

Multi-Effect Guitar
Electric guitar system with practice amplifier, distortion and reverb effects

April 12, 2016

ABSTRACT

In this project, we designed and implemented a digital signal processor, and a practice

amplifier for a guitar. This allowed us to explore both the digital and analog domain of signal

processing. Most of this design is hardware intensive. We utilized Altera’s DE2 board to handle

the digital side of things, and Texas instrument’s LM384N 5-Watt audio amplifier to handle the

analog signal processing. The amplifier boosted the signal coming out of the DE2 to a

reasonable playing volume. The guitar included in this design was an ESP LTD EC-400 electric

guitar. The signal processor housed two main components, the distortion effect and the

reverberation effect. Each effect could be applied by simply asserting the switches responsible

for applying the effect. The amount of distortion could also be manipulated by incrementing or

decrementing the effect via push buttons onboard the DE2. The audio amplifier received its

input from the line out on the DE2 and boosted the signal by an internally fixed gain of 34 [dB].

To acquire the data stream coming from the guitar, we took advantage of the active pickups

which output a signal strong enough for the DE2 to process.

TABLE OF CONTENTS

DECLARATION OF ORIGINAL CONTENT

ABSTRACT

TABLE OF CONTENTS

FUNCTIONAL REQUIREMENTS

DESIGN AND DESCRIPTION OF OPERATION

Design

Multi-Effect Guitar

Digital Signal Processor

Analog Amplifier

BILL OF MATERIALS

EKMG250EMC471MJC5S

AVAILABLE SOURCE

Altera Audio Core

DATASHEET

Audio Properties

Distortion Configurations

Delay Configurations (Reverb)

Electric Specifications

DE2

Practice Amplifier

Operational Temperature

I/O Signals

BACKGROUND RESEARCH

Implementation of Tuner

Pitch Determination of human speech

Implementation of Distortion, Echo and Reverb

SOFTWARE DESIGN

TEST PLAN

Hardware:

Software:

RESULTS OF EXPERIMENTS AND CHARACTERIZATION

Distortion Experiment

Reverb Experiment

SAFETY

REGULATORY AND SOCIETY

ENVIRONMENTAL IMPACT

SUSTAINABILITY

REFERENCES

APPENDICES

QUICK START MANUAL

FUTURE WORK

HARDWARE DOCUMENTATION

FUNCTIONAL REQUIREMENTS

The multi-effect guitar project enables the user to apply audio effects such as distortion and

reverb to audio data produced by an electric guitar. The project also includes a practice

amplifier to allow the user to listen to the processed audio data. The effects can be turned on

and off by using the switches on the DE2. Only one effect can be turned on at a time. The

distortion effect is made configurable to allow the user to change the level of distortion applied

by utilizing push buttons on the Altera DE2 to increment and decrement the distortion level.

Incrementing the distortion level decreases the clipping threshold allowing for a harsher, more

prominent distortion. Gain levels are also increased to accommodate for the power loss

presented by the clipping technique. On the other hand, reverb has one set configuration

(delay of 46 [ms]) with a fixed gain of 0.75. The delay line used for reverb was implemented

using the SDRAM off-chip memory.

The audio effects are immediately applied as soon as the switch is turned on. If there is audio

data coming in from the guitar, the effect will be noticeable. We implemented these effects in

hardware to reduce the latency as much as possible(because hardware is faster). This enables

us to perform real-time digital signal processing without introducing audio latency to the output

which is important when playing an instrument. The multi-effect guitar uses 44.1 kHz sampling

rate with a 16-bit resolution.

All of the functional requirements described above were implemented successfully. On the

other hand, the original functional requirements included more features including wireless

audio data transmission, live streaming and a guitar tuner.

The wireless audio data transmission was implemented using the Sparkfun Purpletooth

Jamboree configured as the master and Bluetooth Audio Breakout configured as the slave

which uses the BC127 bluetooth chip. We were successful in configuring the bluetooth boards

and getting them to pair with each other. The slave was originally intended to transfer audio

data to the DE2 using the I2S protocol but was replaced with tapping to the Tx/Rx lines of the

bluetooth slave and soldering it to a 3.5mm audio cable instead which can be inserted into the

LINE IN port of the DE2. This was done because there was no clear benefit of using the I2S

block to implement the data transfer. The bluetooth feature met its demise when the Bluetooth

Audio Breakout (slave) broke causing the audio playback to be cut-off after playing for a couple

of seconds. Due to time constraints and product availability, the bluetooth feature did not make

it to the final production.

The live audio streaming uses client-server architecture to communicate audio data via TCP

sockets. The server uses icecast which is a popular internet radio solution that supports a

number of platforms (windows, mac osx, linux, android, ios, etc) and languages (C, Java,

Javascript). Icecast can also handle load balancing and timing issues. It acts as a middle-man

between one source client (which is broadcasting the data), and one or more sink clients. In our

case, the DE2 was meant to act as a source client providing the audio stream; and our node.js

web application was to act as the sink.

