
 ECE 492 Winter 2016

Smart Robotic Quadruped
Using Machine Learning to Optimize Parameters and Control Motion

Cody Otto Duncan Prance Brittany Lamorie

Group # 5

Abstract

Our project is designed to teach a robot how to walk. It is composed of a set of four legs,

each containing three servos and attached to a single chassis. We have setup and ran a

separate computer simulation to train a simulated version of our device, which we pass on to

the robot in the form of individual servo commands. We therefore have a physical

embodiment of the simulation results, and the system is now capable of basic forward

movement after its proper training. It also has 4 modes that include dance, walk, weight shift

and simulation. These modes are changed using the dip switches on the board.

Contents
Abstract ... 2

Functional Requirements ... 4

Design and description of operation .. 5

Data Flow... 5

Hardware ... 6

Bill of Materials .. 6

Available Sources .. 8

Data Sheet .. 8

Background Research ... 8

Software Design .. 9

Test Plan ... 9

Software .. 9

Hardware ... 10

Results of Experimentation and Characterization .. 10

Safety .. 11

Regulatory and Society ... 12

Environmental Impact .. 12

Sustainability ... 12

References .. 14

Appendices ... 15

Quick Start Guide .. 15

Future Work... 15

Hardware Documentation .. 16

Source Code ... 16

Functional Requirements

Our final project is a 4 legged robot controlled by servo motors that are connected through

GPIO to the DE0 Nano Altera FPGA. There are 4 pre-programmed modes that show off the

capabilities of the robot, these are a walk, a dance, repetitive weight shifting and a simulation

mode. This final mode was created from the outputs of one of the final simulations we ran.

These simulations used a physically accurate rendering of our robot with a neural networks

and reinforcement learning background to learn and improve on a forward motion. This

training was all done on PC and then converted to pulse widths to be read by the servo

motors on the robot.

Originally we had intentions to have on board corrections with an accelerometer and

gyroscope being used to tell the robot when it was off balance. This addition was not made

due to time constraints. Our simulations ran for the majority of our time with varying reward

systems; unfortunately we were unable to come up with a successful system to train a

walking motion. Most of our simulations resulted in the rendering falling in the appropriate

direction but did not succeed in teaching him how to take a step.

Powering our robot was a final problem and one that was partially solved. Our original

intentions were to have 6V NiMH batteries attached to the chassis of the robot. We decided

against attaching the batteries due to the dramatic change in weight that would affect the

balance of our robot while walking. The hard-coded walk was made so precisely that any

change in weight could result in imprecise steps causing the robot to become off balance

and fall. We next tried a tether system with 3 AA batteries powering the DE0 Nano and 4 AA

batteries powering the 12 servo motors. This solution allowed for the robot to be portable but

still allowed for us to maintain the same walk. This solution worked well for the dance and

weight shift modes but we found the current draw on the walk to be too high for the batteries

to handle. In the end we had the board powered by the 3 AA batteries but used a power

supply for our servo motors.

Design and description of operation

Data Flow

The data flow of this system consists largely of moving data between the server system and

the robotic hardware.

Figure 1: Data Flow

Hardware

The hardware of the system is largely separate from the software side, and involves fairly

simple I/O. The DE0 Nano is the board we have chosen to use, and it is connected to 12

servo motors through the first 12 GPIO pins. Each of the signals is individually controlled for

each joint in the robot. The robot framework is made of Lexan and aluminum components to

keep the weight low. The control wires are directed to servo headers through a handmade

wire-wrapped breadboard, to maintain a constant voltage and ground for each of the control

signals.

Bill of Materials

Part Supplier Spec Information
Links

Cost
(CAD)

Weight Order
Status

2x

Lynxmotion

Alum and

lexan

Robot
Shop

Hip Hor. to
Hip Vert. =
38mm
Hip Vert. to
Knee Vert.
= 57mm

http://www.ro
botshop.com/
ca/en/lynxmot
ion-3dof-

$92.87
x2
(185.74)

~0.181
kg x2

Received
(not all of the
4 kits were
used, was

Figure 2: Hardware Diagram

http://www.robotshop.com/ca/en/lynxmotion-3dof-aluminum-lexan-leg-pair.html
http://www.robotshop.com/ca/en/lynxmotion-3dof-aluminum-lexan-leg-pair.html
http://www.robotshop.com/ca/en/lynxmotion-3dof-aluminum-lexan-leg-pair.html
http://www.robotshop.com/ca/en/lynxmotion-3dof-aluminum-lexan-leg-pair.html

