

ECE 492: Computer Engineering Design Project

Network-Controllable Embedded MP3 Player

An embedded MP3 player with a web application user interface. It decodes MP3 files stored

on an SD card and plays the audio output to the audio interface of the DE2 development

board.

Group 12

Brady Thornton

Jason Brown

Lab day: Thursday, 2:00-5:00pm

Page 3 of 41

Table of Contents

Abstract .. 5

Functional Requirements of Project ... 5

MP3 Playing Requirements ... 6

User Interface Requirements ... 6

User Interface Control Minimum Requirements.. 6

Web Interface Requirements .. 7

Meeting the Requirements... 7

Design and Description of Operation .. 7

Bill of Materials ... 8

Reusable Design Units... 8

I/O Signals ... 9

3-Wire SPI SD Card Interface .. 9

Optrex 16207 LCD Display Core ... 9

Wolfson WM8731 Audio Codec ..10

DM9000A Ethernet Controller ...10

Datasheet ..10

Power Consumption ..10

System Block Diagram ...10

Background Reading .. 11

Software Design .. 11

Theoretical Software State Machine Model .. 11

RTOS Tasks and Division of Functionality ..12

RTOS Inter-task Message Passing .. 14

Web Server Task .. 14

HTTP Communication over Ethernet .. 14

Public Web API ...15

Track Indexing ...16

SD Card File System ...16

Parsing ID3 Metadata from MP3 Stream Data ... 17

ID3 Specification and Background ... 17

Parsing Strategy ...19

Page 4 of 41

Calculating Track Length using MPEG Headers ...19

Constant Bit Rate Track Length .. 20

Variable Bit Rate Track Length ... 20

External Libraries and Components ..21

Libraries used inside DE2 ...21

Libraries used in client-side web application..21

User Interface Design ..21

Client-Server Architecture ..21

Visual Design ... 22

Test Plan... 29

Software .. 29

Reliability and Stress Testing ... 30

Hardware ... 30

Results of Experiments and Characterization ... 30

Multitasking Performance .. 30

Hardware Resources and Utilization ...31

SD Card Buffering ...31

MP3 Decoding Optimizations ... 32

References ... 33

Appendix .. 35

Quick Start Manual .. 35

Future Work .. 36

Hardware Documentation .. 37

System Block Diagram .. 37

 Clock and Abridged Data Flow Diagram ... 37

Source Code ... 39

VHDL .. 39

Software – On Altera DE2 .. 39

Software – Client Application .. 40

Self-Evaluation .. 41

Page 5 of 41

Abstract

The MP3 encoding format is a popular audio format that uses lossy compression techniques

to encode and store audio data. It is the de facto standard for storing and distributing digital

audio content, especially in consumer personal media players. Our project goal is to design

and construct a user-friendly MP3 player on the Altera DE2 development board that is

capable of being controlled by any device in a user’s local network.

The player reads MP3-encoded data from the onboard SD card slot, decodes the audio

stream in software, and sends the decoded samples to the onboard audio codec. This

process is done in real time, similar to consumer-grade MP3 playback devices. Additionally,

the player acts as a web server and provides a user-friendly web application interface for

controlling playback. The player makes use of freely available software libraries and IP cores

to facilitate rapid development, such as libmad [11] for MP3 decoding, the InterNiche TCP/IP

stack [9], the EFSL embedded file system [8], and the jQuery JavaScript library [17].

A number of our planned features made it into the final design; however, we removed the

requirement for hardware control in order to allow for extra web interface development time.

Equalization features were also dropped due to the computational demands in software and

time constraints in exploring a hardware solution.

This document outlines the design of the system architecture and components required to

implement the overall system, as well as the characterization of I/O.

Functional Requirements of Project

The high-level features and requirements of the embedded MP3 player can be described as

follows:

- MP3 files stored on an SD card are decoded and played to the onboard audio codec

for output

- MP3 track metadata is parsed using each file’s embedded ID3 tag information

- Users can control the player using a web application interface over a local network

- The web interface supports multiple simultaneous clients and downloads rich artist

metadata automatically when internet access is available to the client.

