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2. Acronyms 
 

ADCS = Attitude Determination and Control System 

CDFSM = Command Driven Finite State Machine 

CDH = Command and Data Handling 

COMMs = Communications 

CSP = CubeSat Space Protocol 

DFGM = Digital Fluxgate Magnetometer 

EPS = Electronic Power Supply 

FSM = Finite State Machine 

GB = Gigabyte 

GPS = Global Positioning Unit 

HK = Housekeeping 

IC = Integrated Circuit 

IO = Input / Output 

MCU = Microcontroller Unit 

MnLP = Multi - Needle Langmuir Probe 

OBC = On Board Computer 

OS = Operating System  

PCB = Printed Circuit Board 

SU = Science Unit 

UTC = Coordinated Universal Time 

WDT = Watch Dog Timer 

WOD = Whole Orbit Data 

3. Abstract 
 

AlbertaSat’s cube satellite collects, maintains, and communicates data from three subsystems. 

These subsystems are the communications board (COMMs), electronic power supply (EPS), 

and the attitude control and determination system (ADCS). To do this, a command and data 

handling (CDH) system was designed; this is often called the on board computer (OBC). The 

OBC uses a state machine to walk through different phases of operation: power on (system 

turns on and follows start up procedures), power safe (restricts certain functionality to conserve 

power), detumbling (physically adjusts the satellite’s rotation and orientation), and science 

(prioritizes the collection of scientific data). FreeRTOS is used to schedule tasks that perform 

the required behaviour. This includes collecting housekeeping data from the subsystems, 

logging collected data in non volatile memory, decoding commands sent to the satellite, and 

downlinking collected data to a ground station. In order to protect expensive hardware, mock up 

devices are used to imitate the satellites subsystems. This allows development and testing to 

continue without damaging the end-product hardware. 

 



4. Functional Requirements 
 

4.1. File System 

An external, low storage (2 GB), SD card is used as the satellite’s non volatile memory 

resource. A FAT file system is used to write and read from the SD card. A low storage card is 

used because it has a higher tolerance to the radiation present in space.  

4.2. House Keeping 

Every 60 seconds, housekeeping data is collected from the subsystems and saved to 

nonvolatile memory. This data is transmitted to a ground station when possible (i.e. a ground 

station is nearby and the satellite is not in its power safe state). Housekeeping data includes: 

● subsystem diagnostic information 

● state transistions 

4.3. Subsystem Communication 

The EPS mockup exists but is unused. The OBC does not have the code written which would 

enable it to talk to the EPS mockup running on a separate board. Instead, the EPS is simulated 

directly on the OBC.  For example, their is a function to ask the EPS what the voltage is across 

its batteries. Instead of doing IO with the mock EPS board, this function just returns a number in 

large array of possible battery voltages. Below is a summary of the communication protocols 

used with each subsystem: 

● EPS: I2C 

● COMMs: UART 

● ADCS: I2C 

● SD card: SPI 

The COMM board (the real, expensive COMM board, not the mock up) is communicated with 

over I2C, but the mockup COMM board uses UART. This decision was made because 

implementing slave mode on the cheap development boards which simulate the OBC was 

consuming too much time and would not be a part of the end-product anyway. 

4.4. Telecommand 

A telecommand is a command transmitted from a ground station to the cube satellite. 

Telecommands represent every type of action the OBC can be instructed to take. This includes: 

● Changing the state of the OBC 

● Gathering specific diagnostic information from subsystems 

● Printing to the JTAG serial port 

The execution status of telecommands is stored in the SD card’s file system. For example, an 

incoming telecommand will be logged as “received” at the time it is received. When the 

command is executed it gets logged as “being executed” at that time. When it finished execution 

it gets logged as “finished execution” at that time. This execution status is treated as telemetry. 

 



4.5. Finite State Machine 

AlbertaSat’s proposal to QB50 included a state machine which would be implemented in 

software. As such, a state machine is a functional requirement.  

4.6. Autonomous Operation 

The satellite must autonomously collect and save housekeeping data. It must be capable of 

deciding when to downlink data, buffer incoming telecommands, and make state transitions. 

 

 

5. Design and Description of Operation 
 

The software operates on a microcontroller with the high level IO diagram in figure 5.1. 

In the diagram, each block represents a board (ie, a PCB with ICs, conductive electrical paths, 

IO ports to connect to the board, etc). The arrows between boards represent a type of 

connection. The descriptive text explains what the connection is. There are some blocks within 

other blocks (GPS and EPS), these have their own individual code, but were never ported to 

their own boards. This diagram can be compared to figure A.2.1 (in the Future Work section) 

and some differences can be noted. First, the two scientific payload boards are missing, this is 

due a decision part way through the term to prioritize the development of code for the support 

systems first. The second thing to notice is that some of the connections are a different type. 

