,
latency, area) estimation is time-consuming. Fig. 6a shows our

modular implementation which consists of the following compo-

nents:

• HW Design Explorer: A module responsible for hardware

configuration sampling and multi-objective optimization,

which calls the proposed high-fidelity MOBO algorithm as

an internal API.

• SW Mapping Explorer: An internal program to call to per-

form a SW mapping search for a given batch of hardware

configurations. FlexTensor [68] and GAMMA [32] are exam-

ples for this component in open-source spatial accelerator

design environments.

• PPA Estimation Engine: A standalone REST API to call

which requires hardware configuration, SW mapping con-

figuration, and a tensor workload as inputs to estimate per-

formance, power and area. This component can be an an-

alytical model such as MAESTRO [35] or TimeLoop [49].

These models can be used in the early stage for prototyping.

In later-stage production, simulation-based cycle-accurate

models (CAModels) for specific industrial architecture (e.g.,

Ascend [42]) might be used. CAModels can be orders of mag-

nitude slower than analytical models but are more accurate.

As in Fig. 3, for each MOBO trial, SW mapping search needs to

be performed for a sampled hardware configuration sequentially in

multiple successive halving rounds. Within each successive halving

round, we run standalone Jobs via multi-processing in parallel,

where each job handles the SW mapping search (in that successive

(a) Parallel implementation of UNICO algorithm to support multi-
workload HW-SW co-optimization.

(b) Computation distribution strategy for UNICOmajor components.

Figure 6: UNICO parallel and scalable implementation.

halving round) for a selected hardware configuration on a specific

DNN workload. To maximize the parallelization, depending on the

choice of SW mapping search tool, another level of parallelization

on software search itself might be used for fast exploration of SW

mapping space.

Another important feature in the implementation of UNICO is

its scalability in terms of computational power. We propose to uti-

lize a master-slave architecture shown in Fig. 6b, which distributes

different components of UNICO on different machines. In particular,

high-fidelity MOBO algorithm (i.e., the HW explorer) and other

miscellaneous computation tasks are placed on cloud machines

with high computing power while SW exploration Jobs can be dis-

tributed to slave machines with relatively lower computing power.

As a result, UNICO allows adding additional slave machines to be

able to run more SW search Jobs in parallel to achieve scalability.

In summary, UNICO offers a co-optimization algorithm frame-

work consisting of threemajor new features: (1) an enhancedMOBO

with enhanced surrogate modeling learning for HW sampling; (2) a

customized successive halving for more efficient software mapping

search; (3) a novel sensitivity metric 𝑅 for reducing HW over-fitting.

Therefore, UNICO can easily be applied for different platforms with

specific hardware design template, software mapping search tool,
and PPA estimation engine. In application, how scalable UNICO

can be implemented is bounded by various pragmatic factors, such

as the computation power or memory of the master machine, the

communication latency between master and slave machines, the

expensiveness of software mapping search and PPA evaluation.

Practitioners should refer to specific characteristics of their plat-

form and computation resources for the best deployment efficiency

of UNICO.

83
Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 17,2024 at 17:30:14 UTC from IEEE Xplore. Restrictions apply.

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Bahador et al.

4 EXPERIMENTS
To show the effectiveness of our approach, we deploy UNICO on

both an open-source accelerator template [64] and an Ascend-like

commercial architecture used in edge devices [42].

Specifically, we compare UNICO’s performance against the state-

of-the-art HW-SW co-optimization methods from the following

aspects: (1) efficiency improvement due to the use of batch sampling,

high-fidelity MOBO HW explorations, and parallel SW mapping

search with proposed successive halving, which has been described

in Section 4.2 and 4.5; (2) generalizing capability of hardware to

unseen DNNworkloads because of the newly introduced robustness

measures, which has been presented in Sections 4.3 and 4.4; and

3) how UNICO can be used to improve the performance of an

existing industrial-class Ascend-like [42] architecture, which has

been shown in Section 4.6.

4.1 Experimental Setup
Open-Source Platform: For open source accelerator experiments,

the hardware search space includes the 𝑃𝐸 array shape (the num-

bers of 𝑃𝐸 on the x and y axes ranging from 1 × 1 to 24 × 24),

𝐿1 ∈ {2𝑖 × 3𝑗 }𝑖, 𝑗=0,...,10 bytes, and 𝐿2 ∈ {2𝑖 × 3𝑗 }𝑖, 𝑗=0,...,10 KB buffer

sizes and NoC bandwidth ∈ {64, 128}. As the hardware intrinsic is
set to GEMMCore, we also search for the dataflow style which can

be weight-stationary or output-stationary. As in HASCO [64], two

scenarios, edge and cloud, are considered in our experimentation,

they have HW design spaces 10
5
and 10

9
, respectively. For the soft-

ware mapping search technique, we employ out-of-box FlexTensor

[68] to search for the optimal software mapping in the search space

including split, reorder, unroll, inline, etc. The SWmapping space is

around 10
6
for one layer of a neural network. Given a DNN of 𝑛 lay-

ers, the joint HW-SW spaces are around 𝑛 ·1011 and 𝑛 ·1015 for edge
and cloud, respectively. For the PPA estimation engine, we adopt

MAESTRO [35], which is an open-source analytical framework to

model the dataflows of neural networks and predict the latency and

power consumption of the given hardware configuration. These

settings are exactly the same as those used in HASCO [64].