Leg(Pairs) Knee to
Foot =
124mm

aluminum-
lexan-leg-
pair.html

only required
due to
component
issues)

2x

Lynxmotion

Alum and

lexan

Leg(Pairs)

(Pieces)

Robot
Shop

 Only screws,
spacers,
washers, and
a small part of
the mounting
brackets were
used

~$5

1x

Lynxmotion

Quadruped

Body Kit

Mini

Lynxmoti
on

Height =
2.125"
Length =
7.250"
Width =
3.000"
Length =
5.250"
Width =
5.250"

http://www.lyn
xmotion.com/
p-435-
quadrapod-
body-kit-
mini.aspx

$19.95
(27.93)

~0.181
kg

Received

DE0 Nano Provide
d

~0.050
kg

Provided

6x HS-422
Servo

Motor

Robot
Shop

http://ww
w.robots
hop.com
/media/fi
les/pdf/h
s422-
31422s.
pdf

http://www.ro
botshop.com/
ca/en/hitec-
hs422-servo-
motor.html

$13.27x
6
(79.62)

0.0455
kg x 6

Received

2x HS-311

Servo

Motor

Robot
Shop

 http://www.ro
botshop.com/
ca/en/hitec-
hs311-
servo.html

$9.99 x
2
(19.98)

0.043 kg
* 2

Received

4x HS-635

Servo

Motor

In Stock http://www.ser
vodatabase.c
om/servo/hite
c/hs-635hb
(pricing)

$29.99x
4
(154.67)

0.0499
kg * 4

Received

Totals: $472.94 1.152
kg

http://www.robotshop.com/ca/en/lynxmotion-3dof-aluminum-lexan-leg-pair.html
http://www.robotshop.com/ca/en/lynxmotion-3dof-aluminum-lexan-leg-pair.html
http://www.robotshop.com/ca/en/lynxmotion-3dof-aluminum-lexan-leg-pair.html
http://www.lynxmotion.com/p-435-quadrapod-body-kit-mini.aspx
http://www.lynxmotion.com/p-435-quadrapod-body-kit-mini.aspx
http://www.lynxmotion.com/p-435-quadrapod-body-kit-mini.aspx
http://www.lynxmotion.com/p-435-quadrapod-body-kit-mini.aspx
http://www.lynxmotion.com/p-435-quadrapod-body-kit-mini.aspx
http://www.lynxmotion.com/p-435-quadrapod-body-kit-mini.aspx
http://www.robotshop.com/media/files/pdf/hs422-31422s.pdf
http://www.robotshop.com/media/files/pdf/hs422-31422s.pdf
http://www.robotshop.com/media/files/pdf/hs422-31422s.pdf
http://www.robotshop.com/media/files/pdf/hs422-31422s.pdf
http://www.robotshop.com/media/files/pdf/hs422-31422s.pdf
http://www.robotshop.com/media/files/pdf/hs422-31422s.pdf
http://www.robotshop.com/media/files/pdf/hs422-31422s.pdf
http://www.robotshop.com/media/files/pdf/hs422-31422s.pdf
http://www.robotshop.com/ca/en/hitec-hs422-servo-motor.html
http://www.robotshop.com/ca/en/hitec-hs422-servo-motor.html
http://www.robotshop.com/ca/en/hitec-hs422-servo-motor.html
http://www.robotshop.com/ca/en/hitec-hs422-servo-motor.html
http://www.robotshop.com/ca/en/hitec-hs422-servo-motor.html
http://www.robotshop.com/ca/en/hitec-hs311-servo.html
http://www.robotshop.com/ca/en/hitec-hs311-servo.html
http://www.robotshop.com/ca/en/hitec-hs311-servo.html
http://www.robotshop.com/ca/en/hitec-hs311-servo.html
http://www.robotshop.com/ca/en/hitec-hs311-servo.html
http://www.servodatabase.com/servo/hitec/hs-635hb
http://www.servodatabase.com/servo/hitec/hs-635hb
http://www.servodatabase.com/servo/hitec/hs-635hb
http://www.servodatabase.com/servo/hitec/hs-635hb

Available Sources

From a software point of view, we used many different open source components to do the

simulations and associated learning. To do this, we used the PyBrain library for Python. This

library has dependencies including SciPy and Python 2.5 [3], which we included as well as

the optional ODE physics engine [6] and PyOpenGL [7] to visualize the simulation. The sizes

of these components are not relevant to the spec, as they were all run on desktop hardware.