This is due to the testing boards being used. Despite a lot of effort, having CSP over I2C with 

the given hardware was proving to be a goal that could not be reached in the given time, and so 

some changes were made in order to have demonstrable communications. 

 

It can also be noted that a 2GB SD card is used, which, when considering that 

communications may be limited for long periods of time, a larger memory size would be better. 

This smaller card is used because smaller memory cards have been proven to be more resilient 

to errors due to space (high energy particles causing bits to flip, etc.).  

 

The OBC is a state driven machine, as described in 11. Software Design. There are 4 

states used solely for the initial startup which comply with requirements set by QB50. There are 

3 other operation states with different focuses. There is a state that prioritizes saving power by 

only allowing critical functions to execute, there is a state that prioritizes physically orientating 

the satellite, and lastly, a state that prioritizes the collection of science data from the (currently 

non-existent) payloads. It runs through these states due the HK retrieved from the EPS and 

ADCS. If the EPS is in a low power state, the OBC will switch to the power safe state, if the 

ADCS is in one of it’s multiple detumbling states, the OBC will switch to the detumble state, and 

so on. 

 

The OBC’s main operation is to retrieve HK data from the EPS, ADCS, and COMM. The 

HK is saved as a telemetry packet on the SD card. When the ground station beacons the OBC 

(in this version, the “ground station” is a PC with a USB connection to the COMM board), and 

the signal is received the OBC will begin sending the telemetry to the ground station. In addition, 



the ground station may send the OBC commands. The OBC will take some action based on the 

command and also save the execution status of the telecommand as telemetry data. The 

required range of commands is still not completely defined by AlbertaSat, but some basic 

commands for demonstration purposes were created, e.g., the OBC echos the commands it 

receives, and the OBC sends what state it is in. 

 

 

Fig. 5.1: Current board data flow. 

 

A more detailed description of operations is provided in section 12. Software Design. 

 
  



 

6. Bill of Materials 
 

Count Material Cost ($) 

1 LPC1769 Development Board $33.25 

2 Arduino Mega 2560 $103.82 

2 4kOhm Resistors $0.08 

N/A Wires $0.67 

Total $137.82 

 

● 5x LPC1769 boards 

● 1x SD Card breakout board to simulate SD card on the LPC1769. 

● 1x SD Card for breakout board 

● 6x USB - USB mini cables 

● 1x UART <-> USB converter 

 

 

7. Available Resources 

7.1. FreeRTOS  

The FreeRTOS operating system will run on the OBC. 

Compile Size: 10 KiloBytes(Depends on compiler, architecture, and kernel configuration) 

Performance: Minimum configuration uses 236 bytes of RAM, a more realistic number can be 

obtained if it becomes necessary. 

7.2. CSP Library 

Communications between subsystems use CSP packets as transport layer protocol (The 

implementation is a part of the Gomspace code repository). Work must be done to this library 

for it to run on anything that isn’t Gomspace’s Nanomind. 

7.3. SwissCube Housekeeping Parameters 

The SwissCube Housekeeping parameters describe the health and status of the 

satellite(temperatures, voltages, currents etc.). They will be organised in the Whole Orbit Data 

format. 

 

https://www.qb50.eu/index.php/tech-docs/category/15-whole-orbital-data?download=50:whole-orbital-data-issue-2


8. Reusable Solutions 
Device drivers for I2C and SPI have already been developed for the LPCxpresso 1769 with 

FreeRTOS compatibility. A C testing framework based off of munit (a two line testing 

framework) was written and used (the uncompiled header file is less than 2 KB). 

 

9. Datasheet 
 

Vdd = 3.3V 

 

Figure 9.1: The 2 Arduino’s connected to the LPC board. 

Please click here for scalable image 

http://123d.circuits.io/circuits/718820-on-board-computer-datasheet


 
 

IO Signals: 

➔ Attitude Determination and Control System (Uses I2C) 

◆ Clock: I2C_Clk 

◆ Data:  I2C_Data 

➔ Communications (Uses UART) 

◆ UART: UART1 

➔ Digital Fluxgate Magnetometer (Uses UART) 

◆ UART: UART0 

➔ Multi-needle Langmuir Probe (Uses SPI) 

◆ Clock: SPI_Clk 

◆ MISO:  SPI_Data 

◆ MOSI: SPI_Data 

◆ Chip Select: MnLP_CS 

➔ MicroSD Card (Uses SPI) 

◆ Clock: SPI_Clk 

◆ MISO: SPI_Data 

◆ MOSI:  SPI_Data 

◆ Chip Select: Mem_CS 

 

There will be one data pin and one clock pin for all the I2C signals (ADC), There will also be one 

data pin and one clock pin for all the CSP signals (EPS, Comms, DFM). For the SPI signals 

there is an initial three pins for clock and data and then an extra select pin for each device, so 

that would be five in total (MnLP and MicroSD). This gives a total of nine IO pins. 