Our web app worked as intended (it could connect and rebroadcast to any icecast source),

however, our source client (the DE2) did not. The source was able to send audio data to the

server, but at an incorrect bit-rate (and possibly incorrect endianness).

Our UART was supposed to be used to configure and monitor the status of the receiving

bluetooth module. The uart successfully communicated with the bluetooth module, and was

able to send commands but not receive them properly (we did however receive data

consistently). We tested this by using an arduino to confirm that the command sent from the

DE2 actually took. We had to use an arduino as a backup to configure the modules. The

automatic pairing worked for brief periods of time. In the end, the receiver would allow a

connection, but then suddenly kick out.

DESIGN AND DESCRIPTION OF OPERATION

Diagram 1: Hardware Block Diagram of the project

Design

The most important part of our design is signal handling. In this project, the incoming data

source was the audio stream coming from the guitar. This particular guitar uses active pickups

which convert the compressional sound waves generated from the guitar to an analog voltage

signal. This signal was then fed into the Altera DE2 board via the 3.5 mm auxiliary cable. Once

inside the board, the data was processed by both custom and stock hardware components

housed on the FPGA. After the signal was processed it was then piped out via the line out on

the DE2. The analog signal from the line out was then fed into the amplifier input using a 3.5

mm jack. The amplifier linearly amplified the input signal. This signal is then sent to the

speakers to convert the voltage signal back into compressional (audio) sound waves.

Multi-Effect Guitar

Digital Signal Processor

● Distortion - Distortion was implemented using hard clipping. The audio samples are

clipped at a constant value. This produces a clamped waveform which closely

resembles a square wave. This effect introduces higher frequency components, and is

heard by the listener as distorted sound. The implementation of the distortion

component was coded in VHDL. The component compares the absolute value of each

audio sample (which represents an amplitude value) with some constant clipping

threshold. If the absolute value of the audio sample is larger than the clipping threshold,

the samples is clipped to that threshold value. Distortion is enabled by switching SW(13)

ON. It is also made configurable by giving the user the ability to increase how much

distortion is applied using KEY(1) to increment and KEY(3) to decrement. The

configuration values can be found in the datasheet below.

● Reverb - The design for reverb was implemented by using an infinite impulse response

filter along with attenuation and delay lines. It’s enabled by toggling SW(14). Essentially,

the input audio passes through a Comb Filter which attenuates and delays the signal.

The output of the filter is then added back to its input which results in a decaying and

delayed stream of echoes. In order to perform delay, the incoming audio is stored in

memory using the SDRAM. More specifically, the SDRAM was implemented using a

circular buffer with multiple taps (read pointers). The current implementation leverages

the entire 8 [MB] of SDRAM.

Diagram 2: Comb Filter

Diagram 3: Circular Buffer

Each audio sample takes up two address spaces(byte-addressable memory). For our

implementation of reverb, we utilized two read pointers, one for the original signal and the

other for the delay. For a 46 ms delay, it was found that the delay read pointer should be

incremented by 4096 after every read cycle. This is described in the calculation below:

 Delay[s] = (Buffer Size[bytes] / Sampling Rate[hz]) / Increment [bytes]

 = (8388608 / 44100) /4096

 = 46 [ms]

Diagram 4: SDRAM State Machine

A custom component was created in order to interface with the SDRAM along with the SDRAM

controller in Qsys. The following signals were included in the custom component:

Diagram 5: Required SDRAM signals

Analog Amplifier

The design around the amplifier used the LM384N Texas instruments audio analog chip. This

particular IC has several desirable characteristics. Firstly, the input impedance of the LM384N is

150 [k]. A high input impedance places very little loading on the input voltage signal. Thus,Ω

the guitar signal retains its signal integrity. Secondly, the LM384N supports a wide operating

voltage range (between 12 and 26 [V]) making it compatible with all types of power supplies.

Thirdly, the chip’s output quiescent voltage is fixed to half of the supply rail (no need to bias the

circuit). This allows the output AC signal to take advantage of the full swing without introducing

too much distortion (clipping). Finally, the LM384N’s gain is internally fixed at 34 [dB] (which is

roughly equal to 50 [V/V]).

The actual design followed a very similar approach to the application circuit provided in the

datasheet [6]. The operational amplifier was configured using the inverting topology. Several of

the pins were set to ground, including the plus side of the op-amp. Capacitors were added for

different reasons. The capacitor added between the power supply and ground is used as a

bypass capacitor to prevent the high frequency components generated by the line voltage

from influencing the performance of the amplifier IC. The capacitor at the input of the negative

side of the op amp is used as a DC decoupler, making the op-amp and the music source

independant and blocked. The final capacitor added to the output of the amplifier is used both

as a decoupler (to prevent the speakers from receiving any DC) as well as a high pass filter to

help attenuate the line voltage hum. The filter consists of the load (two 8 ohm speakers

connected in parallel) and the capacitor described above. The cutoff frequency was

determined to be 84 [Hz]. The last component added into the amplifier was a potentiometer,

which controls the input signal’s power (i. E. volume control). Part of the design included

building the circuit on the breadboard to prototype and test to make sure that it worked as

desired. The final stage of the design consisted of laying out and routing the components onto

a vector board to build a permanent solution. A heat sink was incorporated into this design

because the power output to the load caused the chip to heat up significantly. Thermal paste

was added between the chip and the aluminum heat sink to help with the transfer of heat.