Therefore, size and processing power was not an issue.

Regarding the FPGA itself, we did not use any open source material. We used the microC

libraries as our RTOS of choice. The size of the source is roughly 10MB [12].

Data Sheet

Operating Conditions:

In mode 4 (walking), ensure the robot has high friction with a surface such as an antistatic

mat. There needs to be 4x2 AA batteries powering the servos to provide enough current.

Ensure that the starting base of the robot is stable in the first position. It has a 1.5 second

delay to give you time to do this. In modes 3 and 2 (dancing/weight shifting), ensure that the

robot has a stable starting stance as above. You can run these modes off of only 4 batteries

for the servos. Friction does not matter as much since it is not moving, but it is still

recommended to use a high friction surface. In mode 1 (simulation output), run while held in

the air. This takes a long time to run.

Power:

Our project used 12 servo motors at 6.0 V, with the DE0 nano board using 4.5V (3 AA

batteries in series). The maximum current draw experienced is when all 12 servos move at

the same time, and draws up to ~2.8A of current in the walking mode only. Since the battery

pack can only provide ~2.0A at once, a parallel configuration would be needed. Powering

the servos with an external battery pack was only tested with 4 AA batteries to provide the

6.0V required, but the current draw was too high to walk consistently. Therefore, a power

supply was used instead. Our power was provided with AA non-rechargeable batteries, to

provide a stronger voltage curve to maintain maximum power for the servos to help keep the

robot stable. From online sources, we found the maximum current draw of a single servo

while stalled to be ~700 mA (for HS-311 and HS-422, approximately the same for HS-635 as

well). This would give an absolute maximum of 8.4 A of current if all 12 servos are running

while stalled, which should never occur.

Background Research

As part of our research, we came across an article from the University of Texas at Austin [9].

This article detailed an experiment done using a commercially available four-legged robot,

and their experiences with having it learn how to move. They initially proposed using a

parabola as the general shape for a step, and using that as the framework for learning.

Optimizing the parameters of the parabola was the ultimate goal, along with a few others

such as the body height and amount of time each step takes. They used a hill-climbing

algorithm, in conjunction with a few other learning methods, to train the machine.

In the paper written by Hornby and associates [10], they did a similar set of training with

Sony robots. In this instance, they were aiming to deliver a system that required absolutely

minimal human interaction. They quickly realized that, in a system as sophisticated as theirs,

that things as minimal as the roughness of the surface affected the eventual gait of the robot

in question. While not helpful in our case, this realization shows how even the smallest of

factors can influence the outcome in unforeseen ways. Their paper also contains many base

ranges for a variety of parameters that we may incorporate, such as step height and phase

differences in opposing legs.

Software Design

In this project, data flows in a very non-continuous fashion. Due to the fact that most of the

heavy calculations are done server side before the demo, commands only need to be

transferred once. This creates a “stop and start” type of data flow. Refer to Figure 1 for more

information about the data flow.

Server side, we have two separate components. One is the software simulation, which is

designed to create an environment that is accurate enough to real world that the commands

it generates can be converted into servo commands for the physical robot. The other piece

of software is the hardware integration, where these commands are converted into pulse

widths that are passed to the motors and the simulation is physically tested.

The simulation piece was done in Python and C++, using a combination of PyBrain and

ODE/OpenGL for the physics aspect of it. PyBrain is used in an attempt to allow the

simulation to learn general motion. We used a reward system to shape the movement,

measured based on distance moved as well as overall height of the body. Every hundredth

simulation has its commands saved to a text file, allowing us to recreate what occurred using

the angles it measured.

The hardware integration piece is written partially in microC, with the rest being done in

Python. The Python portion is responsible for taking the results from the simulation software

and turning them into useable angles. This portion outputs a text file containing function

calls, to a function within the microC environment, with the appropriate angles for each servo

motor and appropriately spaced delays to allow for servo movement. These commands are

then added to the simulation mode and the angle to pulse width function converts and sends

the proper commands to the motors. By loading up a series of commands prior to the system

being used, we limit the amount of ongoing calculations and signals needed by the board

itself. This is similar in design to an airplane being given a flight plan, with very infrequent

hand-holding required.