- Hot-swapping of SD cards is supported

The requirements needed to achieve this functionality are summarized in the tables below.

The description column describes how each requirement contributes to the overall

functionality of the MP3 player.

Page 6 of 41

MP3 Playing Requirements

Component Requirements Functional Description

Onboard SD card reader -Detect SD card

-Read file system

-Buffer read MP3 files

The SD card reader is the source of

the data for the MP3 player. It is

buffer read by the system and

provides a constant stream of data

to be decoded. A FAT32 file system,

provided by EFSL [7,8] is used.

NIOS II CPU & software

support

-Decode MP3 frames into PCM audio

samples

The MP3 data is decoded before

being sent to the audio interface.

Decoded data is buffered to the

audio codec.

Onboard Wolfson

WM8731 Audio Codec

-Send PCM audio samples as output

to headphone jack

The resultant PCM samples from

the source MP3 are played through

the headphone jack.

User Interface Requirements

Component Requirements Functional Description

NIOS II CPU & software

support

-Index SD card

-Parse ID3 metadata for each track

and store in sorted data structures

for playlist generation

The CPU performs software

processing of file data, and

performs tasks that respond to

control of the player through the

user interface.

Optrex 16207 2x16 Digit

LCD Display

-Show basic player status updates,

such as if it is paused, stopped, or

playing.

The LCD screen acts as a basic

status display for the MP3 player.

Web Application -A web application to act as a client,

making API requests based on the

user’s actions to allow for control of

the player over the network.

-Provide artist metadata such as

album art, artist images, artist

biographies, and similar artists where

available.

The user interface is the primary

point of interaction between the

user and the player.

The client uses the lastFM API to get

artist metadata [24].

User Interface Control Minimum Requirements

Similar to the behavior in consumer MP3 players, the embedded MP3 player provides simple

controls to the user via the web interface. All controls are handled by the client user interface

via API calls to the server:

Play/Stop: Starts or stops the playback.

Pause Toggle: Toggles playback between the play state and paused state.

Page 7 of 41

Next/Previous: Plays the next or previous file on the SD card, if such files are available.

Track Selection: Plays the track selected by the user through browsing or searching.

Volume Set: Adjusts the overall volume of the output.

Particular attention was given to designing a pleasant and seamless graphical interface that

shows the user their music collection in an elegant and refined way.

Web Interface Requirements

Component Requirements Functional Description

Ethernet port interface -Monitor the Ethernet port for

incoming requests

-Perform bidirectional

communication using the TCP/IP

protocol stack and a simple subset of

HTTP

The NicheStack [9] TCP/IP stack

provides low level communication

over Ethernet, and an application

specific subset of HTTP has been

used to handle web requests

appropriately.

Web server -Serve the appropriate data (HTML,

JSON data, JavaScript, etc.) based on

the user request

-Communicate requests to the MP3

player’s playback system to perform

functionality such as track changes

The web server services user

requests for MP3 player’s web

interface. Such requests include

serving the HTML page (along with

associated scripts and data) to the

client, and passing client requests

for MP3 player control to the

playback system.

Web page user interface -Display available tracks to user

-Allow selection of track for playback

-Allow other control requests such as

volume level changes

-Display the currently playing track

The webpage allows the user to

operate the MP3 player over the

network using a modern web

interface.

Meeting the Requirements

All of the requirements necessary for playback were met. The web server requirement was

added to allow for a richer control set and added value to the user-player interaction.

The requirements for equalization and hardware control were dropped in an effort to allow

for extra time developing the player’s core functionality. Much attention was given to player

responsiveness, user experience, and proper functionality, and this required more time to

complete than anticipated.