BILL OF MATERIALS

Part Cost Quantity Part Number Link

3.5mm Male to
3.5mm Male
Audio Cable

$0.97 2 DX-DMP354 http://bit.ly/1ViSI
Wi

6.3 to 3.5mm
Audio
Connector

$7.99 1 NS-HZ307-C http://bit.ly/1qkp
M3k

Altera/Terasic
DE2
development
board

$412.97 1 P0301 http://bit.ly/1PioZ
bG

Speaker Visaton
FRS 7 S

$31.46 2
364-3357

http://bit.ly/1Vkg
AcD

1000 microfarad
electrolytic
capacitor

$0.35 1 COM-08982 http://bit.ly/1qkrp
0V

4.7 microfarad
electrolytic
capacitor

$0.12 1 R4.7/50 http://bit.ly/1qLx
d4i

470 microfarad
electrolytic
capacitor

$0.56 1

EKMG250EMC4
71MJC5S

http://bit.ly/1qEY
eWM

Vector Board $2.00 1 N/A N/A

Wire $0.11/ft 3 ft N/A http://bit.ly/1yY4
6fV

Electric (Active)
guitar
ESP LTD
EC-400

$600 1 N/A http://bit.ly/22ql
dR7

http://bit.ly/1ViSIWi
http://bit.ly/1ViSIWi
http://bit.ly/1qkpM3k
http://bit.ly/1qkpM3k
http://bit.ly/1PioZbG
http://bit.ly/1PioZbG
http://bit.ly/1VkgAcD
http://bit.ly/1VkgAcD
http://bit.ly/1qkrp0V
http://bit.ly/1qkrp0V
http://www.jameco.com/webapp/wcs/stores/servlet/Product_10001_10001_31000_-1
http://bit.ly/1qLxd4i
http://bit.ly/1qLxd4i
http://bit.ly/1qEYeWM
http://bit.ly/1qEYeWM
http://bit.ly/1yY46fV
http://bit.ly/1yY46fV
http://bit.ly/22qldR7
http://bit.ly/22qldR7

AVAILABLE SOURCE

Altera Audio Core
Altera’s audio core provides a simple interface to interact with the audio codec on the Altera
DE2 board [5].

● source size: 507 KB [6]
● performance: this core should have acceptable performance (it specifically designed for

this board) [5]
● resource requirements:

○ 235 Cyclone II FPGA logic elements [5]
○ extra clock pll [5]

DATASHEET

Audio Properties

 Bit-depth

Input Audio (LINE IN) 16-bit

Output Audio (LINE OUT) 16-bit

Audio Sampling Rate 44.1 kHz

Guitar Output Voltage (clean bass E-string) ~ 100 mV

Guitar Output Voltage (through DE2, bass E) ~ 1.30 V

Distortion Configurations

Level Clipping Threshold* Gain* Output Voltage [mv] +

1 3000 1 740

2 1900 2 640

3 1300 2 520

4 700 3 440

5 300 7 440

* As the clipping threshold gets lower, the distortion effect produces harsher audio output. The

gain multiplier is required as the distortion level increases due to the power loss from clipping

the signal amplitudes in the process which helps mitigate the volume from dropping.

+ The output voltage for distortion was measured by using the bass E-string.

Delay Configurations (Reverb)

Output Voltage Delay (ms) Gain*

~ 1.10 V 46 0.75

* The gain is set to a value less than 1 in order to slowly dampen the delayed echoes

generated.

Electric Specifications

DE2

 Voltage [V] DC Current [A] DC

Peak 8.89 0.510

Idle 8.89 0.510

Practice Amplifier

Description Datasheet

Input Impedance 150 [k]Ω

Input Voltage 12-26 [V]

Voltage pk-pk (AC) 5.6 [V]

Idle Current Draw 0.01 [A]

Typical Current Draw 0.210 [A]

Power Draw 1.176 [W]

Operational Temperature

 Temperature [Degrees Celsius]

LM384N IC Chip -40 to 85

I/O Signals
SW(13) Enables Distortion

SW(14) Enables Reverb

KEY(1) Distortion Level Increment

KEY(2) Distortion Level Decrement

AUDIO_IN Analog audio input from the guitar to the
audio codec in the DE2 (Audio codec
performs ADC)

AUDIO_CORE_IN Digital audio input from the audio codec to
the audio core.