Test Plan

Software

In order to test the software for our project, we needed to do both hardware independent and

dependent testing. For the independent version, the plan was executed as follows:

- Use PyBrain and ODE/OpenGL to construct a simulation of our robot. This simulation

will generate commands in the form of angles, which will be associated with servos.

- Writing Python code to turn these high level commands into commands that a servo

would require (pulse width modulation).

- Looking at the commands to see if they make logical sense. This can be done as the

commands are communicated in terms of degrees, and it is easy to see if a joint or

limb is doing something that it should not be.

By limiting the amount of errors in our software, we can help keep our hardware safe from

these bugs. When we add the hardware into the equation, we are able to more accurately

test the software results using a physical embodiment. This plan was as follows:

- We created sample movements that test a wide range of motion for each servo.

Using these commands, it is easy to see if a servo is dying or if something else is

wrong with the hardware.

- Each time we ran new movements, we used the sample movements first to ensure

that everything was still working as expected.

Hardware

Hardware testing involved sending a signal to each of the servos prior to assembly of the

robot. This caused some issues as we only saw that each servo was moving given a signal,

not that they were operating correctly. We were unable to detect issues such as the servo

missing teeth, or responding poorly to certain signals. This caused us to have to swap

servos out part way through and reconfigure. Once the robot was constructed, we tested that

the robot could stand on 4 legs, and then eventually on the 3 legs (similar to the final stance

that was used). The servos were adjusted and configured to provide the required range of

motion in each joint. Once we had everything working, we tested the battery packs for the

DE0 Nano as well as the 12 servo motors. We found that the DE0 Nano was simple to

power as long as the project was flashed onto the board, and that the servos could be

powered with the 4 battery pack. We ended up using the power supply for our demo as the

current draw during the walking was too much for the batteries and the power supply was

simply more reliable. As it was late into the project we decided against testing out a new

battery solution as it could have caused more issues than it solved. A 4x2 battery

arrangement should be able to power all 12 servos correctly, but is currently untested.

Results of Experimentation and Characterization

We used our hardware testing to ensure all of our motors were working. Due to some other

issues, we had to swap out some servos after the initial assembly. The construction of the

robot took place, and was found to have issues in regards to the body not fitting together

correctly. We originally wanted to go through with a mammalian walking design, but due to

angle restrictions we went with a more spider type leg orientation, allowing us to use more of

the hips. We tested the walking motion using a 4 AA battery pack, and found that the current

draw during some motions was too high and would cause the robot to collapse. We assume

that having 2 packs in parallel will be able to provide enough current, but due to time

constraints we were unable to fully test this.

Our simulation results were not ideal though we were able to use them as a proof of concept

for converting simulation angles to accurate pulse widths for the motors. The best result from

the simulations were very frog like in nature, where the back legs would gently push the

body forwards. We took the angles from this simulation and ran them through our conversion

software, this results in a text file with proper angles and servo call for the motors. Adding

these calls to the on board program allows the angles to be converted to pulse widths and

sent to the motors with appropriate delays. This conversion was found to be somewhat

accurate but the rendering of the body did not depict the angle of the hips properly and we

were forced to hard code them. The direction of motion of the knee joints were also

inconsistent but the movement itself was accurate. After all, we believe this conversion still

proves this to be a reasonable way to transfer simulation results to physical motors.

Figure 3: Distances measured from joints

Our total mass was 1.25 kg. At minimum our robot maintains a 3 point contact with the floor.

We assume that each of the legs carries approximately even amounts of weight. The

maximum torque on our robot will be experienced when the hip is pointed directly away from

the body, the knee will be limited to this maximum torque by the equation:

10.8*sin(x) = 5.7 (same distance as the hip)

This provides an x value of 31.86 degrees away from vertical as the maximum. Any of our

load bearing legs will maintain a maximum angle of 30 degrees away from the vertical. This

simplified calculation does not account for any mass that is directly over the rotational point

of the torque, so this value is actually a slight overestimation. We will use kilograms and

centimeters to be able to directly able to compare with the servo motor data sheets. This

leads us to the equation:

1.25 kg / 3 * 5.7 cm = 2.375 kg*cm

 This is well within the limit on our weaker weight bearing servos (HS-422 at 4.1kg*cm

@6.0V).

