

Step Counter Music DJ

Troy Davis

Caitlin Smart

Summary: Audio Player that updates playing song by matching beats per minute

with steps per minute measured from an accelerometer.

1

ABSTRACT

 We are using the Altera DE2 development board, which includes a Cyclone

II FPGA and various other hardware and I/O interfaces, to implement an audio

player that reads WAV files from an SD card. An accelerometer is used to measure

an individual’s step rate. The audio player chooses a song that has a beats per

minute that is similar to this step rate. Steps per minute (SPM) and the currently

playing track title is displayed on the LCD.

2

TABLE OF CONTENTS

Functional Requirements .. 3

Design and Description of Operation .. 4

Bill of Materials ... 6

Sources of Reusable Design Units ... 7

Datasheet ... 8

Background Reading ... 9

Software Design .. 10

Test Plan ... 11

Results of Experiments and Characterization .. 11

References .. 12

Appendices:

Quick Start Manual ... 13

Future Work .. 14

Hardware Documentation .. 15

Source Code .. 16

3

FUNCTIONAL REQUIREMENTS

 CORE REQUIREMENTS
1. Decode and play MP3 files to external speakers

2. Load MP3 files from SD card

3. Select a song based on the song’s beats per minute

4. Select a song based on accelerometer input

5. Update song selection after each song ends

6. Smoothly fade into a new song

7. One momentary switch to force poll accelerometer

8. One dip switch to turn off accelerometer input

9. Standard MP3 controls (next song, previous song, etc.)

10. Display current track information on LCD

11. Volume control

 OBJECTIVES MET
1. Decoded and played WAV files to external speakers

2. Loaded WAV files from SD card

3. Selected a song based on the song’s beats per minute

4. Selected a song based on accelerometer input

5. Updated song selection after each song ends

6. Did not implement fading to new song

7. Implemented momentary switch to update currently playing song based on

current steps per minute

8. Did not implement dip switch to turn off accelerometer input

9. Did not implement standard MP3 controls

10. Displayed current track title on LCD

11. Did not implement volume control

4

DESIGN AND DESCRIPTION OF OPERATIONS

Signal Flow Diagram

Accelerometer

Speakers

SD Card

WM8731
Audio Codec

Line
Out

Nios II/f
Processor

A/V
Config

I2C Master

Audio
Controller

GPIOAccelerometer

INT2

SCLK

SDAT

INT2
SCLK
SDAT

SCLK

SD
A

T

SD
Controller

SD Card Port

SCLK

SDAT

FIFO

SPI

•Altera DE2

•Cyclone II FPGA

•Accelerometer Path

•SD Path

•Audio Path

•Nios II/f Processor

SPI

Avalon Bus

Audio

player
SD Card

Audio

Codec

Speakers

Accelerometer

Hardware Block Diagram

5

 Our system is broken down into three main components controlled by the

Nios II/f processor.

 SD card: The SD card controller first checks to see if an SD card is present.

The system will hold until an SD card is inserted. It then parses the SD card,

looking for all WAV files stored on the card. As the files are found, the clusters

associated with those songs are stored to be easily accessed later. Once the SD

card is parsed, the obtained WAV files have their header information stripped. All

this information is stored in the audio player structure.

 Accelerometer: The accelerometer is configured to generate an interrupt

on its external interrupt pin when a transient motion greater than 0.375g is

observed. It should be noted that the accelerometer debounce is configured to

disable interrupts for 150ms after an interrupt is detected. Our accelerometer

vhdl component counts the amount of interrupts generated by the accelerometer

device and makes them available as data out on the Avalon bus during a read

operation. The read operation also reset the hardware counter. Using this

interrupt counter, our software is able to determine the amount of events

occurring per unit time. Measuring the hardware counter every half second and

extrapolating this value to steps per minute leads to a large inaccuracy in the

result. In order to maintain a high refresh rate while improving accuracy, a history

of interrupt counter values is generated over a 25 second period. Using this

history, a more accurate representation of the steps per minute can be obtained

while maintaining a refresh rate of 2 Hz. In order to decrease lag time on start up,

the history is initialized to 120 steps per minute. This value was recognized as

being a good representation of the average steps per minute of an average

person at an average pace. The average steps per minute calculated is passed to

the audio player for song determination.