DSP_IN Digital audio input from the audio core to the
DSP (Utilizes Avalon ST)

MUX3X1_OUTPUT Output data from the MUX3x1 depending on
the effect selected. MUX selects from
DISTORTION_OUT or REVERB_OUT to
output to DSP_OUT

MEMORY_SINK_DATA Output audio to the SDRAM from the DSP
(Used as RAM storage for the reverb
component)

MEMORY_SOURCE_DATA Input audio from the SDRAM to the DSP
(Used by the reverb component for delay)

REVERB_BUFFER_OUT Output audio into the DSP after processing
from the reverb component

REVERB_OUT Output after adding REVERB_BUFFER_OUT
and DSP_IN to mix audio samples for reverb
effect

DISTORTION_OUT Output audio in the DSP after processing
from the Distortion component

DSP_OUT Output from the DSP to the Audio Core
(Effects applied may vary depending on the
effect selected using the MUX3x1. Utilizes
Avalon ST)

AUDIO_CORE_OUT Output from the audio core to the audio
codec

AUDIO_CODEC_OUT Output from the audio codec after
performing DAC

AMP_OUT Output analog audio from the practice
amplifier

The measurements described in this section were performed by using the DE2 power

measurement wiring harness provided by Nancy.

Diagram 6: Hardware Block Diagram

BACKGROUND RESEARCH

Implementation of Tuner

The research on the tuner component used the “A digital guitar tuner” article written by Mary

Lourde and Anjali Kuppayil Saji at the department of electrical and electronics engineering

UAE.[29] This article encompasses the entire design of the guitar tuner. It discusses how to

relate frequency to the corresponding notes, and gives suggestions to improve the accuracy of

the tuner.[29]

Pitch Determination of human speech

The research on the tuner also utilized a peer reviewed article which was presented at the

symposium of computer processing in communications, polytechnic institute of Brooklyn, April

8, 1969. The article entitled “Pitch determination of human speech by the harmonic product

spectrum, the harmonic sum spectrum, and a maximum likelihood estimate.” written by A.

Michael Noll at bell telephone laboratories helped with some of the mathematics in

determining pitch.[34] It provided three methods to accomplish the task of pitch determination.

Implementation of Distortion, Echo and Reverb

The peer-reviewed article by Rulph CHassaing and Donald Reay titled “Digital Signal

Processing and Applications with the TMS320C6713 and TMS320C6416 DSK” was utilized the

implement the current distortion and reverb effects that the project has. Essentially, it was

mentioned that distortion was one of the easiest to implement which can be simply done by

overamplifying each sample and clipping it at maximum and minimum values [26]. As for

reverb, it was mentioned that the buffer size is responsible for providing the length of the delay

in which a dynamic change of the echo length leads to a reverb effect [26].

SOFTWARE DESIGN

Diagram 7: Software processes

The software consists of an LCD task, a level task and an audio task. The audio task monitors

the states of the switches on the DE2 and posts that information to the LCD task (via a queue).

For example, if switch 4 is asserted, reverb will be displayed on the LCD screen.

The Level tasks adjusts the clipping level (when distortion is enabled) based on user input

received via pushbuttons. The Level Task is interrupt-driven (interrupts are triggered when a

button is pushed).

TEST PLAN

Hardware:

Testing begins at the source. The output of the guitar’s analog signal is to be captured by the

oscilloscope to verify its integrity. The ways planned to test the signal is by changing the style

of play, (strumming, finger picking, tapping, etc) and changing its frequency and selecting the

signal that outputs the weakest signal and work with that. In the event that the signal is too

degraded or weak for the DE2 to handle, a preamplifier may be incorporated into the design.

The next hardware component on the list to test is the audio core. This will be done by

connecting up both the line in and line out to an audio source and speakers respectively to

verify that the audio core works as a standalone unit. At this point the next piece of hardware

to test is the FPGA implementation of the DSP. The testing will include testbench simulations

both in modelsim and matlab.

Software:

This project is heavily dependant on the hardware side. The most important hardware

dependant software tasks includes a level task and an audio task. As level task depends on the

pushbuttons, we first made sure that the interrupts fired correctly when the buttons were

pressed. Next we made sure that the gain was incremented or decremented according to

which button was pressed. Finally, we made sure that the gain value was properly bounded

keeping the value with 1-5. The audio task was tested to make sure that it responded quickly

enough to update the LCD screen with no noticeable lag.

RESULTS OF EXPERIMENTS AND CHARACTERIZATION

Distortion Experiment

● The clipping method performed in this project is hard-clipping in which odd-ordered

harmonics pushes the input signal into a more square-shaped wave. Since we’re

clipping the signal at a certain threshold level, producing flat peaks in the signal, we’re

introducing odd-ordered harmonics.

● This way, we’re producing low and high frequency distortion causing a harsher

produced sound.

● This shows the simulation of the hard signal clipping in order to produce a distorted

waveform.

● In this simulation, a sample wav file was read in Matlab. The sample rate is 44.1KHz,

16-bit resolution using 88200 samples.

○ The amplitude clipping threshold was set to 3000. This produces a less harsh

distortion effect. This was done in order to distinguish the clipping in the plots.

○ The MatLab algorithm used is displayed below

Diagram 8: MatLab distortion algorithm

Diagram 9: Clean Audio Wav File [18]

Diagram 10: Distorted Audio Wav File, clip threshold set at 3000

● The hardware simulation was performed in ModelSim using a VHDL component and

testbench.