Ascend-like Platform: For Ascend-like platform, the hardware

configuration search space includes the buffer sizes and bank groups

for each of 𝐿0𝐴, 𝐿0𝐵, 𝐿0𝐶 , 𝐿1, vector buffers, parameter buffer, the

ICache size, and𝑀𝑁𝐾 cube parameters. They compose a HW space

of size 10
9
. For SW mapping exploration tool, we use a depth-first

buffer fusion search technique similar to those in [23, 45, 55, 63]

to search for SW mapping configurations with respect to a given

search budget 𝑏. The SW mapping search is typically around 10
10
,

resulting in a large joint HW-SW space around 10
19
. PPA estimation

is done by a cycle-accurate model (CAmodel) with a benchmarked

simulation error of 8 ± 3%. The CAmodel takes the workload DNN

according to a compiled SWmapping choice along with a particular

hardware configuration and returns profiled PPAs. In comparison

to MAESTRO which takes seconds to output PPAs, Ascend-like

CAmodel wall-clock time is highly expensive (e.g., ranging from

2-10 minutes) due to its topological complexity. Hence, the effect

of co-search time efficiency and its fast convergence is even more

crucial.

HW/SWDesign Feasibility:UNICO ismore of a co-optimization

algorithm framework, rather than a brand-new co-design system

(a) Edge Device

(b) Cloud Device

Figure 7: Comparisons of HASCO, NSGAII, MOBOHB and
UNICO in terms of Hypervolume Difference. UNICO uses
batch size 𝑁 = 30 and 𝑏𝑚𝑎𝑥 = 300. The 𝑥-axis is the search cost
measured in wall-clock time on the same server machine.

for a specific HW template or architecture. When comparing with

HASCO, we deploy UNICO to the same open source platform as

HASCO, indicating that they share the same HW and SW joint

space, and UNICO uses the same space pruning and constraint for
addressing the feasibility issues in HW/SW co-design search. When

deploying to industrial accelerators, we follow the same scheme:

we build UNICO on expert-crafted HW design space and rely on an

existing mature software mapping tool for software optimization.

Computation Resources: For experiments on open source

accelerator, we run both UNICO and HASCO on the same Intel

Xeon CPU server. For experiments on Ascend-like, we run the

distributed version of UNICO with the same server as the master
with 4 more slave workstations for conducting software mapping

search and PPA evaluation.

84
Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 17,2024 at 17:30:14 UTC from IEEE Xplore. Restrictions apply.

UNICO: Unified Hardware Software Co-Optimization for Robust Neural Network Acceleration MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

Table 1: Comparisons of HASCO, NSGAII and UNICO on the Edge Device (Power < 2W).

Networks HASCO NSGAII UNICO
L(Ms),P(mW),A(𝑚𝑚2) Cost(h) L(Ms),P(mW),A(𝑚𝑚2) Cost(h) L(Ms),P(mW),A(𝑚𝑚2) Cost(h)

Bert 0.001082, 270.2, 5.0 35.5 0.000644, 317.9, 6.5 35.5 0.000341, 149.7, 3.4 7.48
MobileNet 2.5, 317.9, 6.5 155.5 2.2, 182.4, 3.4 85.75 1.4, 161.4, 3.3 31.4
ResNet 33.3, 244.3, 1.7 105.5 9.6, 322.5, 3.1 76.45 8.1, 128.5, 2.1 21.43
SRGAN 134.9, 381.4, 6.6 145.5 278.3, 317.9, 6.5 44 109.4, 155.2, 3.7 29.4
UNet 270.0, 293.6, 3.4 100.5 275.5, 353.1, 3.4 52.17 85.0, 148.6, 2.8 20.43
VIT 409.2, 173.4, 2.3 35.5 1432.6, 187.1, 1.9 35.5 322.3, 132.7, 2.0 7.48

Xception 8.5, 429.0, 4.3 130.5 12.7, 422.8, 4.1 80.67 4.1, 154.3, 3.7 26.41

Table 2: Comparisons of HASCO, NSGAII and UNICO on the Cloud Device (Power < 20W).

Networks HASCO NSGAII UNICO
L(Ms),P(mW),A(𝑚𝑚2) Cost(h) L(Ms),P(mW),A(𝑚𝑚2) Cost(h) L(Ms),P(mW),A(𝑚𝑚2) Cost(h)

Bert 0.000186, 785.5, 18.2 35.5 0.000134, 820.3, 17.7 35.5 0.000127, 618.5, 14.9 7.48
MobileNet 0.685, 659.0, 15.8 155.5 1.5, 1174.0, 15.0 107.45 0.531, 638.7, 14.4 39.63
ResNet 4.1, 711.9, 14.1 105.5 4.56, 958.8, 15.0 91.5 2.59, 658.1, 14.7 28.41
SRGAN 69.98, 797.5, 18.2 145.5 51.63, 658.7, 15.8 45.45 41.13, 639.4, 14.4 29.4
UNet 98.6, 534.3, 11.4 100.5 58.8, 533.1, 9.3 52.5 29.7, 359.6, 8.5 24.42
VIT 171.3, 317.9, 6.5 35.5 171.3, 317.9, 6.5 35.5 155.6, 287.0, 2.9 13.29

Xception 4.9, 444.1, 6.1 130.5 5.7, 509.8, 7.1 88.03 4.1, 383.8, 6.6 26.41

4.2 Performance on Open-Source Accelerator
We compare the performance of UNICO with the state-of-the-art

open source co-design framework HASCO [64] and NSGAII[13] on

individual networks (BERT [14], MobileNet [26], ResNet [24], SR-

GAN [38], UNET [52], VIT [17], Xception [11]) under edge (power

≤ 2𝑊) and cloud (power ≤ 20𝑊) constraints. To demonstrate the

end-to-end performance of each co-search approach, we compare

the PPA (latency, power, area) performance of the hardware con-

figuration which achieves the min-Euclidean-distance to the origin

on PPA Pareto-Front set.