Design and Description of Operation

The main functional requirement of playing MP3 files from an SD card has been

accomplished utilizing hardware included on the DE2 development board and

Page 8 of 41

communication channels (such as the Avalon Bus) in the hardware, as seen in Fig. 1.

Components utilized include a 3-wire SPI interface to interface with the onboard SD card

hardware slot, utilizing the onboard RAM and a NIOS II CPU to decode MP3 files, and

interfacing with the audio codec using Altera’s University Program audio core [1] and the

University Program Audio and Video Configuration core for configuring the codec over a

serial interface [2], to set all the numerous registers appropriately for our needs as per the

data sheet [3].

Due to the computational nature of decoding MP3 files, we use the most powerful NIOS-II

CPU configuration available, the NIOS-II/f. In order to maximize performance, the system

clock rate has been increased to 100 MHz as opposed to the 50 MHz used in the

introductory labs for the course.

Bill of Materials

Component Cost

Altera DE2 Development Board $519.75

2GB SD Card $10.49

Linksys 4-Port Wired Router $31.49

Ethernet cable $0.98

Total $562.71

Reusable Design Units

A summary of the software libraries used by the MP3 player is shown in the table below.

Note that compilation size is calculated with binaries that are compiler optimized (that is, with

gcc’s “–O3” flag).

Figure 1: DE2 hardware communication architecture

Touch Buttons

and Switches

NIOS II/f CPU

@ 100MHz

SD Card

Reader via

3-Wire SPI

Avalon Bus

WM8731

Audio Codec

SDRAM

Ethernet Port

Controller

(DM9000A)

Altera UP

Audio Core

Altera UP Audio

and Video

Configuration

Core

Optrex 16207

LCD Display

Page 9 of 41

Component Source Size Compiled Size

libMAD Decoding Library 854KB 95KB

Embedded File System Library 247KB 68KB

NicheStack TCP/IP Stack 116KB 127KB

Total Library Usage 1217KB 290KB

SD card interfacing is done using a 3-wire SPI interface to the onboard SD card in one-bit SD

bus mode [6], and a file system library (EFSL, as previously discussed) to support file

allocation table (FAT) file systems with higher-level abstraction on file access [7]. EFSL is

available under the GNU license, and conveniently has a wrapper written for it for the NIOS-II

processor [8], which was employed to save writing our own implementation. As tested, the

interface performs fast enough to saturate the MP3 decoder with enough data for real time

audio playback.

Lastly, the NicheStack TCP/IP stack [9] is a reusable software library component that provides

a basic TCP/IP stack for use with the DM9000A chip on the DE2. The NIOS-II IDE provides

wizard generated sample code that implements a (quite limited) subset of the HTTP standard

over top of this TCP/IP stack. This code was leveraged and modified to provide web access to

static resources via HTTP GET, and perform API calls via HTTP POST.

I/O Signals
Signal Location

SD Card bus (4 I/O) Avalon bus to 3-wire SPI core to SD card pin out

Avalon Bus On-board bus

Optrex 16207 LCD Display (14 I/O) On-board component to microprocessor

Wolfson WM8731 Audio Codec (21 I/O) On-board component to microprocessor

Push button signal (1 wire per button) On-board component to microprocessor

DM9000A Ethernet Controller (23 I/O) Avalon bus to controller core to Ethernet plug pin out

3-Wire SPI SD Card Interface

SPI Interface SD Card Pinout

Master-Output-Slave-Input (out) SD_CMD (in/out)

Master-Input-Slave-Output (in) SD_DAT (in/out)

Slave Select_n (out) SD_DAT3 (in/out)

SPI Clock (out) SD_CLK (out)

Optrex 16207 LCD Display Core

I/O to FPGA I/O to Hardware

Address (in) E (out)

Data (in/out) RS (out)

Control (in/out) R/W (out)

 DB [8] (in/out)