Diagram 11: Distortion VHDL Testbench and Simulation

Reverb Experiment

● The implementation of reverb utilizes an infinite impulse response filter that includes

delay and gain.

● The audio sample must be multiplied by the gain at a value less than 1 and delayed in

order to produce dampened echoes.

● The echoes generated are added to the current input signal.

● The experiment illustrated below shows how an impulse generate its impulse response

when passed through the filter.

● We chose delays less than 50 ms because delays greater than 50 ms can be heard as

actual distinct echoes. [24]

● Algorithm used for Reverb simulation in MatLab, where “test1” is the input signal and

output is the output signal.

Diagram 12: Reverb algorithm in MatLab

Diagram 13: Clean impulse [25]

Diagram 14: Reverb impulse response

● Reverb was also simulated in VHDL, the “buffer_out” signal is multiplied and divided to

implement a 0.75 gain. “Div_result” is the end result of the operation which is then

added to “data_in” to produce “data_out”. The delay is caused by waiting for the RAM

to be filled up before it start outputting what’s stored in it.

○ The RAM (buffer) size used here is 4 and the bit-depth is 16.

○ We can see that “data_out” becomes much larger by the end due to the

addition of signals performed. The result of this addition implements the

feedback required to produce reverb.

Diagram 15: VHDL simulation of reverb

SAFETY

The voltage required to power the components of this project vary. The DE2 board uses a wall

output DC voltage of 9 [V] and the amplifier uses the laboratory DC power supply with input

voltage of 12 [V]. Both of these supplies are considered to be low voltage, leaving minimal risk

to the user. There is minimal risk of damaging the listener’s eardrums, because the pain

threshold is above the possible output power. In terms of failure modes, they aren’t needed

because if the project fails nothing will cause damage of property or lives. The intended

operating temperatures are between 0-70 degrees celsius as per the datasheet.

REGULATORY AND SOCIETY

For the BC127 bluetooth module use is allowed as long as a radiator is not incorporated into

the design. It has been tested and granted approval under industry Canada (IC) radio standard

specification (RSS). This certification is applicable in Canada. [28] As long as the part does not

interfere with the other radio signals, and accepts any interference use is allowed.

This design includes an internet connection to an audio server to stream live music coming

from the guitar. By exposing the DE2 to the outside world makes the system insecure. For

instance, if a client sends too many bogus requests the DE2 might cause memory leaks, buffer

overruns, etc.

ENVIRONMENTAL IMPACT

The Multi-Effect Guitar may require some components to be soldered using tin-lead solder.

This application was performed on the practice amplifier to build the custom circuit on a vector

board. However, the application of tin-lead solder used in printed circuit boards are exempted

from the requirements of Article 4(1) in the RoHS 1 directive, found in page 5. [20]

The Altera DE2 board falls under the RoHS-compliant devices which is included as part of the

Cyclone series FPGAs. Altera is known to maintain the most RoHS-compliant products in the

industry. [22]

The only foreseeable environmental impact of this project is its disposal. In order for this

project to have negligible negative environmental impact, the components involved in the

project including the LEDs, batteries, PCBs, cabling and microchips must be disposed of

properly to electronics recycling facilities.

SUSTAINABILITY

We based our calculations on the power adapter and included a fudge factor of 30 %. Also,

approximately 38 % of the FPGA is utilized, so again we multiplied the value by .38 to

approximate the power consumption. The voltage used for the power calculation is 3.3 [V].

The estimates for the bluetooth modules were found by looking through the datasheet.

I (100 % FPGA) = 1.3 A * 0.7 = 0.91 [A]

I (38 % FPGA components) = I(100 % FPGA) * 0.38 = 0.346 [A]

Here is a table listing power consumption for individual components.

Table 1: Bluetooth (TX)

Active 54 [mW] 75 % 40.5 [mW]

Idle 3.6 [mW] 25 % 0.9 [mW]

 Total 41.4 [mW]

Table 2: Bluetooth (RX)

Active 49.5 [mW] 50 % 24.75 [mW]

Idle 3.3 [mW] 50 % 1.65 [mW]

 Total 26.4 [mW]

Table 3: DE2

Active 346 [mW] 80 % 276.8 [mW]

Idle 23 [mW] 20 % 4.6 [mW]

 Total 281.4 [mW]

Total power consumption = sum of all components power is ~ 349.2[mW]. From this very rough

estimate, we can determine the Co2 consumption based off calculations provided in the

ECE492 Lecture.

CO2 Generated:

 0.3492 [W] * 24 h/ day * 365 days/year * 0.989 kg CO2/KWH = 3.03 kg CO2/Year

Overall, when considering the CO2 consumption of an average household, to the project’s

consumption it is negligible. For instance, the average household uses on average 12800 kg

CO2/Year. This figure was taken from [23].

REFERENCES

[1] S. Hunter, M. Wong and T. Zylstra, "ECE 492 Final Report: Voice Manipulator," 2013.