For the edge device, as shown from Table 1, UNICO achieves

strictly better PPA performance compared to HASCO and NSGAII

on all listed networks except for ResNet and VIT. For ResNet,

UNICO achieves strictly better PPA performance compared to NS-

GAII. Besides, compared to HASCO, UNICO sacrifices area by a

small amount while achieving 75.7% and 47.4% improvements in

latency and power, respectively. Moreover, for VIT, compared to

NSGAII, UNICO sacrifices area by 5.3% while achieving 77.5% and

29.1% improvements in latency and power, respectively. In addi-

tion, UNICO achieves strictly better PPA performance compared to

HASCO on VIT.

Similarly, for the cloud device, as shown from Table 2, UNICO

achieves strictly better PPA performance compared to NSGAII on

all listed networks. While compared to HASCO, UNICO achieves

strictly better PPA performance on all listed networks except for

ResNet and Xception. However, similar to the performance compar-

ison on the edge device, UNICO sacrifices one PPAmetric by a small

amount, while achieving large gains on the other two PPA metrics.

Specifically, for ResNet, UNICO sacrifices area by 4.2% while achiev-

ing 36.8% and 7.5% improvements in latency and power. Moreover,

for Xception, UNICO sacrifices area by 8.2% while achieving 16.3%

and 13.6% improvements in latency and power.

More importantly, the search costs of UNICO are noticeably

smaller than HASCO and NSGAII across all listed networks. There-

fore, UNICO can achieve better or comparable performance within

a much smaller search time than HASCO and NSGAII. In addition to

HASCO and NSGAII, we also implement a multi-objective version

of BOHB [18]. Figures 7a and 7b show the hypervolume difference

across the tested networks on edge and cloud devices, respectively.

Clearly, UNICO shows faster search convergence due to its advanta-

geous batch hardware sampling and high-fidelity MOBO surrogate

update. In particular, compared with MOBOHB, which also uses

successive halving, UNICO still shows superior convergence behav-

ior, indicating that our customized successive halving is indeed a

more suited algorithm for co-optimizing DNNs.

4.3 How Reliable is Metric 𝑅 as an Indicator for
HW Generalization?

We empirically investigate whether metric 𝑅 can be a valid indicator

for HW robustness. The experiment works as follows: (1) we run

UNICO without sensitivity metric 𝑅 on a set of training DNNs

({UNET, SRGAN, BERT}); (2) we select pairs of Pareto fronts (HW)

having similar PPAs; (3) we then compute the 𝑅 values for each

HW point in a pair; (4) for each HW in a pair, we validate its PPAs

on another set of validation DNNs ({ResNet [24], ResUNet [15],

VIT [17], MobileNet [27]}). (5) for each pair HW, we check the

correlation of 𝑅 values and their performance on the validation

DNNs.

Fig. 8a illustrates the obtained Pareto-Front set of hardware

configurations w.r.t power and latency. Then, among all design

points, we select three different hardware configurations pairs (1,

9), (35, 15) and (10,14) such that each pair design points PPA have

no larger than 10% difference collectively over the mentioned three

training DNN workloads, and compute the sensitivity metric as

85
Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 17,2024 at 17:30:14 UTC from IEEE Xplore. Restrictions apply.

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Bahador et al.

(a) HW sample Pareto front, with three comparable pairs.

(b) Latency comparison on unseen DNNs for P1, P2 and
P3.

Figure 8: Demonstration on how the selected more robust
HW designs perform better than less robust HW samples on
four unseen DNNs. The 𝑥-axis is the search cost measured in
wall-clock time on the same server machine.

in Eq. 2 for each design point within a pair and show the relative

robustness (i.e., smaller 𝑅) in Fig. 8b (shown in legend).

For each of the three pairs, we perform individual SW map-

ping searches for each of the hardware configuration points on

the validation workload set. As in Fig. 8b, even though the latency

performance of Point 1 (more robust) on the training networks

is 7.8% worse than that of Point 9 (less robust), Point 1 achieved

28.5% better latency performance on average across the valida-

tion networks. similarly for the other pairs (35, 15) and (10, 14) —

the more robust design points, Point 35 and Point 14, resulted in

lower average latency across all unseen workloads by 10% and 18%

with respect to their less robust rivals, respectively. This shows our

proposed robustness measurement can be a valid indicator of the

generalization ability of hardware configurations.

Figure 9: UNICO vs HASCO comparison on generalization.
Co-Optimization performed on 4 DNNs { MobileNetV2, SR-
GAN, ResNet, VGG}, obtained HW is tested on 8 new DNNs
as in y-axis. The gain ratio achieved by UNICO w.r.t HASCO
is shown on the x-axis.