There will also need to be pins to communicate with the Nanohub. Specifications (written by this 

capstone team) have not been made for this. 

9.1. Quick Start Guide 

Included in the appendix is a quick start guide. This guide walks through the process of 

installing the required software, flashing the hardware with the correct code, and starting the 

ground station. 

9.2. Ground Station 

To interact with OBC the ground station is used. The following operations will be helpful when 

using the ground station command prompt: 

● help 

○ Display help about the programs which can be used in the command prompt 

● beacon --start 

○ Send a beacon out to the satellite.  

● beacon --stop 

○ Stop sending a beacon to the satellite 

● tc --help 

○ List help info about how to telecommand the OBC. 



 

10. Background Reading 
 

10.1. The paper [1] describes a similar project undertaken by the University of Manitoba and 

provides useful insights on storage integrity, data redundancy and error reporting. 

 

10.2. The Ground System Operations manual [2], published by the European Cooperation for 

Space Standardisation describes packet design and routing for telecommanding and telemetry 

reporting. 

 

Please be advised, even though this list is short, the document by the European Cooperation is 

a very heavy and detailed read. It is by no means trivial to understand and requires significant 

time to be of benefit. 

 

10.3. Given the large scope of the project, the AlbertaSat wiki [3] proved to be a valuable 

resource in providing us with the necessary background to get familiar with the work that had 

been done before we started working on the project. 

 

11. Software Design 
 

Software design is broken down into two sections. A command driven FSM (CDFSM) and the 

FreeRTOS tasks which use the CDFSM. This description is broken down to explain the 

CDFSM, commands, the FreeRTOS tasks, and the integration of all  components. 

11.1. Command Driven Finite State Machine (CDFSM) 

 

First, the states and their transitions must be defined. In figure 12.1, the solid circle is the entry 

point to the state machine, boxes are the states, arrows are the requirements for a state 

transition, and diamonds represent a decision. 

 

 

Figure 12.1: State Diagram 

 



Next, this state machine is implemented in software such that it is command driven. This means 

that commands are sent to the state machine for execution. A command may or may not get 

executed depending on the current state of the machine. Figure 12.2 is a data flow diagram for 

the CDFSM. In the diagram, the state master acts as a controller and provides a relaying 

service to the states. Much like a store salesman acts like an access point to the warehouse 

inventory. The state slaves are the states of the CDFSM. A command is given to the state 

master, which then forwards this command to the current state. The state makes the decision to 

execute the command or ignore it. In addition, the current state will tell the state master what the 

next state is. 

 

 

Figure 12.2: State machine data flow diagram. 

 

11.2. Commands 

 

Commands are implemented using a data structure, command_t, which has a function pointer 

to a method, called execute. The execute variable is set to point to a specific function depending 

on the purpose of the command.  

 
struct command_t 
{ 
  void *data; 
  void (*execute)( command_t * ); 
}; 

 



This is what a command is. For example, lets say there is a command which collects HK data 

from the EPS. The code might look something like this. 

 
static void execute_eps_hk_command( command_t *command ); 
{ 
  eps_t *eps; 

 
  eps = (eps_t *) command->data; 
  eps->collect_hk( eps ); 
} 

 
void initialize_eps_hk_command( command_t *command, eps_t *eps_driver ) 
{ 
  command->data = (void *) eps_driver; 
  command->execute = &execute_eps_hk_command; 
} 

 

In the application, a command_t structure would be allocated in memory, it would be initialized 

with the example initialization function above, then a pointer to it would be given to the CDFSM.  

11.3. FreeRTOS Tasks 

There is a FreeRTOS task for each major operating purpose of the satellite. This includes: 

● Collecting HK data 

● Processing commands from ground station 

● Sending telemetry to ground station 

 

The stack size of each task has not been determined. Likely, an exact calculation will not be 

done. The art of getting the correct stack size comes down to experience and guessing. As 

these tasks are expanded on, tested, debugged, etc, the stack size will change. 

 

11.3.1.  Collect Housekeeping 

A unique command is allocated for each system that requires housekeeping data collection. 

These commands perform the following actions: 

● Collect housekeeping from the system 

● Package the data in a telemetry packet 

● Save the telemetry packet in the SD card’s file system 

The commands are given to the CDFSM for execution. After each command (one for each 

system) is passed off to the CDFSM the task will delay for one minute. 

11.3.2.  Processing Ground Station Commands 

This task acts as a server to the ground station. It opens a CSP socket and waits for incoming 

telecommands. When a telecommand is received: 

● It is decoded  

● A command_t structure is allocated 

● The command_t structure is initialized based on the decoding of the telecommand 

● The command_t structure is passed off to the CDFSM for execution 



The task then loops and repeats.  