[Online]. Available:

https://www.ualberta.ca/~delliott/local/ece492/projects/2013w/G11_VoiceManipulator_FinalRep

ort/G11_VoiceManipulator_FinalReport.pdf. [Accessed 18 January 2016].

[2] Altera, “Embedded Peripherals IP User Guide” [Online]. Available:

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_embedde

d_ip.pdf [Accessed 1 February 2016]

[3] Altera, “Avalon interface specifications” [Online]. Available:

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl_aval

on_spec_1_3.pdf [Accessed 10 April 2016]

[4] Altera, "Altera DC characteristics and timing specifications" 2007. [Online]. Available:

https://www.ualberta.ca/~delliott/local/ece492/lectures/Pages%20from%20cyc2_cii5v1-IOspecs

.pdf. [Accessed 18 January 2016].

[5] Altera, “Audio Core for Altera DE2/DE1 Boards” [Online]. Available:

ftp://ftp.altera.com/up/pub/Altera_Material/11.1/University_Program_IP_Cores/Audio_Video/Aud

io.pdf [Accessed 1 February 2016]

[6] Texas Instruments, “LM384 5W Audio Power Amplifier” [Online].

Available: http://www.ti.com/lit/ds/symlink/lm384.pdf [Accessed March 14, 2016]

[7] Tarek Kaddoura and Jigar Nahar, “App Notes: DM9000A Ethernet Controller” [Online].

Available:https://www.ualberta.ca/~delliott/local/ece492/appnotes/2013w/Ethernet_DM9000A/

AppNotesEthernet.pdf [Accessed 1 February 2016]

[8] Blue Creation, “Command Set guide manual V5 Rev D” [Online]. Available:

http://cdn.sparkfun.com/datasheets/Wireless/Bluetooth/Melody_5.0_Manual-RevD-RC10-Relea

se.pdf [Accessed 1 February 2016]

https://www.ualberta.ca/~delliott/local/ece492/projects/2013w/G11_VoiceManipulator_FinalReport/G11_VoiceManipulator_FinalReport.pdf
https://www.ualberta.ca/~delliott/local/ece492/projects/2013w/G11_VoiceManipulator_FinalReport/G11_VoiceManipulator_FinalReport.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_embedded_ip.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_embedded_ip.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl_avalon_spec_1_3.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl_avalon_spec_1_3.pdf
https://www.ualberta.ca/~delliott/local/ece492/lectures/Pages%20from%20cyc2_cii5v1-IOspecs.pdf
https://www.ualberta.ca/~delliott/local/ece492/lectures/Pages%20from%20cyc2_cii5v1-IOspecs.pdf
ftp://ftp.altera.com/up/pub/Altera_Material/11.1/University_Program_IP_Cores/Audio_Video/Audio.pdf
ftp://ftp.altera.com/up/pub/Altera_Material/11.1/University_Program_IP_Cores/Audio_Video/Audio.pdf
http://www.ti.com/lit/ds/symlink/lm384.pdf
https://www.ualberta.ca/~delliott/local/ece492/appnotes/2013w/Ethernet_DM9000A/AppNotesEthernet.pdf
https://www.ualberta.ca/~delliott/local/ece492/appnotes/2013w/Ethernet_DM9000A/AppNotesEthernet.pdf
http://cdn.sparkfun.com/datasheets/Wireless/Bluetooth/Melody_5.0_Manual-RevD-RC10-Release.pdf
http://cdn.sparkfun.com/datasheets/Wireless/Bluetooth/Melody_5.0_Manual-RevD-RC10-Release.pdf

[9] University of Southern California,”BSD-inet_aton.c function”

http://opensource.apple.com//source/OpenSSH/OpenSSH-7.1/openssh/bsd-inet_aton.c

[Accessed 1 March 2016]

[10] Node.js Foundation, “About Node.js” [Online]. Available: https://nodejs.org/en/about/

[Accessed 28 February 2016]

[11] Express.js, “Express home page” [Online]. Available: http://expressjs.com/ [Accessed 28

February 2016]

[12] Xiph.org Foundation, “Icecast home page” [Online]. Available: http://icecast.org/contact/

[Accessed 28 February 2016]

[13] Github TooTallNate(Nathan Rajlich), “Node-icy github repository” [Online]. Available:

https://github.com/TooTallNate/node-icy [Accessed 28 February 2016]

[14] Mark Otto & the bootstrap team(https://github.com/orgs/twbs/people), “Twitter bootstrap”

[Online]. Available: http://getbootstrap.com/ , getbootstrap.com/about/ [Accessed 28 February

2016]

[15] Google, “Angular JS” [Online]. Available: https://angularjs.org/ [Accessed 28 Februrary

2016]

[16] Future Music, "Distortion, saturation and bitcrushing explained" 2012. [Online]. Available:

http://www.musicradar.com/tuition/tech/distortion-saturation-and-bitcrushing-explained-549516

. [Accessed 16 January 2016].

[17] Computer Music Specials, "The ultimate guide to effects: reverb" 2011. [Online].