4.4 Comparison with HASCO on Generalization
to Unseen DNNs

To see if UNICO can obtain better generalization for unseen appli-

cations with the sensitivity metric, we run UNICO and compare

with HASCO [64] by conducting the co-optimization on a set of

training workloads, and then directly apply the best-found hard-

ware configurations to new and unseen applications. Specifically,

the training networks consist of four networks (i.e. MobileNetV2,

ResNet, SRGAN and VGG), and we obtain the best hardware config-

uration w.r.t the min-Euclidean-distance. Selected hardware config-

uration for each approach is directly adopted to perform individual

SW mapping search on a validation set consisting of eight new net-

works: UNET, VIT, Xception, MobileNetV3 [25] (large and small),

NASNetMobile [70], EfficientNetV2 [59], ConvNeXt [44].

The best achieved PPAs from software mapping are reported in

Figure 9. On average for all validation networks, UNICO improves

themin-Euclidean-distance of HASCO by 44%. Considering that, for

UNICO, the metric 𝑅 is not only an additional MOBO optimization

objective but also being used in selecting high-fidelity hardware

configurations for MOBO surrogate model update and learning

— this feature further enables UNICO to harness the full strength

of the sensitivity measurement and improves its generalization

ability on unseen DNN workloads.

4.5 Feature Contributions in UNICO
Recall that, UNICO employs two new ideas for improving the opti-

mization: (1) enhanced surrogate model update rule by collecting

high-fidelity samples; (2) customized successive halving for more

effective adaptive search. To see how these two features contributed

to the overall performance of UNICO, we create two new variants of

UNICO: SH + ChampionUpdate — it uses unmodified successive

halving with vanilla MOBO surrogate update rule, i.e., selecting

only the best sample; MSH + ChampionUpdate — it uses our

modified successive halving. UNICO is thus equivalent to MSH

86
Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 17,2024 at 17:30:14 UTC from IEEE Xplore. Restrictions apply.

UNICO: Unified Hardware Software Co-Optimization for Robust Neural Network Acceleration MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

Figure 10: Comparisons of HASCO, UNICO, and each of our
proposed components in terms of Hypervolume Difference.

+ HighFidelityUpdate yet with a robustness metric. We run co-

search experiments on multiple DNNs, i.e., UNET, SRGAN, BERT

and VIT. The experimentation configuration is the same as those

in Section 4.2.

Figure 10 shows the performance comparison of HASCO, UNICO,

and two other ablation scenarios in terms of the hypervolume — a

commonly used metric for measuring the convergence behaviour

of multi-objective optimization. HASCO can be viewed as Cham-
pionUpdate without SH — this explains the slower convergence of

HASCO. This result shows that the early stopping methods for

batch software mapping search (i.e., due to SH or MSH) can im-

prove the convergence speed of hardware-software co-optimization.

However, the SH + ChampionUpdate obtained an overall perfor-

mance worse than HASCO. This is because, in software mapping

search, SH stops the worse-performing configurations too early,

leading to too aggressive pruning on promising configurations for

the HW. By using the MSH, we obtained improved performance

approximately 13.7% better than HASCO. In comparison to SH +
ChampionUpdate, replacing SH with MSH leads to an improve-

ment of approximately 16%. Overall, the full implementation of

UNICO with MSH + HighFidelityUpdate leads to a performance

improvement by approximately 28% better than HASCO. These

comparisons show the individual benefit of the two new algorith-

mic features in UNICO.

4.6 Deployment of UNICO for Ascend-like
We compare the performance of UNICO-found architecture with

default Ascend-like architecture selected by domain experts on indi-

vidual networks UNET [52], FSRCNN [16]with different resolutions,

and Deep Learning image Enhancement and Upscaling technologies

(DLEU) [1]. In particular, to UNICO HW-SW co-optimization, HW

config batch size is𝑁 = 8 andMoBo iteration is𝑀𝑎𝑥𝐼𝑡𝑒𝑟 = 30. Also,

the SWmapping exploration maximum budget is set to 𝑏𝑚𝑎𝑥 = 200.

The co-optimization goal here are reducing both latency and power

consumption while not exceeding the edge-device chip design area

constraint of 200𝑚𝑚2
. Fig. 11 illustrates latency and power relative

percentage reduction of the hardware design found by UNICO over

Ascend-like default hardware configuration. As shown in this plot,

Figure 11: Latency and power savings of UNICO architec-
ture compared with Ascend-like architecture on latency and
power, evaluated by CAModel simulation.

on UNET and FSRCNN with 120x320 resolution, UNICO improves

the latency by 12.1% and 26.4%, respectively.

More importantly, compared to Ascend-like architecture, UNICO-

found architecture achieves better power performance by 32.3%

on average across the listed networks. An interesting discovery

revealed by UNICO is that it suggests reducing 𝐿0𝐵 and 𝐿0𝐶 and

increasing 𝐿0𝐴 w.r.t their default buffer sizes, respectively. While

the default values of these are simply set by engineers by referring

to cube parameters. From these results, we can see that UNICO’s

high-fidelity MOBO surrogate update mechanism and its concur-

rent exploration strategy have led to the discovery of hardware

configurations with better speed and lower power consumption.

5 RELATEDWORK
Spatial Accelerators. Many spatial accelerators have been de-

veloped and their hardware architecture is of great importance.

Some accelerators follow a rigid architecture (e.g. Eyeriss [9]) that

supports only a fixed type of computation pattern. Some are more

flexible and support a large range of tensor operations (e.g. Eyeriss

v2 [10], MAERI [36]). Some aggregate multiple chiplet as one ac-

celerator hardware (e.g. SIMBA [54]). The commercial accelerators

typically have additional andmore complexmemory and processing

element (PE) hierarchy. For example, TPU [48] allocates dedicated

buffers to weights and output with sophisticated synchronization.