θ1

θ2

13.34cm

5.7 cm

10.8 cm

Safety

The voltage supply of our project will be a 6V battery pack, this voltage and the current it
supplies is not any particular danger to a human. This of course could damage the DE0
Nano and that is why the board is run off a separate battery pack.
The servos we are using have a maximum operating temperature of 60°C, this could cause
third degree burns after only 5 seconds of contact. The robot will only be operating in short
bursts to avoid these operating temperatures and we will be using caution when handling the
servos after an extended run. The operating speed for no load is 0.16 sec/60°.

Regulatory and Society

Societal and regulatory concerns for this project are all hypothetical. Considering there is no

wireless communication the possibility for hacking the robot is quite limited and its abilities

do not lend themselves to dangerous control. The YouTube video [11] showing the robot

Spot built by Boston Dynamics is a largely scaled up version of our project. Clearly a robot of

that size and weight would be able to do much more damage than our small robot if it were

to be hacked.

Society today has a love hate relationship with artificial intelligence. The automation of

menial tasks is a huge step forward in society but when these tasks become more difficult

and actually require a certain level of intelligence, people are wary of what else these robots

are capable of in the future. Our project will have very limited brain power and its intelligence

is completely stored on the desktop computer. The robot itself only follows the instructions

given to it from the simulation data as well as hard-coded movements.

Environmental Impact

Our project has a very minor environmental impact when operating properly. The battery

packs we use have disposable AA batteries in them. These have gotten safer in recent years

and only using 3 for the board also minimize our impact. These batteries are Duracell AA

which are Alkaline Manganese dioxide batteries, as long as the battery is not tampered with

the caustic chemicals not be a danger to us or the environment. Recycling batteries is an

important part of using them and will again minimize the impact we make while using our

project.

Sustainability

Voltages: using a 6V power supply for the servos, going up to 600 mA (maximum) with a
load on each servo. 4.5V supply for the DE0 Nano board with a current draw of up to 500
mA assuming it’s used at 50 MHz (the maximum). This makes the total power consumption
while all servos are active:

 3.6 W*12 + 2.25 W = 45.45 W
The servos use approximately 8 mA when idle, and the board draws around 50 mA, totalling
only:

0.576 W + 0.250 W = 0.826 W
We are assuming if the project is not idling or in use, it is off and using 0 power. Our project
will be in idle mode approximately 90% of the time (plugged in but not used), and active
mode the other 10% of the time. We expect to use our device actively (for demos or for

testing) approximately 3 hours this year, meaning it should be idling for approximately 27
hours. The weighted average of power used is:

45.45 W * 0.1 + 0.826 W * 0.9 = 5.29 W

CO2 is generated by a ratio of 0.989 kg/kWh of power used. If it were to be used for an entire
year in this ratio, you would generate:

5.29 W * 24 hour/day * 365 day/year * 0.989 kg/kWh / 1000 kW/W = 45.8 kg CO2 / year
If the project is only used for the approximate 30 hours total of idle/active mode for this year,
it would instead only generate:

5.29 W * 1/1000 W/kW * 30 hours * 0.989 kg/kWh = 0.157 kg CO2 / year

References

[1] HS-422 Datasheet [Online]. Available:

http://www.robotshop.com/media/files/pdf/hs422-31422s.pdf, Accessed on January

28th, 2016

[2] 6 DOF Gyro, Accelerometer IMU - MPU6050 Documentation [Online].

 Available: http://www.robotshop.com/content/ZIP/documentation-sen0142.zip,

Accessed on January 16th, 2016

[3] PyBrain Documentation [Online]. Available: http://pybrain.org, Accessed on January

16th, 2016

[4] DE0 Nano Documentation [Online]. Available:

http://www.terasic.com.tw/cgi-

bin/page/archive.pl?Language=English&CategoryNo=139&No=593&PartNo=4,

Accessed on January 31st, 2016

[5] Rechargeable Nickel Metal Hydride Battery [Online]. Available:

http://www.hobbyking.com/hobbyking/store/__25030__Turnigy_Receiver_Pack_2300

mAh_6_0v_NiMH.html, Accessed on January 29th, 2016

[6] ODE Physics Engine Documentation [Online]. Available: http://www.ode.org/,

 Accessed on January 30th, 2016

[7] PyOpenGL Documentation [Online]. Available: http://pyopengl.sourceforge.net/,

Accessed on January 30th, 2016

[8] Comparison Quadruped [Online]. Available: http://letsmakerobots.com/node/28077,

 Accessed on January 31st, 2016

[9] Nate Kohl and Peter Stone, “Machine Learning for Fast Quadrupedal Locomotion,”.