 

Due to the memory and processing constraints of an embedded environment, this task is not 

designed to be a multitasking / forking / select server. Instead, the task will buffer incoming data, 

waiting until the ground station is no longer beaconing the OBC, then it will process the 

telecommands. 

11.3.3.  Transmitting Data to Ground Station 

The task waits for a beacon from ground station. When this beacon is received, the task 

attempts to transmit as much telemetry as possible before the ground station stops beaconing, 

and is therefore out of range. 

11.4. Integration 

Figure 12.3 is a simplified class UML of the software. All commands are derived from the 

command_t structure and all states are derived from the state_t structure. The driver_toolkit_t 

structure acts a holder for all drivers. The purpose of this structure is to reduce the size of the 

uncompiled code, ie, how much the programmers have to type. 

 

 

Figure 12.3: Simplified class UML. 

 

 



12. Test Plan 
Software: 

Aggressive unit tests to test each function were designed and written. Integration tests to 

make sure modules work together correctly are also used. This includes tests which run for a 

long duration to ensure that as entropy builds the software does not crash. 

 

The majority of these tests are done in a simple test suite, it is available along with test 

code as an AppNote on the course webpage. It is very similar in functionality to JUnit testing for 

Java. Tests are written individually and then listed off as part of a test suite. Each test is 

responsible for setting up the needed scenario and is independent of other tests (e.g.: test 1 

turns on an led, and then checks if the led is on, it passes. Test 2 then checks if the led is on, 

but did not initially turn it on, and so it will fail). Each test must have at least one “Assert” line, 

which does a boolean check and gives a possible error message. All asserts in a test must be 

true for a test to be considered passed. 

 

Hardware: 

The LPC boards only purpose is to be used for testing, and so it does not need to be 

tested itself. An SD card reader is connected to the board but again that is only to be used for 

testing the software so minimal testing will be done on the hardware simply to ensure proper 

functionality. 

13. Results of Experiments and Characterization 
The OBC can autonomously walk through its states, downlink telemetry when beaconed by a 

ground station, collect and save housekeeping data, and buffer incoming telecommands and 

execute them. Incoming telecommands are correctly interpreted and executed.  

 

14. Safety 
Since we are only developing software and testing it on manufactured boards the safety 

concerns are very minimal. Some regular hazards that come with with using external boards are 

a (very unlikely) small shock or health risks from working at a computer too long.  

 

A more concerning safety issue involves the satellite in orbit. As software developers, we are 

not sure what the risk is of the satellite colliding with space debris and other satellites. We 

imagine, however, the safety issues to other peoples property and our own does exist. A 

collision would likely mean the death of our satellite and what it collided with. Fortunately, the 

debris will burn up in the atmosphere and pose no safety risk to the life and property on planet 

Earth. 

 

Finally, there is the safety issue of launching the satellite. This poses the greatest threat to 

human life. If the launch pod does not operate as intended,a crash may end the life of people 

and the project. 

 



15. Environmental Impact 
The orbit of the cube satellite will decay approximately two years after launch. This will lead to 

complete disintegration of the satellite with no impact the environment. The launch itself will 

have a significant environmental impact described in [4]. 

The microcontrollers used for mockups will be reused by AlbertaSat for future projects and we 

assume that they will be recycled appropriately after their use. 

 

16. Sustainability 
A summary of the power budget provided by the AlbertaSat team is attached at the very end of 

the appendix. The satellite contains solar cells to power itself. 
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Appendix 
 

A.1. Quick Start Guide 

 

This guide describes the procedures necessary to replicate a demonstration of this project. 

Assumptions made are: 

● Ubuntu or Lubuntu is running operating system, other versions of linux are untested. 

A.1.1. Required Hardware 

● 1 x LPC1769 development board + USB for flashing code 

● 2 x Arduino Mega 2560 + USBs for flashing code 

● Several wires for making electrical connections between boards 

● 1 x Computer running Ubuntu or Lubuntu and at least three usb ports 

● 1 x SD card holder and 2GB SD card 

● 3 x 4k ohm resistors 

A.1.2. Setup 

Install the required software. 

● LPCxpresso: download link at www.lpcware.com/lpcxpresso/downloads/linux  

○ Navigate to the download directory in a terminal 

○ Extract the files: tar -xvzf  Download_File.tar.gz 

○ Run the installer: ./Installer_File_Name 

○ Get a license. Follow the tutorial at this link for more help: 

http://albertasat.wikispaces.com/Lubuntu+in+VirtualBox 

● C/C++ toolchain 

○ sudo apt-get install make 

○ sudo apt-get install gcc 

○ sudo apt-get install g++ 

● Arduino sketch book 

○ sudo apt-get install arduino 

● Python and PySerial 

○ sudo apt-get install python 

○ sudo apt-get install python-serial 

A.1.3 Connect The Hardware 

 Refer to the data sheet for a schematic of the hardware setup. 