Audio Player: The audio player uses the average steps per minute to

determine which song to play. It does this by mapping the average steps per

minute to a range of acceptable beats per minute for the playback song. Once the

acceptable range is determined, the struct initialized by the SD card is searched

and a corresponding song is selected. This song is then played to completion. A

6

momentary switch was incorporated to allow the exiting of a song mid-playback.

Once a song has finished playback, the process of song selection begins again. In

this fashion, audio playback will be updated at the end of playback or when the

button is pressed.

BILL OF MATERIALS

 Altera Terasic DE2 development board - $269.00USD

 2 - Freescale Semiconductor triple axis accelerometers on a breakout board

from Sparkfun (Part # SEN-10955). - 2 X $9.95 = $19.90

o Uses I2C interface, user selectable full scales of ±2g/±4g/±8g, has

current consumption of 6µA – 165µA, supply voltage of 1.95V – 3.6V,

and interface voltage of 1.6V – 3.6V.

o Supplier site: https://www.sparkfun.com/products/10955

o Datasheet:
http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Sensors/Accelerometers/MMA8452Q.pdf

 Punch board to mount accelerometers - $2.00

 FAT 16 SD card - $10.00

 40 pin ribbon cable - $15.00

 9V DC 1.3A Power Brick - $10.00

 Wire wrap - $0.50

 Headphones - $10.00

 40 pin header - $0.20

 2 – 6 pin headers – 2 X $0.05 = $0.10

Total cost: $336.70

https://www.sparkfun.com/products/10955
http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Sensors/Accelerometers/MMA8452Q.pdf

7

SOURCES OF REUSABLE DESIGN UNITS

 The reusable design components that we utilized in our design were:

 I2C master from opencores, which we modified slightly to facilitate

the design of our accelerometer controller core. This core proved to

be very useful in the control of the accelerometer device, but failed

to provide a NAK in the event of I2C reads, and also violated the

timing requirements of the audio codec.

 Audio AV Config from Altera, through their University core program,

proved to be ideal in the control of the audio codec. Register values

are set before the core is instantiated on the FPGA. Therefore,

volume control was not possible in our design.

 Audio DAC FIFO from Terasic provided a DAC FIFO for the audio

codec. Our particular design ran the FIFO at 18.432 MHz at a sample

rate of 48 kHz and a 16 bit data width. The audio DAC FIFO also made

use of several peripheral cores for timing and reset control.

 A software implementation of SPI control of the SD card was found

from Cornell University. Tying the SD card pins to PIO Avalon slaves

allowed for software bit banging in this fashion.

8

DATASHEET

Startup (turn on)

Insert SD card

Listen to music

Shake
accelerometer
(while running)

Song updates to
match

accelerometer
shake when song

completes or
button is pressed

Measured Power:

 7.79V DC

 644mA DC

FPGA to board
 Inputs

 SD to FPGA
o Through an SD Card Controller (SPI)

 Accelerometer to FPGA
o Through I2C bus

 Dip switches/buttons/LEDs to FPGA
o Through PIO registers

Outputs

 FPGA to speaker
o Uses audio codec to transmit out

 FPGA to LCD

User Perspective Block Diagram

9

o LCD module takes in data (LCD_DATA) to display

Off-board
 Inputs

 Accelerometer (power from DE2 board)
o Through GPIO pins

 Outputs

 Speaker
o Through Line Out port

BACKGROUND READING

 An article on IEEE Xplore, “Implementation of SD Card Music Player Using

Altera DE2-70,” by Liang Hong-wei, Li Jian-ai, and Kan Ling-ling, discusses using

our board as a music player using WAV files stored on an SD card. Even though we

are using MP3s in our music player, this article has useful information about

playing audio files from a FAT16 formatted SD card. They have a block diagram of

their SD music player as well as their implementation in SOPC builder, which was

very helpful to compare to our implementation. The link to this paper is:

 Another article, “MP3 decoding on FPGA: a case study for floating point

acceleration,” by Alexandros Papakonstantinou et al, discusses the acceleration of

Floating Point applications, using an MP3 decoder implementation that relies on

floating point math. They show that real-time processing can be done through

floating point acceleration. This will likely be useful to us if we need to speed up

the processing of our MP3 files for a real-time application. The link is:

Links to these articles can be found in the references section as references

[6] and [7].

10

SOFTWARE DESIGN

We use the MicroC/OS-II RTOS to implement four tasks: main,

accelerometer, audio player, and synchronization. The main task initializes our

µC-OS II data structures and instantiates the other three tasks. The accelerometer

task calculates the average steps per minute (SPM) based on an average of the

last 50 measurements to more accurately model SPM and mask against variances

in step rate. The audio player task selects a song from the SD card within a beats

per minute (BPM) range that matches the average SPM. The song is played to

completion, at which point a new song is selected. The synchronization task

pends on a button press. When pressed, the current song ends, forcing audio

player to select a new song.

main
initialize µC-

OS II data
structures

instantiate accelerometer
task, audio player task, and

synchronization task

accelerometer
task

read interrupt
count register

calculate and
update

average step
count history

sleep for 0.5
seconds

audio player
task

calculate song
bpm range

from average
step count

history

match song
with bpm range

desired

begin playing
audio file

while no
synchronization

flag playback
audio

end of song

average step
count history

synchronization
task

pend on key
press

set
synchronization

flag

• main

• accelerometer task

• audio player task

• synchronization task

• average step count variable

Software Block DIagram

11

TEST PLAN

Hardware: Isolated component design allowed the components to be

tested individually. Routing I2C signals through GPIO pins allowed the observation

of I2C data and I2C clock to be captured on an oscilloscope to verify signal integrity

and correctness. In this fashion, both the audio codec and the accelerometer I2C

implementations were tested. The implementation for the SD card file structure

used was a robust design and required little testing. However, before integration

of the audio codec and audio player, we were able to decode SD card contents,

building a database of audio files.

Software: Here again, our isolated component design allowed testing of the

components individually. SD card testing followed a similar format as SD

hardware testing. Calculating average steps per minute from the accelerometer

separately from the rest of the system allowed verification of the correctness of

the calculation without interference from other system tasks. Calibration of

accelerometer register values was determined empirically through physical

experimentation. Lastly, before system integration testing, the audio player was

run without accelerometer input to ensure a high degree of audio quality was

maintained and that real time playback was possible.

RESULTS OF EXPERIMENTS AND CHARACTERIZATION

 The Nios II/e was incapable of providing WAV data at a rate capable of

maintaining full audio FIFO buffers. This resulted in choppy, unintelligible audio

playback. Upgrading to the Nios II/f processor provided the necessary increase in

performance to allow sustained audio playback. At 50 MHz, audio quality was

severely diminished. Several groups were able to increase audio quality by

increasing system speed. 100 MHz was chosen for system clock frequency as it

balanced performance and ease of implementation.

12

REFERENCES

[1] Nios II Software Developer’s Handbook, ver. 11.0, Altera, San Jose, CA, 2011.

[2] Embedded Peripherals IP User Guide, ver. 11.0, Altera, San Jose, CA, 2011.