[Online]. Available: http://www.aaai.org/Papers/AAAI/2004/AAAI04-097.pdf,

Accessed on January 31st, 2016

[10] Gregory S. Hornby , Seichi Takamura, Takashi Yamamoto, and Masahiro Fujita,

“Autonomous Evolution of Dynamic Gaits with Two Quadruped Robots” Robotics,

IEEE Transactions on, Volume: 21 Issue: 3 June 2005

[11] Introducing Spot - Boston Dynamics [Online]. Available:

https://www.youtube.com/watch?v=M8YjvHYbZ9w,

Accessed on February 1st, 2016

[12] Jean J. Labrosse, “What You Need to Use uC/OS-II” in MicroC/OS-II The Real-Time

Kernel Second Edition, Lawrence KS.

[13] Robert Hood, Barry Peyton, Max Marcus, “iOS Device Controlled RC Car Capstone

Project”, Available:

http://www.ece.ualberta.ca/~elliott/cmpe490/projects/2012w/g1_iOS_RC_Car/G01%

20CapstoneProject--FinalReport.pdf

[14] Cadmium (NiCd) Vs Nickel-Metal Hydride (NiMH) Batteries - Environmental Impact &

Recycling[Online] Available : http://www.globelink.co.nz/news/cadmium-nicd-vs-

nickel-metal-hydride-nimh-batteries-environmental-impact-recycling/

[15] Servo Specification Forum. Alan T.

http://www.rcgroups.com/forums/showthread.php?t=1073878

http://www.robotshop.com/media/files/pdf/hs422-31422s.pdf
http://www.robotshop.com/content/ZIP/documentation-sen0142.zip
http://pybrain.org/
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=139&No=593&PartNo=4
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=139&No=593&PartNo=4
http://www.hobbyking.com/hobbyking/store/__25030__Turnigy_Receiver_Pack_2300mAh_6_0v_NiMH.html
http://www.hobbyking.com/hobbyking/store/__25030__Turnigy_Receiver_Pack_2300mAh_6_0v_NiMH.html
http://www.ode.org/
http://pyopengl.sourceforge.net/
http://letsmakerobots.com/node/28077
http://www.aaai.org/Papers/AAAI/2004/AAAI04-097.pdf
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8860
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8860
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8860
https://www.youtube.com/watch?v=M8YjvHYbZ9w
http://www.ece.ualberta.ca/~elliott/cmpe490/projects/2012w/g1_iOS_RC_Car/G01%20CapstoneProject--FinalReport.pdf
http://www.ece.ualberta.ca/~elliott/cmpe490/projects/2012w/g1_iOS_RC_Car/G01%20CapstoneProject--FinalReport.pdf
http://www.globelink.co.nz/news/cadmium-nicd-vs-nickel-metal-hydride-nimh-batteries-environmental-impact-recycling/
http://www.globelink.co.nz/news/cadmium-nicd-vs-nickel-metal-hydride-nimh-batteries-environmental-impact-recycling/
http://www.rcgroups.com/forums/showthread.php?t=1073878

Appendices

Quick Start Guide

The servo motors should be connected to the correct pins, the motions for the robot are
already flashed onto the board and it only needs power to run.
If the DE0 loses the flash settings or the servo motors are disconnected the code can be
updated to correct for the PWM signals / servo motors until the numbers work out. The
numbers correspond to what is written in as the servo number when we call the motions.
The front left leg should be: 12 HipX, 11 HipY, 10 Knee. Front right leg should be: 9 HipX, 8
HipY, 7 Knee. Back left should be: 6, 5, 4. Back right should be 3, 2, 1.

The board is powered at the front, to power it use 3 series AA batteries, the flashed program
is already on board. The servos need to be powered with enough current, to ensure it will be
enough we used a power supply at 6.0 V, with 2.8 A current available. This can be replicated
by using 8 AA batteries connected 4 in series by 2 parallel (this was untested, but a singular
4 pack will not be able to provide enough current and the servos will fold over themselves).