Huawei’s DaVinci core [42] has 3 different PE types (i.e. scalar unit,

vector unit and 3D cube unit) and employs a more complex network

on chip and memory hierarchy for data/computation orchestration.

Software Mapping. Given a fixed hardware, the scheduling

space for a DNN layer can still have billions of valid candidates.

Thus, many algorithms have been developed for the schedule op-

timization problem. The static cost model-based search [4, 12, 22,

32, 49, 65, 68] typically use an analytical model to estimate and

compare different schedule candidates. Together with manual prun-

ing, the schedule exploration algorithms try to identify the best

candidate judged by the static cost model. The feedback-based

search [7, 20, 21, 51, 67] approaches assume that the hardware is

fixed and try to construct a learning-based cost model by collecting

real hardware evaluation data through search. The search algorithm

is then further guided with the refined cost model. This approach

87
Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 17,2024 at 17:30:14 UTC from IEEE Xplore. Restrictions apply.

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Bahador et al.

alleviates the burden of constructing an analytical model by human

experts, relying on feedback from the real hardware for cost model

learning and search.

PPA Estimation. The PPA estimation engine is a crucial compo-

nent of UNICO. Various models have been proposed to estimate PPA

from internal metrics such as data-reuse, # of FLOPS, minimum

required buffers, etc. MAESTRO [35] models spatial accelerator

architecture from a data-centric perspective. TimeLoop [49] es-

timates PPA from a loop-centric perspective by analyzing loop

computation and data movements. For commercial accelerators,

slower yet more accurate cycle-accurate models (CAModel) are

often used [46, 53, 60, 62]. They usually provide more accurate

estimations at the expense of being orders of magnitude slower in

speed.

Hyperparameter optimization. Both Bayesian optimization

(BO) [57] and successive halving (SH) [29] have been used for hy-

perparameter optimization, but with different focuses. The former

aims at adaptive configuration selection while the latter pays more

attention to adaptive resource allocation and early stopping. HY-

PERBAND [39] wraps over SH by essentially performing a grid

search for addressing the “n versus B/n” question in SH. BOHB [19]

combines HYPERBAND with BO, aspiring to achieve both strong

anytime performance and optimal convergence. UNICO resembles

BOHB and MFES-HB [41] in spirit but is specially designed for the

application of HW/SW co-optimization.

HW/SW co-design with NAS. This line of research [2, 61, 69]

combines neural architecture search (NAS) with HW-SW co-search.

For instance, NAAS [43] proposes to include an extra level of neural

architecture search based on Once-For-All-NAS [3]; then, for the

given DNN architectures, it performs HW-SW co-design using

evolutionary search.

6 CONCLUSION
In this paper, we present UNICO, a HW-SW co-optimization frame-

work for DNNs aimed at boosting the efficiency of exploring the vast

HW-SW design space for neural accelerators. We propose a batched

hardware sampling strategy guided by multi-objective Bayesian

optimization (MOBO), and enable parallel hardware evaluation and

software mapping search through a customized successive halv-

ing algorithm. To enhance the generalization of HW candidates,

we have designed a robustness metric that is incorporated into

multi-objective Bayesian optimization to guide HW sampling. We

have applied our approach to both open-source and commercial

architectures. Experimental results confirm that our algorithm can

generate better solutions than existing methods with lower search

costs while generalizing well to new applications that are unseen

in the co-optimization process.

REFERENCES
[1] [n. d.]. Nvidia GeForce, USA. NVIDIA DLSS 2.0 | A Big Leap in AI Ren-

dering. (Mar. 23, 2020). Accessed: Sept. 20, 2020. [Online Video]. Available:

https://youtube.com/watch?v=-X1RtXCvPFQ. https://www.nvidia.com/en-us/

geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering/. Accessed: 2020-09-

20.

[2] Mohamed S. Abdelfattah, Łukasz Dudziak, Thomas Chau, Royson Lee, Hyeji Kim,

and Nicholas D. Lane. 2020. Best of Both Worlds: AutoML Codesign of a CNN

and Its Hardware Accelerator. In Proceedings of the 57th ACM/EDAC/IEEE Design
Automation Conference (Virtual Event, USA) (DAC ’20). IEEE Press, Article 192,

6 pages.

[3] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. 2020. Once-

for-All: Train One Network and Specialize it for Efficient Deployment. In ICLR.
[4] Prasanth Chatarasi, Hyoukjun Kwon, Angshuman Parashar, Michael Pellauer,

Tushar Krishna, and Vivek Sarkar. 2021. Marvel: a data-centric approach for

mapping deep learning operators on spatial accelerators. ACM Transactions on
Architecture and Code Optimization (TACO) 19, 1 (2021), 1–26.

[5] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. 2015. Deepdriving:

Learning affordance for direct perception in autonomous driving. In Proceedings
of the IEEE international conference on computer vision. 2722–2730.

[6] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen

Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,

and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing

Compiler for Deep Learning. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 578–

594. https://www.usenix.org/conference/osdi18/presentation/chen

[7] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis

Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. Learning to Optimize

Tensor Programs. In Advances in Neural Information Processing Systems, S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.),

Vol. 31. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2018/file/

8b5700012be65c9da25f49408d959ca0-Paper.pdf

[8] Yunji Chen, Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. 2016.