● Connect the i2c port one of the lpc board to the i2c port of one arduino. Put a pull 

up resistor on both the data and clock line. 

● Connect the uart port 2 of the lpc board to the uart port 1 of the other arduino. 

● Connect the spi port 1 of the lpc board to the SD card holder. The data sheet 

indicates which pin to use for chip select. Use the last resistor as a pull up 

resistor on the MOSI line. 

● Connect the grounds of the lpc and two arduinos together, but do not connect the 

power supplies. 

http://www.lpcware.com/lpcxpresso/downloads/linux
http://albertasat.wikispaces.com/Lubuntu+in+VirtualBox


A.1.4. Flash The Software 

● Flash the arduino connected by uart to the lpc board with the communications 

board software. 

○ Start the arduino IDE, type ‘arduino &’ in a command line without 

quotation marks. 

○ In the root directory of the software package, the arduino sketch is 

located at: /prototypes/arduino_comm_board/sketch/sketch.ino 

○ Open this file in the arduino IDE. 

○ Select the board: Tools -> Board -> Arduino Mega 2560 or Mega ADK. 

○ Take note of the serial port: Tools -> Serial Port. 

○ Upload the code by hitting the upload button. 

● Start the ground station: 

○ In the root directory of the software package, navigate to: 

/prototypes/ground_station 

○ Run the python ground station script: python ground_station.py 

○ An interactive command prompt will ask for the serial port of the arduino 

with the communications board software. This is the serial port noted 

earlier. After entering the correct serial port a message should display 

saying: port connected. 

● Flash the ADCS software: 

○ In the arduino IDE open the file (again, assuming the current directory is 

at the root of the software package): 

liba/Subsystem/arduino_mocks/adcs_mockup/adcs_mockup.ino 

○ Upload this code to the second arduino (the one connected via i2c to the 

lpc board). WARNING: double check which serial port the code is 

uploaded to. Do not upload to the same arduino as the previous step. 

● Start a debug session on the LPC1769: 

○ Open LPCxpresso. 

○ Import the following projects (directory paths start at the root of the 

software package) 

■ /lib3rdParty/CMSISv1p30_LPC17xx 

■ /lib3rdParty/Drivers_LPC1769 

■ /lib3rdParty/FreeRTOS_LPC1769 

■ /liba/Core 

■ /liba/Subsystem 

■ /main/Application_LPC1769 

○ Click: Project -> Clean..    then make make sure ‘Clean all projects’ is 

selected and ‘Build the entire workspace’ is selected. Click ‘OK’. 

○ Right click the Application_LPC1769 project -> Debug -> C/C++ MCU 

Application. 

○ After the code is flashed, click the green resume button in the tool panel. 

It looks like the play button on a VCR / DVD player. 



A.1.5. Interact with the OBC 

 All code is running at this point. To interact with the OBC, switch to the ground station 

command prompt started earlier and type ‘beacon --start’ without quotes. The ground station is 

now communicating with the OBC and downlinking telemetry. Navigate to the directory: 

/prototypes/ground_station/telemetry  to see the files. Send a telecommand to the ground station 

with ‘tc -c 0 -p 3’. The OBC should echo the command to the LPCxpresso console. Terminate 

the beacon to let the satellite resume its normal operation ‘beacon --stop’. Remember, type 

‘help’ to see the help. 

 

 

A.2. Future Work 

● UTC time: 

○ Writing an API to talk to the GPS module. This API would synchronize the OBCs 

time with the actual time collected from the GPS 

○ A real time clock on the OBC to maintain the current time when the GPS is 

unavailable. 

● Telemetry: 

○ All telemetry collected should have a time stamp on it. This means each 

telemetry packet indicates the UTC time of its collection. 

○ Telemetry should be packetized according to QB50s specification 

○ Collecting all required telemetry instead of  a subset of it 

○ The ability to delete telemetry that ground station has confirmed successful 

receipt of 

○ Able to prioritize the  downlinking of telemetry through incoming telecommands 

● File system: 

○ Restructuring the way telemetry is saved in the file system to meet the 

requirements of the telemetry file system structure 

○ Reliable fault tolerance of critical read and writes 

○ Ability to reformat SD card on the fly 

○ Data compression and error detection / correction 

● Telecommands: 

○ Implementing all required telecommands 

○ Logging execution status of telecommands in non volatile memory 

○ Generic decoder module for telecommands 

○ Handling telecommands which contain extended data 

○ Buffering incoming telecommands 

● Subsystems: 

○ Writing the API to use the EPS software that runs on an arduino 

○ Add watchdog timers to EPS mock up which match the functionality of the 

watchdog timers on the nanopower EPS board 

○ Finishing the API which enables communication with the communication software 

on an arduino 

○ Transition mock ups from an arduino to an lpc1769 

Comment [1]: Once Brendan is done 
writing this it needs to be proof read. 