The robot has 4 modes as indicated by the small dip switches on the DE0 board. When only
one of the switches is high and the other 3 are low, it will be in the corresponding mode. The
dip switches are labeled from 1-4 and these will be used to indicate the modes.
4: Walking mode, after 1.5 seconds delay will begin moving, in order for this mode to work
properly, the robot has to be set down in the starting base (the first position it moves to)
3: Dancing mode, this mode can be set down at almost any time, will cycle quickly through
lifting each leg.
2: Weight Shift mode, This mode should be able to be set down as long as it is not in motion,
the base should remain almost constant and just move the body around the legs.
1: Simulation mode, this mode should not generally be used as it takes a long time to run
through, but it comes from the simulation output from our simulation (would be falling in
slow-motion).
Other modes could be programmed into the C code provided as future work.

Figure 4: Overhead View of Board

Future Work

Basic operation was achieved but there are many improvements that could be made on our

projects. The machine learning aspect was successful only in a proof of concept sense and

more extensive work could be done to improve on it. A proper reward system was never

found that resulted in a step and it would take significantly more work to achieve this.

The robot itself could have been improved with either more precise servo motors and/or less

rigid joint options. This would improve the walk and make the weight shifting easier.

Hardware Documentation

Figure 5: Hardware

Video

https://youtu.be/8WfGlfbsVwo

https://youtu.be/8WfGlfbsVwo

Source Code

See uploaded files for the remainder of source code.

multi_pwm.h

#ifndef MULTI_PWM_H_

#define MULTI_PWM_H_

// PWM channel adresses

#define PWM1(data) IOWR(MULTI_PWM_0_BASE+(0<<2), 0, data)

#define PWM2(data) IOWR(MULTI_PWM_0_BASE+(1<<2), 0, data)

#define PWM3(data) IOWR(MULTI_PWM_0_BASE+(2<<2), 0, data)

#define PWM4(data) IOWR(MULTI_PWM_0_BASE+(3<<2), 0, data)

#define PWM5(data) IOWR(MULTI_PWM_0_BASE+(4<<2), 0, data)

#define PWM6(data) IOWR(MULTI_PWM_0_BASE+(5<<2), 0, data)

#define PWM7(data) IOWR(MULTI_PWM_0_BASE+(6<<2), 0, data)

#define PWM8(data) IOWR(MULTI_PWM_0_BASE+(7<<2), 0, data)

#define PWM9(data) IOWR(MULTI_PWM_0_BASE+(8<<2), 0, data)

#define PWM10(data) IOWR(MULTI_PWM_0_BASE+(9<<2), 0, data)

#define PWM11(data) IOWR(MULTI_PWM_0_BASE+(10<<2), 0, data)

#define PWM12(data) IOWR(MULTI_PWM_0_BASE+(11<<2), 0, data)

#define control(data) IOWR(MULTI_PWM_0_BASE+(12<<2), 0, data)

#endif /*MULTI_PWM_H_*/

multi_pwm.vhd

library altera;

use altera.altera_europa_support_lib.all;

-- Created by Darius Grigaitis 2009 www.grigaitis.eu

-- Repurposed for use by Group 5, uAlberta ECE 2016

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_unsigned.all;

entity multi_pwm is

generic(W:integer :=15);

 port (

 -- Avalon MM-----------

 clk : in std_logic;

 reset_n : in std_logic;

 readas : in std_logic;

 writas : in std_logic;

 chipselect : in std_logic;

 address : in std_logic_vector(5 downto 0);

 readdata : out std_logic_vector(31 downto 0);

 writedata : in std_logic_vector(31 downto 0);

 PWM1, PWM2, PWM3, PWM4, PWM5, PWM6, PWM7, PWM8, PWM9, PWM10,

PWM11, PWM12: out std_logic

);

end multi_pwm;

architecture PWM of multi_pwm is

 signal pwm_counter, pwm_value1, pwm_value2, pwm_value3,

 pwm_value4, pwm_value5,pwm_value6, pwm_value7, pwm_value8,

pwm_value9, pwm_value10, pwm_value11, pwm_value12 :

std_logic_vector(W downto 0);

 signal control_reg: std_logic_vector(7 downto 0);

begin

process (clk, reset_n, chipselect)

begin

if reset_n='0' then

pwm_counter<=(others=>'0');

pwm_value1<=(others=>'0');

pwm_value2<=(others=>'0');

pwm_value3<=(others=>'0');