[3] MP3 Player. [Online]. Available: http://www.opencores.org/projects/i2c/ via

www.alterawiki.com/wiki/MP3_Player

[4] Music Player. [Online]. Available:

http://people.ece.cornell.edu/land/courses/ece5760/FinalProjects/f2010/vs327_rw3

63/WAV_player/ECE%205760.htm

[5] Terasic SD Card Music Player. [Online]. Available:

http://people.ece.cornell.edu/land/courses/ece5760/FinalProjects/f2010/vs327_rw3

63/WAV_player/ECE%205760.htm

[6] L. Hong-wei, L. Jian-ai, and K. Ling-ling, "Implementation of SD Card Music
Player Using Altera DE2-70," in Multimedia and Signal Processing (CMSP), 2011
International Conference on, vol.2, Guilin, China, 2011, pp.150-153. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5957486&contentT
ype=Conference+Publications&searchField%3DSearch_All%26queryText%3Dsd+musi
c+player+DE2.

[7] A. Papakonstantinou et al. “MP3 decoding on FPGA: a case study for floating
point acceleration.” [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.208.3461.

[8] Freescale Semiconductor Datasheet Document Number: MMA8452Q, ver. 4.1,

Freescale Semiconductor, Tempe, AZ, 2011.

[9] Wolfson Microelectronics Datasheet WM8731/WM8731L, ver. 3.4, Wolfson

Microelectronics , Edinburgh, United Kingdom, 2004.

[10] Freescale Semiconductor Application Note Document Number: AN4071, ver.

1.0, Freescale Semiconductor, Tempe, AZ, 2011.

http://www.opencores.org/projects/i2c/
http://www.alterawiki.com/wiki/MP3_Player
http://people.ece.cornell.edu/land/courses/ece5760/FinalProjects/f2010/vs327_rw363/WAV_player/ECE%205760.htm
http://people.ece.cornell.edu/land/courses/ece5760/FinalProjects/f2010/vs327_rw363/WAV_player/ECE%205760.htm
http://people.ece.cornell.edu/land/courses/ece5760/FinalProjects/f2010/vs327_rw363/WAV_player/ECE%205760.htm
http://people.ece.cornell.edu/land/courses/ece5760/FinalProjects/f2010/vs327_rw363/WAV_player/ECE%205760.htm
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5957486&contentType=Conference+Publications&searchField%3DSearch_All%26queryText%3Dsd+music+player+DE2
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5957486&contentType=Conference+Publications&searchField%3DSearch_All%26queryText%3Dsd+music+player+DE2
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5957486&contentType=Conference+Publications&searchField%3DSearch_All%26queryText%3Dsd+music+player+DE2
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.208.3461

13

APPENDICES:

QUICK START MANUAL

To assemble this project, you will need the DE2 board, speakers, a FAT 16

formatted 2 GB SD card, and the MMA8452Q accelerometer breakout board.

First, the accelerometer needs to be connected to the GPIO pins as follows:

ACCELEROMETER GPIO

3.3V VCC33 (pin 29) on GPIO 0 which
corresponds to 3.3V

SDA GPIO_0(3)
SCL GPIO_0(5)
I2 GPIO_0(7)

GND GND (pin 12 or 30) on GPIO 0 which
corresponds to ground

Note the I1 pin and the SA0 pin on the bottom of the breakout board are

not connected to anything.

The SD card needs to be formatted to FAT 16. The songs must be WAV files

that are 16 bit, 48 kHz, and stereo. We used the website http://audio.online-

convert.com/convert-to-wav to convert MP3 files to this format. The name of the

WAV files must start with an integer which corresponds to the BPM of the song,

followed by a space, and then the song title without spaces.

To run the volatile project, program the FPGA with Step_Music_DJ.sof

which is in Step_Music_DJ.zip. In Nios II IDE, import Step_Counter_Music_DJ

project located in Step_Music_DJ/software once the zip file is extracted. It is then

possible to build and run on the DE2 board via JTAG connection.

To flash the non-volatile project, program the FPGA with

Step_Music_DJ.pof which is in Step_Music_DJ.zip. In Nios II IDE, import

Step_Counter_Music_DJ project located in Step_Music_DJ/software once the zip

file is extracted. The Flash Programmer tool can then be used to flash the

software to the board.

http://audio.online-convert.com/convert-to-wav
http://audio.online-convert.com/convert-to-wav

14

The SD card will need to be inserted and the speakers plugged in and

turned on to begin the music playback. Once the project is instantiated on the

board and running, either by running in volatile using the IDE or by turning on the

board in flash, the music should begin to play automatically. The accelerometer

needs to be shaken in the x-axis to register interrupts. Song selection will occur at

end of playback or when Key 3 is pressed.