Available: http://www.musicradar.com/tuition/tech/the-ultimate-guide-to-effects-reverb-461487.
[Accessed 16 January 2016].

[18] Sample Guitar Wav File : (clean country blues riff 4) [Online]. Available:

http://www.freemusicloops.co.uk/search/clean [Accessed 1 February 2016]

[19] Cheng-Hao Chang, “A Guitar Overdrive/Distortion Effect of Digital Signal Processing”

[Online].

Available:http://ses.library.usyd.edu.au/bitstream/2123/7624/2/DESC9115_DAS_Assign02_3101

06370.pdf [Accessed 1 February 2016]

[20] European Parliament and the council of the European Union, “DIRECTIVE 2002/95/EC

OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 27 January 2003 on the

restriction of the use of certain hazardous substances in electrical and electronic equipment”

http://opensource.apple.com//source/OpenSSH/OpenSSH-7.1/openssh/bsd-inet_aton.c
https://nodejs.org/en/about/
http://expressjs.com/
http://icecast.org/contact/
http://icecast.org/contact/
https://github.com/TooTallNate/node-icy
https://github.com/orgs/twbs/people
http://icecast.org/contact/
http://getbootstrap.com/
http://getbootstrap.com/about/
https://angularjs.org/
http://www.musicradar.com/tuition/tech/distortion-saturation-and-bitcrushing-explained-549516
http://www.musicradar.com/tuition/tech/the-ultimate-guide-to-effects-reverb-461487
http://www.freemusicloops.co.uk/search/clean
http://ses.library.usyd.edu.au/bitstream/2123/7624/2/DESC9115_DAS_Assign02_310106370.pdf
http://ses.library.usyd.edu.au/bitstream/2123/7624/2/DESC9115_DAS_Assign02_310106370.pdf

[Online]. Available:

http://www.digikey.com/web%20export/environmental/RoHSdirective_2002-95-EC.pdf

[Accessed 23 February 2016]

[21] SparkFun, “What does RoHS Compliant mean?” [Online]. Available:

https://www.sparkfun.com/static/rohs/ [Accessed 23 Februrary 2016]

[22] Altera, “RoHS Compliant, Environmentally Friendly FPGAs, SoCs & CPLDs” [Online].

Available:

https://www.altera.com/support/quality-and-reliability/environmental/lead-free/rel-lead-free.html

[Accessed 23 February 2016]

[23] City of Edmonton, “Towards a sustainable downtown: reducing GHG emissions”

[Online]. Available:

http://www.edmonton.ca/go_downtown/documents/PDF/Downtown_GHG_Emissions.pdf

[Accessed 29 February 2016]

[24] Silicom, “Music and the Human Ear”[Online].

Available: http://www.silcom.com/~aludwig/EARS.htm [Accessed April 10, 2016]

[25] Freesound, “1-sample impulse @ 48kHz (WAV)” [Online].

Available: https://www.freesound.org/people/unfa/sounds/205620/ [Accessed April 10, 2016]

[26] Ieeexplore, “Digital Signal Processing and Applications with the TMS320C6713 and

TMS320C6416 DSK” [Online]. Available:

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5236563&newsearch=true&queryTe

xt=Audio%20Reverb [Accessed April 10, 2016]

[27] Sparkfun, "BC127 Bluetooth Hookup Guide" 2015. [Online]. Available:

https://learn.sparkfun.com/tutorials/understanding-the-bc127-bluetooth-module. [Accessed 1

February 2016].

[28] Blue Creation, "BC127 Datasheet" 2015. [Online]. Available:

https://cdn.sparkfun.com/datasheets/Wireless/Bluetooth/DataSheet-BC127.10.pdf. [Accessed 1

February 2016].

[29] Mary Lourde R, Anjali Kuppayil Saji, “A Digital guitar tuner” [Online]. Available:

http://arxiv.org/ftp/arxiv/papers/0912/0912.0745.pdf [Accessed 1 February 2016]

[30] Github codders (Arthur Taylor), “Node-icy github repository” [Online]. Available:

https://github.com/codders/libshout [Accessed 28 February 2016]

http://www.digikey.com/web%20export/environmental/RoHSdirective_2002-95-EC.pdf
https://www.sparkfun.com/static/rohs/
https://www.altera.com/support/quality-and-reliability/environmental/lead-free/rel-lead-free.html
http://www.edmonton.ca/go_downtown/documents/PDF/Downtown_GHG_Emissions.pdf
http://www.silcom.com/~aludwig/EARS.htm
https://www.freesound.org/people/unfa/sounds/205620/
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5236563&newsearch=true&queryText=Audio%20Reverb
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5236563&newsearch=true&queryText=Audio%20Reverb
https://learn.sparkfun.com/tutorials/understanding-the-bc127-bluetooth-module
https://cdn.sparkfun.com/datasheets/Wireless/Bluetooth/DataSheet-BC127.10.pdf
http://arxiv.org/ftp/arxiv/papers/0912/0912.0745.pdf
http://icecast.org/contact/
https://github.com/codders/libshout