● Hardware Drivers (spi, i2c, and uart): 

○ Remove dynamic memory allocation in i2c driver  

○ Implement an API which is malleable to changing requirements (such as a 

change in target hardware) 

● Payloads: 

○ Write API to talk to payloads and collect scientific data 

○ Determine priority of payloads and their operating duty cycles (when in science 

state) 

○ Configure the MnLP windows mock up and use this to simulate MnLP 

○ Get verilog source code for DFGM and implement it on an FPGA, spoof the 

scientific inputs, and use this for the DFGM mock up 

● CSP: 

○ Implement CSP over I2C 

● States: 

○ 30 minute blackout window the first time the post ejection state is entered must 

be done. Blackout window does not happen again unless the 30 minute duration 

did not expire the first time. Then, the remaining time is used for the blackout 

duration. 

● Unit Testing: 

○ Comprehensive tests for the file system API 

○ Hardware driver API 

○ Subsystem API for communication to arduinos 

○ Unit testing the current telecommands implemented 

○ Unit testing all future work 

● Software / Hardware / Data Error Recovery 

○ Detect and turn off faulty hardware 

○ Recover from fatal software crashes 

○ Watch dog timers to detect deadlock 

○ Detection and handling of corrupted object code in flash 

○ Detection and correction of corrupt data in non volatile memory 

○ Detection and handling of I2C deadlock  

 

 



 

Figure A.2.1: The eventual layout of boards and connections to meet all AlbertaSat goals and 
specifications. 

 

 

A.3. Hardware Documentation 

 

Figures from sections 5 (figure 5.1) and 9 (figure 9.1) can used to give a good 

description of the hardware. 

 

Current data flow (Fig. 5.1) shows that two Arduinos are simulating two of the 

subsystems (the COMM board and the ADCS) and are connected to the LPC 1769 board. The 

LPC board also has an SD card connected to it for logging of data. The ground station is 

simulated with a PC. EPS and GPS mockucps are contained on the LPC and ADCS mockup 

respectively. 

 

The datasheet diagram shows a more realistic description of how the LPC and the two 

Arduinos are connected.There are two wires going from LPC UART2 pins (pins 40 and 41) to 

the COMM Arduino transmit and receive pins (pins 1 and 0 respectively). The connection going 

from the LPC1769 SDA1 and SCL1 pins (pins 9 and 10 respectively) going into the ADCS 

Arduino board’s own SDA and SCL pins (20 and 21 respectively). The SD card is connected to 

the LPC in the following way:  

● Chip Select to LPC pin 14 

● MOSI to LPC pin 11 

● SCK to LPC pin 12 



● MISO to LPC pin 13 

There is also a 4 kOhm pull up resistor between the MISO and VDD on SD card. SD card VDD 

is connected to the VDD pin 28 on the LPC and the ground on SD card is connected to the pin 1 

ground on the LPC. 

 

A.4 Source Code Section 

Please see  

https://bitbucket.org/bbruner0/albertasat-on-board-computer 

for the most up to date source code (as of April 10, 2015). All modules successfully compile and 

execute. 

Source code index table: 

Filename Status Description 

liba\Core\include 

command_allocator.h C Contains definitions for functions that manage 
allocation and freeing space for a command 

structure; not used in the project 

command_buffer.h C Contains definition for a command buffer Macro; 
not used in the project 

commands.h T Contains definition of the command structure and 
public methods used to operate on the structure 

core_defines.h T Defines macros used by the static library 

system_state_relay.h T Defines the system_state_relay structure and 
functions that operate on it 

system_states.h T Defines the common structure used by states and 
prototypes the methods to initialize this structure 

depending on the state 

task_defines.h T Defines constants for FreeRTOS tasks 

liba\Core\source\commands 

command_buffer.c C Executes all the commands that have been buffered; 
not used in the project 

commands.c T Executes a command and contains implementation of 
user-defined commands 

liba\Core\source\relay 

system_state_relay.c T Manipulates states of the On Board Computer 

https://bitbucket.org/bbruner0/albertasat-on-board-computer


liba\Core\source\states 

detumble.c T Does next state calculation from the Detumble state 
and decides what tasks are executing in it 

post_ejection.c T Does next state calculation from the Post Ejection 
state and decides what tasks are executing in it 

power_on.c T Does next state calculation from the Power On state 
and decides what tasks are executing in it 

power_safe.c T Does next state calculation from the Power Safe 
state and decides what tasks are executing in it 