DianNao family: energy-efficient hardware accelerators for machine learning.

Commun. ACM 59, 11 (2016), 105–112.

[9] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A spatial architecture

for energy-efficient dataflow for convolutional neural networks. ACM SIGARCH
Computer Architecture News 44, 3 (2016), 367–379.

[10] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. 2019. Eyeriss v2:

A flexible accelerator for emerging deep neural networks on mobile devices.

IEEE Journal on Emerging and Selected Topics in Circuits and Systems 9, 2 (2019),
292–308.

[11] François Chollet. 2017. Xception: Deep learning with depthwise separable con-

volutions. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 1251–1258.

[12] Shail Dave, Youngbin Kim, Sasikanth Avancha, Kyoungwoo Lee, and Aviral

Shrivastava. 2019. Dmazerunner: Executing perfectly nested loops on dataflow

accelerators. ACM Transactions on Embedded Computing Systems (TECS) 18, 5s
(2019), 1–27.

[13] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A

fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on
evolutionary computation 6, 2 (2002), 182–197.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding. In

Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota,

4171–4186. https://doi.org/10.18653/v1/N19-1423

[15] Foivos I Diakogiannis, François Waldner, Peter Caccetta, and Chen Wu. 2020.

ResUNet-a: A deep learning framework for semantic segmentation of remotely

sensed data. ISPRS Journal of Photogrammetry and Remote Sensing 162 (2020),

94–114.

[16] Chao Dong, Chen Change Loy, and Xiaoou Tang. 2016. Accelerating the super-

resolution convolutional neural network. In European conference on computer
vision. Springer, 391–407.

[17] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-

aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg

Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021. An Image is

Worth 16x16 Words: Transformers for Image Recognition at Scale. In Interna-
tional Conference on Learning Representations. https://openreview.net/forum?id=

YicbFdNTTy

[18] Stefan Falkner, Aaron Klein, and Frank Hutter. 2018. BOHB: Robust and efficient

hyperparameter optimization at scale. In International Conference on Machine
Learning. PMLR, 1437–1446.

[19] Stefan Falkner, Aaron Klein, and Frank Hutter. 2018. BOHB: Robust and efficient

hyperparameter optimization at scale. In International Conference on Machine
Learning. PMLR, 1437–1446.

[20] Chao Gao, Jingwei Chen, Tong Mo, Tanvir Sajed, Shangling Jui, Min Qin, Laiyuan

Gong, and Wei Lu. 2022. A Memory-Bounded Best-First Beam Search and Its

Application to Scheduling Halide Programs. In Proceedings of the International
Symposium on Combinatorial Search, Vol. 15. 74–82.

[21] Chao Gao, Tong Mo, Taylor Zowtuk, Tanvir Sajed, Laiyuan Gong, Hanxuan

Chen, Shangling Jui, and Wei Lu. 2021. Bansor: Improving Tensor Program

Auto-Scheduling with Bandit Based Reinforcement Learning. In 2021 IEEE 33rd
International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, 273–
278.

[22] Hasan Genç, Ameer Haj-Ali, Vighnesh Iyer, Alon Amid, Howard Mao,

John Charles Wright, Colin Schmidt, Jerry Zhao, Albert J. Ou, Max Banister,

88
Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 17,2024 at 17:30:14 UTC from IEEE Xplore. Restrictions apply.

UNICO: Unified Hardware Software Co-Optimization for Robust Neural Network Acceleration MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

Yakun Sophia Shao, Borivoje Nikolić, Ion Stoica, and Krste Asanović. 2019. Gem-

mini: An Agile Systolic Array Generator Enabling Systematic Evaluations of

Deep-Learning Architectures. ArXiv abs/1911.09925 (2019).

[23] Koen Goetschalckx and Marian Verhelst. 2019. Breaking High-Resolution CNN

Bandwidth Barriers With Enhanced Depth-First Execution. IEEE Journal on
Emerging and Selected Topics in Circuits and Systems 9, 2 (2019), 323–331. https:

//doi.org/10.1109/JETCAS.2019.2905361

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[25] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingx-

ing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. 2019.

Searching for mobilenetv3. In Proceedings of the IEEE/CVF international conference
on computer vision. 1314–1324.

[26] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun

Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:

Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[27] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun

Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:

Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[28] Qijing Huang, Minwoo Kang, Grace Dinh, Thomas Norell, Aravind Kalaiah, James

Demmel, John Wawrzynek, and Yakun Sophia Shao. 2021. Cosa: Scheduling by

constrained optimization for spatial accelerators. In 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 554–566.

[29] Kevin Jamieson and Ameet Talwalkar. 2016. Non-stochastic best arm identifi-

cation and hyperparameter optimization. In Artificial intelligence and statistics.
PMLR, 240–248.

[30] Liancheng Jia, Zizhang Luo, Liqiang Lu, and Yun Liang. 2021. TensorLib: A Spatial

Accelerator Generation Framework for Tensor Algebra. CoRR abs/2104.12339

(2021). https://arxiv.org/abs/2104.12339

[31] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,

Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,

Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt

Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,

William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,

Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander

Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve

Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle

Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran

Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,

Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,

Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,

Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo

Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,

Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter Performance Analysis of

a Tensor Processing Unit. SIGARCH Comput. Archit. News 45, 2 (jun 2017), 1–12.