[31] Wikipedia, “Transmission Time” [Online]. Available:

https://en.wikipedia.org/wiki/Transmission_time [Accessed 28 Februrary 2016]

[32] Wikipedia, “Bluetooth” [Online]. Available:

https://en.wikipedia.org/wiki/Bluetooth#L2CAP [Accessed 28 February 2016]

[33] Wikipedia, “List of bluetooth profiles” [Online]. Available:

https://en.wikipedia.org/wiki/List_of_Bluetooth_profiles#Advanced_Audio_Distribution_Profile

_.28A2DP.29 [Accessed 28 February 2016]

[34] Bell Telephone Laboratories, A Michael Noll, "Pitch determination of human speech by

the harmonic product, the harmonic sum spectrum, and a maximum likelihood estimate." 1969.

[Online]. Available: http://noll.uscannenberg.org/Papers.htm . [Accessed 29 February 2016].

[35] Nancy Minderman, “NiosII_microc_lab2.vhd” [Online] Available on eClass [Accessed 20

January 2016]

https://en.wikipedia.org/wiki/Transmission_time
https://en.wikipedia.org/wiki/Bluetooth#L2CAP
https://en.wikipedia.org/wiki/List_of_Bluetooth_profiles#Advanced_Audio_Distribution_Profile_.28A2DP.29
https://en.wikipedia.org/wiki/List_of_Bluetooth_profiles#Advanced_Audio_Distribution_Profile_.28A2DP.29
http://noll.uscannenberg.org/Papers.htm

APPENDICES

QUICK START MANUAL

Assumptions: User has basic knowledge on how to use Quartus and Qsys.

Amplifier Assembly:

1. Connect pins 2, 3, 4, 5, 7, 10, 11, 12 to ground.

2. Connect pins 14 to Vdd.

3. Attach a capacitor between pins 14 and ground.

4. Attach a capacitor between pins 1 and ground.

5. Connect a capacitor and speaker in series between pins 8 and ground.

6. To add additional speakers, add the speakers in parallel.

7. Attach a potentiometer to the input signal, ground and a capacitor. And pass the output

of the capacitor to pin 6.

8. Power the amplifier and introduce an input signal to test the circuit.

DE2 Assembly:

1. Plug in the power source for the DE2 as well as the USB cable to the computer.

2. Assuming that a 3.5mm to a quarter-inch adapter was used for the electric guitar, plug

in the 3.5 mm jack from the electric guitar to the LINE IN port of the DE2.

3. Plug in the 3.5 mm jack from the practice amplifier to the LINE OUT port of the DE2.

Programming:

1. Download source files from the course website and untar.

2. Launch Quartus.

3. Restore Archive Project. Look for “niosII_microc_capstone.qar” file from the extracted

tar file.

4. Open up Qsys and open “niosII_system.qsys”.

5. Refresh by pressing F5.

6. Go to Generation Tab, click “Generate”

7. Once generation is done, go back to Quartus.

8. Compile the project.

9. Once compilation is complete, program the “niosII_microc_capstone.sof” to the DE2.

10. Open up NIOS II Software Build Tool for Eclipse.

11. Select the “software” folder of the extracted tar file as the working directory when

prompted.

12. Import the “WebServer” and “WebServer_BSP” into your workspace.

13. Clean and build the project.

14. Generate BSP. After generating add “#define ALT_ENHANCED_INTERRUPT_API_PRESENT” into

“system.h” file.

15. Run the project using NIOS II Hardware.

DE2 Switch and Key Instructions:

1. Enable Distortion Effect by toggling SWITCH 13 on the DE2

a. Increase Distortion Level by pressing KEY 1

b. Decrease Distortion Level by pressing KEY 3

2. Enable Reverb Effect by toggling SWITCH 14 on the DE2

FUTURE WORK

RF Transmission

There are several different directions this project could have taken. The most notable being the

implementation of wireless audio. One caveat we discovered when implementing a wireless

solution was latency. The time that the audio took to transmit (using the bluetooth profile

A2DP) created a virtually unplayable atmosphere. One solution could be send audio via an RF

transmitter, and do the sampling only at the receiving end.

Web Streaming

The idea here is to stream the audio data coming from the guitar to a remote web server. This

is a neat idea because people can listen to the live feed tunes from anywhere. This could be

implemented using TCP/IP sockets to stream the data packets from a board that supports the

internet protocol stack.

Guitar Tuner

The guitar tuner could be implemented in several different ways. The first that comes to mind is

to perform an FFT in hardware, and then use a lookup table in software to determine the

values received from the FFT block. At this point some type of feedback would be required for

the user to determine when the note being played is the desired one. One thing to consider,

especially if the project includes other facets, is the FPGA resources required to implement an

FFT.

Infinity Mirror

This is a neat little add on. So the basic layout is you have an infinity mirror where the LEDS are

connected to a processing unit. This processing unit acquires data about what strings are

being plucked, and which frets are being used. From this information, it’s possible to map the

strings/frets to single LEDS inside the infinity mirror.

HARDWARE DOCUMENTATION