pwm_value4<=(others=>'0');

pwm_value5<=(others=>'0');

pwm_value6<=(others=>'0');

pwm_value7<=(others=>'0');

pwm_value8<=(others=>'0');

pwm_value9<=(others=>'0');

pwm_value10<=(others=>'0');

pwm_value11<=(others=>'0');

pwm_value12<=(others=>'0');

elsif clk'event and clk='1' then

 ----------------------------------- PWM set ----------------

 if address = "000000" and writas = '0' then -- PWM UPDATE

COUNTER

 pwm_value1<=writedata(W downto 0);

 end if;

 if address = "000001" and writas = '0' then -- PWM

UPDATE COUNTER

 pwm_value2<=writedata(W downto 0);

 end if;

 if address = "000010" and writas = '0' then -- PWM

UPDATE COUNTER

 pwm_value3<=writedata(W downto 0);

 end if;

 if address = "000011" and writas = '0' then -- PWM

UPDATE COUNTER

 pwm_value4<=writedata(W downto 0);

 end if;

 if address = "000100" and writas = '0' then -- PWM

UPDATE COUNTER

 pwm_value5<=writedata(W downto 0);

 end if;

 if address = "000101" and writas = '0' then -- PWM

UPDATE COUNTER

 pwm_value6<=writedata(W downto 0);

 end if;

 if address = "000110" and writas = '0' then -- PWM

UPDATE COUNTER

 pwm_value7<=writedata(W downto 0);

 end if;

 if address = "000111" and writas = '0' then -- PWM

UPDATE COUNTER

 pwm_value8<=writedata(W downto 0);

 end if;

 if address = "001000" and writas = '0' then -- PWM

UPDATE COUNTER

 pwm_value9<=writedata(W downto 0);

 end if;

 if address = "001001" and writas = '0' then -- PWM

UPDATE COUNTER

 pwm_value10<=writedata(W downto 0);

 end if;

 if address = "001010" and writas = '0' then -- PWM

UPDATE COUNTER

 pwm_value11<=writedata(W downto 0);

 end if;

 if address = "001011" and writas = '0' then -- PWM

UPDATE COUNTER

 pwm_value12<=writedata(W downto 0);

 end if;

 if address = "001100" and writas = '0' then -- PWM

UPDATE COUNTER

 control_reg(7 downto 0)<=writedata(7 downto 0);

 end if;

 ----------------- PWM signal formation ------------

 pwm_counter<=pwm_counter+1;

 if (pwm_counter = "11110100001001000000") then

 pwm_counter <= "00000000000000000000";

 end if;

 if ((pwm_value1<pwm_counter)and (pwm_value1>0))

then

 PWM1<='1';

 else PWM1<='0'; end if;

 if ((pwm_value2<pwm_counter)and (pwm_value2>0))

then

 PWM2<='1';

 else PWM2<='0'; end if;

 if ((pwm_value3<pwm_counter)and (pwm_value3>0))

then

 PWM3<='1';

 else PWM3<='0'; end if;

 if ((pwm_value4<pwm_counter)and (pwm_value4>0))

then

 PWM4<='1';

 else PWM4<='0'; end if;

 if ((pwm_value5<pwm_counter)and

(pwm_value5>0)) then

 PWM5<='1';

 else PWM5<='0'; end if;

 if ((pwm_value6<pwm_counter)and

(pwm_value6>0)) then

 PWM6<='1';

 else PWM6<='0'; end if;

 if ((pwm_value7<pwm_counter)and

(pwm_value7>0)) then

 PWM7<='1';

 else PWM7<='0'; end if;

 if ((pwm_value8<pwm_counter)and

(pwm_value8>0)) then

 PWM8<='1';

 else PWM8<='0'; end if;

 if ((pwm_value9<pwm_counter)and

(pwm_value9>0)) then

 PWM9<='1';

 else PWM9<='0'; end if;

 if ((pwm_value10<pwm_counter)and

(pwm_value10>0)) then

 PWM10<='1';

 else PWM10<='0'; end if;

 if ((pwm_value11<pwm_counter)and

(pwm_value11>0)) then

 PWM11<='1';

 else PWM11<='0'; end if;

 if ((pwm_value12<pwm_counter)and

(pwm_value12>0)) then

 PWM12<='1';

 else PWM12<='0'; end if;

end if;

end process;

end PWM;