pre_charge.c T Does next state calculation from the Pre-charge state 
and decides what tasks are executing in it 

science.c T Does next state calculation from the Science state 
and decides what tasks are executing in it 

start_up.c T Does next state calculation from the Start Up state 
and decides what tasks are executing in it 

system_state_generic.c T Implements generic state. There is a function for 
executing in this state and a function for not 

executing. To define behaviour, a state has to link to 
one of the functions. The next from Generic State 

state is always Generic State 

transmit.c T Does next state calculation from the Transmit state 
and decides what tasks are executing in it 

liba\Subsystem\arduino_mocks\adcs_mockup 

adcs.h T Contains definitions for the structures and functions 
used by ADCS 

adcs_mockup.ino T Simulates ADCS behaviour on an Arduino board 

gps_module.c T Simulates GPS module for the ADCS mockup on the 
Arduino board 

gps_module.h T Defines GPS module functions 

liba\Subsystem\eps_mockup 

eps.h T Contains definitions used by the EPS mockup 
(provided by another AlbertaSat member) 

eps_mockup.ino C Arduino mockup of the Electronic Power Supply 



nanopower.c C Spoofs data output for the EPS mockup (provided by 
another AlbertaSat member) 

nanopower.h C Contains definition of the spoof data output function 
for the EPS mockup (provided by another AlbertaSat 

member) 

liba\Subsystem\include 

adcs.h T Contains definitions for the structures and functions 
used by ADCS 

comm.h T Contains definitions for the structures and functions 
used by COMM board 

driver_toolkit.h T Contains all drivers used by command, states, etc. 

ejection_pin.h T Defines the API for querying the post ejection pin 

eps.h T Contains definitions for the structures and functions 
used by EPS 

i2c.h T Contains definitions for the I2C function used by the 
On Board Computer 

mission_logger.h T Defines interaction of the On Board Computer with 
subsystems over the I2C protocol 

mock_comms_struct.h T Defines interfacing with a third-party COMM objects 

nanopower.h T Contains definition of the spoof data output function 
for the EPS mockup (provided by another AlbertaSat 

member) 

static_timer.h T Defines behaviour of the static timer within the On 
Board Computer 

telecommands_packet.h T Defines the packet format for a telecommand from 
ground station 

telemetry_packet.h T Defines the packet format for a telemetry packet 

uart.h T Contains prototypes for functions to set up UART2 
communication on the LPC 1769 board 

liba\Subsystem\source\adcs 

adcs_arduino_remote.c T Executes communication between the On Board 
Computer and the ADCS Arduino mockup 

adcs_generic.c T Converts ADCS mode to string 



adcs_lpc_local.c T An early version of an ADCS mockup which was 
simulated on the On Board Computer; not used in the 

final version 

liba\Subsystem\source\comm 

comm_arduino_remote.c T Executes communication between the On Board 
Computer and the COMM Arduino mockup 

comm_generic.c T Converts COMM mode to string 

comm_lpc_local.c T An early version of a COMM mockup which was 
simulated on the On Board Computer; not used in the 

final version 

liba\Subsystem\source\ejection_pin 

ejection_pin_lpc_pin.c C LPC GPIO ejection pin; not used in the final project 

ejection_pin_mock.c T GPIO spoof of ejection pin 

liba\Subsystem\source\eps 

eps_generic.c T Converts EPS mode to string 

eps_lpc_local.c T An EPS mockup which was simulated on the On 
Board Computer 

nanopower.c T Spoofs data output for the EPS mockup (provided by 
another AlbertaSat member) 

liba\Subsystem\source\i2c 

i2c.c T Sets up I2C communication between an LPC 1769 
board and a slave device 

liba\Subsystem\source\mission_logger 

mission_logger.c T Takes data from subsystems and writes them to an 
SD card 

mission_logger_fatfs_sd.c T Sets up file system on an SD card and provides 
interaction with the file system 

liba\Subsystem\source\static_timer 

static_timer_ram_soft.c T Implements static timer for the On Board Computer 



liba\Subsystem\source\toolkit 

driver_toolkit.c T Initializes driver toolkit for the LPC board for 
interaction with subsystems 

liba\Subsystem\source\uart 

lpc_uart.c T Provides communication over UART2 to LPC 1769 

main\Application_LPC1769 

main.c T The main function that controls communication 
between subsystems and the SD card, manages 
state transition, and sends telecommands and 

receives telemetry data 

 

  



 

 

 

A.5 Supplementary Information on the Multi-Needle Langmuir Probe 

Software Specifications 

 

(All data and figures are from: T.A. Bekkeng, J. I. Moen, E. Trondsen, “Project: QB50”, 2014. 