[32] Sheng-Chun Kao and Tushar Krishna. 2020. GAMMA: Automating the HWMap-

ping of DNN Models on Accelerators via Genetic Algorithm. In 2020 IEEE/ACM
International Conference On Computer Aided Design (ICCAD). 1–9.

[33] Sheng-Chun Kao, Michael Pellauer, Angshuman Parashar, and Tushar Kr-

ishna. 2022. DiGamma: domain-aware genetic algorithm for HW-mapping co-

optimization for DNN accelerators. In 2022 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 232–237.

[34] J. Knowles. 2006. ParEGO: a hybrid algorithm with on-line landscape approxi-

mation for expensive multiobjective optimization problems. IEEE Transactions
on Evolutionary Computation 10, 1 (2006), 50–66.

[35] Hyoukjun Kwon, Prasanth Chatarasi, Vivek Sarkar, Tushar Krishna, Michael

Pellauer, and Angshuman Parashar. 2020. MAESTRO: A Data-Centric Approach

to Understand Reuse, Performance, and Hardware Cost of DNN Mappings. IEEE
Micro 40, 3 (2020), 20–29. https://doi.org/10.1109/MM.2020.2985963

[36] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. 2018. Maeri: Enabling

flexible dataflow mapping over dnn accelerators via reconfigurable interconnects.

ACM SIGPLAN Notices 53, 2 (2018), 461–475.
[37] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature

521, 7553 (2015), 436–444.

[38] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunning-

ham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan

Wang, et al. 2017. Photo-realistic single image super-resolution using a generative

adversarial network. In Proceedings of the IEEE conference on computer vision and
pattern recognition. 4681–4690.

[39] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet

Talwalkar. 2017. Hyperband: A Novel Bandit-Based Approach to Hyperparameter

Optimization. J. Mach. Learn. Res. 18, 1 (jan 2017), 6765–6816.

[40] Mingzhen Li, Yi Liu, Xiaoyan Liu, Qingxiao Sun, Xin You, Hailong Yang, Zhongzhi

Luan, Lin Gan, Guangwen Yang, and Depei Qian. 2020. The deep learning

compiler: A comprehensive survey. IEEE Transactions on Parallel and Distributed

Systems 32, 3 (2020), 708–727.
[41] Yang Li, Yu Shen, Jiawei Jiang, Jinyang Gao, Ce Zhang, and Bin Cui. 2021. MFES-

HB: Efficient Hyperband with Multi-Fidelity Quality Measurements. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, Vol. 35. 8491–8500.

[42] Heng Liao, Jiajin Tu, Jing Xia, Hu Liu, Xiping Zhou, Honghui Yuan, and Yuxing

Hu. 2021. Ascend: a Scalable and Unified Architecture for Ubiquitous Deep

Neural Network Computing : Industry Track Paper. In 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA). 789–801. https:

//doi.org/10.1109/HPCA51647.2021.00071

[43] Yujun Lin, Mengtian Yang, and Song Han. 2021. NAAS: Neural Accelerator

Architecture Search. In 2021 58th ACM/IEEE Design Automation Conference (DAC).
1051–1056. https://doi.org/10.1109/DAC18074.2021.9586250

[44] Zhuang Liu, Hanzi Mao, Chao-YuanWu, Christoph Feichtenhofer, Trevor Darrell,

and Saining Xie. 2022. A convnet for the 2020s. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 11976–11986.

[45] Linyan Mei, Koen Goetschalckx, Arne Symons, and Marian Verhelst. 2022. De-

FiNES: Enabling Fast Exploration of the Depth-first Scheduling Space for DNN

Accelerators through Analytical Modeling. https://arxiv.org/abs/2212.05344

[46] Francisco Muñoz-Martínez, José L. Abellán, Manuel E. Acacio, and Tushar Kr-

ishna. 2020. STONNE: A Detailed Architectural Simulator for Flexible Neural

Network Accelerators. https://doi.org/10.48550/ARXIV.2006.07137

[47] Luigi Nardi, Artur Souza, David Koeplinger, and Kunle Olukotun. 2019. Hy-

perMapper: a Practical Design Space Exploration Framework. In 2019 IEEE 27th
International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS). 425–426. https://doi.org/10.1109/

MASCOTS.2019.00053

[48] Thomas Norrie, Nishant Patil, Doe Hyun Yoon, George Kurian, Sheng Li, James

Laudon, Cliff Young, Norman P. Jouppi, and David Patterson. 2020. Google’s

Training Chips Revealed: TPUv2 and TPUv3. In 2020 IEEE Hot Chips 32 Symposium
(HCS). 1–70. https://doi.org/10.1109/HCS49909.2020.9220735

[49] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen,

Victor A. Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany,

Stephen W. Keckler, and Joel Emer. 2019. Timeloop: A Systematic Approach to

DNN Accelerator Evaluation. In 2019 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS). 304–315.

[50] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian Zhao,

Stefan Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle Olukotun. 2017.

Plasticine: A reconfigurable architecture for parallel patterns. In 2017 ACM/IEEE
44th Annual International Symposium on Computer Architecture (ISCA). 389–402.

[51] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo

Durand, and Saman Amarasinghe. 2013. Halide: A Language and Compiler

for Optimizing Parallelism, Locality, and Recomputation in Image Processing

Pipelines. SIGPLAN Not. 48, 6 (jun 2013), 519–530. https://doi.org/10.1145/

2499370.2462176

[52] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional

networks for biomedical image segmentation. In International Conference on
Medical image computing and computer-assisted intervention. Springer, 234–241.