FUTURE WORK

 Future work for this project could include completing the core

requirements in functional requirements that we were not able to finish, such as

volume control and standard MP3 player controls. Implementing MP3s would be

a great addition to the project, as we were only able to implement WAV files. We

were planning on using the MAD lib decoder to decode MP3s. Some extras that

we thought could be added to this project were to flash LEDs to the music and

implement Bluetooth speaker capabilities.

 A major addition to the project would be to transfer to a small portable

board, such as the Altera DE0. This would allow for a better experience as you

could actually jog with the board. The DE0 also has an accelerometer built into it,

so the external accelerometer would not be needed. However, this board does

not have an on-board audio codec, so an external audio codec would need to be

added.

 Another addition could be to implement signal processing into this project.

Currently, BPM is found by estimating the BPM of a song, or pulling it from the

MP3 song information. Signal processing could be used to find the BPM of a song.

Also, signal processing could be used to change the speed of the song to match

the desired BPM. Auto tune could be included so the pitch of the song doesn’t

change. A possible extension of this would be to sync the music to the

accelerometer, so the beat perfectly matches your step.

15

HARDWARE DOCUMENTATION

Accelerometer

Speakers

SD Card

WM8731
Audio Codec

Line
Out

Nios II/f
Processor

A/V
Config

I2C Master

Audio
Controller

GPIOAccelerometer

INT2

SCLK

SDAT

INT2
SCLK
SDAT

SCLK

SD
A

T

SD
Controller

SD Card Port

SCLK

SDAT

FIFO

SPI

•Altera DE2

•Cyclone II FPGA

•Accelerometer Path

•SD Path

•Audio Path

•Nios II/f Processor

SPI

Avalon Bus

Hardware Block Diagram

16

main
initialize µC-

OS II data
structures

instantiate accelerometer
task, audio player task, and

synchronization task

accelerometer
task

read interrupt
count register

calculate and
update

average step
count history

sleep for 0.5
seconds

audio player
task

calculate song
bpm range

from average
step count

history

match song
with bpm range

desired

begin playing
audio file

while no
synchronization

flag playback
audio

end of song

average step
count history

synchronization
task

pend on key
press

set
synchronization

flag

• main

• accelerometer task

• audio player task

• synchronization task

• average step count variable

Software Block Diagram

Software File Hierarchy

SOURCE CODE

 Refer to Step_Music_DJ.zip for source code.

main.c

i2c_ctrl.c

i2c_ctrl.h

head.h

sd_card.c

read_lyrics.c

find_cluster.c

file_list.c

basic_io.h

accelerometer.c

accelerometer.h

17

Index of Source Code Files:

 main.c (T): Main code file for project. Instantiates and runs project files and

tasks.

 head.h (T): Header file for project. Contains all function declarations,

variables, and defines.

 sd_card.c (T): Part of SD card library. Controls SD card functionality.

 find_cluster.c (T): Part of SD card library. Provides sd_card.c with

functionality.

 file_list.c (T): Part of SD card library. Provides sd_card.c with functionality.

 read_lyrics.c (T): Part of SD card library. Provides sd_card.c with

functionality.

 basic_io.h (T): Header file providing basic IO functionality.

 accelerometer.h (T): The header file for the accelerometer driver. Contains

register defines and function definitions.

 accelerometer.c (T): Software driver for accelerometer. Performs register

writes and reads via I2C.

 i2c_ctrl.h (T): The header file for the I2C master driver. Contains register

defines and function definitions.

 i2c_ctrl.c (T): Software driver for I2C master. Provides I2C read/write

functionality as well as initialization of I2C controller.