[Online]. Available: https://bytebucket.org/bbruner0/albertasat-on-board-computer/wiki/1.% 

20Resources/1.1.%20DataSheets/MnLP/mNLP_icd_issue_4.pdf?rev= 

c72e1c6102968c9b61a053f42d96ed611640e1aa 

(Will need authentication to access). 

 

A.5.1 Script Handling 

The syntax of the command to upload script to the payload is the following: 

 OBC_SCRIPT_UPLOAD(slot, script) 

Here, ‘slot’ is the script buffer number and ‘script’ is the script command to be written to the 

buffer. If a script is contained at the location, it is overwritten. 

The script structure is illustrated below 

 
Excerpt from Table 13-1 from m-NLP Interface Control Document 

On-Board M-NLP Script Buffer Usage 

 

 

  



 

The following figure illustrates how the script operation should be run on CubeSat. 

 
Figure 13-6 from m-NLP Interface Control Document 

Script Operation Flow Chart 

 

 

 

  



 

A.5.2 State Management and Error Handling 

State transition diagram that the OBC manages for M-NLP 

 
Figure 13-2 from m-NLP Interface Control Document 

M-NLP State Transition Diagram 

 

 

Error handling is done in one of two ways 

 

In case when the M-NLP detected an error, the M-NLP aborts the executing operation, sets an 

ERROR_FLAG in the HK_STATUS_REG and sends an SU_ERR packet to the OBC. After that, 

the M-NLP goes to RESET state, where by definition all parameters are reset to the RESET 

values. From this state, the M-NLP is unable to support communication, which will cause a 

timeout detection in CubeSat. 



 

If the M-NLP did not detect an error and the OBC has not received a data packet of any kind 

within the last 400 seconds, the following procedure is followed. First, the M-NLP is turned off. 

Next, an OBC_SU_ERR packet (defined in Table 13-4 of the m-NLP Interface Control 

Document) is generated by the OBC. It contains the scripts currently stored on the payload and 

will later be sent to the ground station for analysis. The science header described above (Table 

13-2) is also added as the packet is considered a part of science data. After waiting 60 sec, M-

NLP is turned back on and the script is run from the next times-table time-field value after the 

current UTC time. 

 

 

 

 



Direct	
  
from	
  BAT	
  
(14.8V)

+5V	
  
Regulator

+3V	
  
Regulator

GPS 0.00 0.000 1.000 0% 0% 0% 2%
P31us 0.00 0.000 0.125 100% 100% 100% 100%
Nanomind 0.00 0.000 0.459 0% 100% 100% 100%
Nanohub 0.00 0.000 0.066 0% 0% 0% 100%
UHF	
  Rx 0.00 0.000 0.231 0% 100% 100% 100%
UHF	
  Tx 0.00 0.000 5.000 0% 2% 2% 5%

Active	
  THCS	
  -­‐	
  Heaters 0.00 7.000 0.000 5% 5% 0% 0%

Fluxgate	
  
Magnetometer 0.00 0.400 0.000 0% 0% 0% 50%

MNLP	
  operational 0.00 0.600 0.250 0% 0% 0% 50%
MNLP	
  standby 0.00 0.150 0.180 0% 0% 0% 50%
SSADCS	
  Y	
  momentum	
  
control	
  (daylight) 0.07 0.240 0.337 0% 0% 0% 50%

0.475 1.265 1.567 2.576
88% 88% 88% 88%
0.539 1.436 1.779 2.924
4.97 4.97 4.97 4.97
89% 71% 64% 41%

398.94 318.26 287.39 184.31

1.1% 2.8% 3.5% 5.7%

3.2 10.7 14.7 37.8

Assumptions
Altitude	
  (km) 350
Albedo	
  (%) -­‐
Attitude Inertial	
  sun	
  stare	
  of	
  the	
  smallest	
  face

Orbit	
  (minutes) 90
Max	
  Harnessable	
  Power	
  per	
  solar	
  cell	
  (W) 1.2

Any	
  other	
  assumptions 30%	
  TJ	
  GaAS	
  cells

Average	
  Duty	
  Cycle	
  by	
  Mode	
  (%)

Loads
Power	
  Consumption	
  (W)

Off mode
Power	
  Safe	
  

Mode
Detumbling	
  

mode
Active	
  
Mission

Sum	
  loads	
  (W)
Efficiency

Orbit	
  Average	
  Power	
  Consumbed	
  	
  (W)
Orbit	
  Average	
  Power	
  Generated	
  (W)

Power	
  Margin	
  (%)
Energy	
  Available	
  to	
  Recharge	
  Battery	
  (watt-­‐

min.)
Battery	
  Depth	
  of	
  Discharge	
  After	
  One	
  Eclipse	
  

(%)
Time	
  Required	
  to	
  Recharge	
  Battery	
  After	
  

E.O.E.	
  (min)