[53] Ananda Samajdar, Jan Moritz Joseph, Yuhao Zhu, Paul Whatmough, Matthew

Mattina, and Tushar Krishna. 2020. A systematic methodology for characterizing

scalability of DNN accelerators using SCALE-sim. In 2020 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE,
58–68.

[54] Yakun Sophia Shao, Jason Clemons, Rangharajan Venkatesan, Brian Zimmer,

Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter, Nathaniel Pinckney,

Priyanka Raina, et al. 2019. Simba: Scaling deep-learning inference with multi-

chip-module-based architecture. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture. 14–27.

[55] Man Shi, Pouya Houshmand, Linyan Mei, and Marian Verhelst. 2021. Hardware-

Efficient Residual Neural Network Execution in Line-Buffer Depth-First Process-

ing. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 11, 4
(2021), 690–700. https://doi.org/10.1109/JETCAS.2021.3120103

[56] Zhan Shi, Chirag Sakhuja, Milad Hashemi, Kevin Swersky, and Calvin Lin. 2020.

Learned Hardware/Software Co-Design of Neural Accelerators. https://doi.org/

10.48550/ARXIV.2010.02075

[57] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical bayesian

optimization of machine learning algorithms. Advances in neural information
processing systems 25 (2012).

[58] Mingxing Tan and Quoc Le. 2019. Efficientnet: Rethinking model scaling for

convolutional neural networks. In International conference on machine learning.
PMLR, 6105–6114.

[59] Mingxing Tan and Quoc Le. 2021. Efficientnetv2: Smaller models and faster

training. In International Conference on Machine Learning. PMLR, 10096–10106.

[60] Tianqi Tang, Sheng Li, Lifeng Nai, Norm Jouppi, and Yuan Xie. 2021. Neu-

roMeter: An Integrated Power, Area, and Timing Modeling Framework for

Machine Learning Accelerators Industry Track Paper. In 2021 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA). 841–853.
https://doi.org/10.1109/HPCA51647.2021.00075

89
Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 17,2024 at 17:30:14 UTC from IEEE Xplore. Restrictions apply.

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Bahador et al.

[61] Jack Turner, Elliot J. Crowley, andMichael F. P. O’Boyle. 2021. Neural Architecture

Search as Program Transformation Exploration (ASPLOS ’21). Association for

Computing Machinery, 915–927. https://doi.org/10.1145/3445814.3446753

[62] Sam Likun Xi, Yuan Yao, Kshitij Bhardwaj, Paul Whatmough, Gu-Yeon Wei, and

David Brooks. 2019. SMAUG: End-to-End Full-Stack Simulation Infrastructure

for Deep Learning Workloads. https://doi.org/10.48550/ARXIV.1912.04481

[63] Qingcheng Xiao, Yun Liang, Liqiang Lu, Shengen Yan, and Yu-Wing Tai. 2017.

Exploring heterogeneous algorithms for accelerating deep convolutional neural

networks on FPGAs. In 2017 54th ACM/EDAC/IEEE Design Automation Conference
(DAC). 1–6. https://doi.org/10.1145/3061639.3062244

[64] Qingcheng Xiao, Size Zheng, Bingzhe Wu, Pengcheng Xu, Xuehai Qian, and Yun

Liang. 2021. HASCO: Towards Agile HArdware and Software CO-design for

Tensor Computation. In 2021 ACM/IEEE 48th Annual International Symposium
on Computer Architecture (ISCA). 1055–1068. https://doi.org/10.1109/ISCA52012.

2021.00086

[65] Xuan Yang, Mingyu Gao, Qiaoyi Liu, Jeff Setter, Jing Pu, Ankita Nayak, Steven

Bell, Kaidi Cao, Heonjae Ha, Priyanka Raina, et al. 2020. Interstellar: Using

halide’s scheduling language to analyze dnn accelerators. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems. 369–383.

[66] Dan Zhang, Safeen Huda, Ebrahim Songhori, Kartik Prabhu, Quoc Le, Anna

Goldie, and Azalia Mirhoseini. 2022. A Full-Stack Search Technique for Domain

Optimized Deep Learning Accelerators. Association for Computing Machinery,

27–42.

[67] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer

Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez,

and Ion Stoica. 2020. Ansor: Generating High-Performance Tensor Programs

for Deep Learning. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20). USENIX Association, 863–879. https://www.usenix.

org/conference/osdi20/presentation/zheng

[68] Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and Kaiwen Sheng. 2020. Flex-
Tensor: An Automatic Schedule Exploration and Optimization Framework for Tensor
Computation on Heterogeneous System. Association for Computing Machinery,

New York, NY, USA, 859–873.

[69] Yanqi Zhou, Xuanyi Dong, Tianjian Meng, Mingxing Tan, Berkin Akin, Daiyi

Peng, Amir Yazdanbakhsh, Da Huang, Ravi Narayanaswami, and James Laudon.

2022. Towards the Co-design of Neural Networks and Accelerators. In

Proceedings of Machine Learning and Systems, D. Marculescu, Y. Chi, and

C. Wu (Eds.), Vol. 4. 141–152. https://proceedings.mlsys.org/paper/2022/file/

31fefc0e570cb3860f2a6d4b38c6490d-Paper.pdf

[70] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2018. Learning

transferable architectures for scalable image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 8697–8710.

90
Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 17,2024 at 17:30:14 UTC from IEEE Xplore. Restrictions apply.