Page 10 of 41

Wolfson WM8731 Audio Codec

Signal Type Description

XTI/MCLK Input Master clock in

BCLK Input/Output Digital Audio Bit Clock

DACDAT Input DAC digital audio input data

DACLRCK Input/Output DAC sample rate L/R clock

ADCDAT Output ADC digital audio output data

ADCLRCK Input/output ADC sample rate L/R clock

CSB Input 2-3 wire MPU chip select / MPU interface address

SDIN Input/output 2-3 wire MPU data input

SCLK Input 2-3 wire MPU clock input

DM9000A Ethernet Controller

Signal Type Description

ENET_DATA Input/output (16 bits) Data to and from the Ethernet controller

ENET_CS_N Output Inverted chip select signal

ENET_CMD Output Command select

ENET_INT In Interrupt signal

ENET_RD_N Output Inverted read select signal

ENET_WR_N Output Inverted write select signal

ENET_RST_N Output Inverted reset signal

ENET_CLK Output Ethernet clock signal (25 MHz from a PLL)

Datasheet

Power Consumption

Using an ammeter in series and a voltmeter in parallel, the power consumption and current

drawn by the player was measured. The values were constant during idle, startup, and active

states.

Using measured voltage and current, power P = VI.

Measure Value

Current 530 mA

Voltage 9.06 V

Power 4.81 W

System Block Diagram

On the next page is a system block diagram of the system and its external signals. We

assume that the system is connected to peripherals on the Altera DE2 board and will be

operating at room temperature.

Entity Generated HDL Library Project

Entity design.niosII_embeddedMp3

niosII_embeddedMp3

LCD_ON
LCD_BLON

LCD_EN
LCD_RS

LCD_RW
LCD_DATA(7:0)

DRAM_CLK
DRAM_CKE

DRAM_ADDR(11:0)
DRAM_BA_1
DRAM_BA_0
DRAM_CS_N

DRAM_CAS_N
DRAM_RAS_N
DRAM_WE_N

DRAM_DQ(15:0)
DRAM_UDQM
DRAM_LDQM

SD_DAT
SD_DAT3
SD_CMD
SD_CLK

ENET_CMD
ENET_CS_N

ENET_DATA(15:0)

ENET_INT

ENET_RD_N
ENET_RST_N
ENET_WR_N

ENET_CLK
FL_ADDR(21:0)

FL_CE_N
FL_OE_N

FL_DQ(7:0)
FL_RST_N
FL_WE_N

AUD_ADCDAT

AUD_ADCLRCK
AUD_BCLK

AUD_DACDAT
AUD_DACLRCK

AUD_XCK
I2C_SCLK
I2C_SDAT

CLOCK_50
CLOCK_27
KEY(3:0)

ieee.std_logic_arith.ALL
ieee.std_logic_unsigned.ALL
Architecture: structure

Page 11 of 41

Background Reading

In addition to the provided references, the reader can consult [15] to read about different

audio encoding standards and how MP3 arose as the most popular audio encoding format.

As discussed in the article, the MP3 format has faced some challenges due to its close ties

with music piracy. Industries and retailers continuously seek new ways to provide MP3s to

consumers through legal distribution channels.

Software Design

Theoretical Software State Machine Model

A desirable modelling construct for a device such as an MP3 player that possesses clearly

defined instantaneous states and distinct transition scenarios is a finite state machine. Early in

the design process, such an architecture was considered and prototyped in C++ making use

of object-oriented constructs such as polymorphism. However, for simpler interoperability

with many of the reusable software libraries being leveraged, further development was done

in C. However, due to the clean theoretical mapping, the same conceptual design is applied

to the C code implementation in the final MP3 player’s playback control task.

Figure 2: State machine model of an MP3 player

As outlined in Fig. 2, the theoretical layout of an audio playback device as a finite state

machine consists of an initial startup state, followed by a track selection state, and a playback

state. Additionally, any of these three states can transition to an error state upon

encountering a runtime issue.

In the context of our implementation, the startup state encompasses doing an initial indexing

of the SD card and its file system to gather track information. This state is also responsible for

initializing and configuring any hardware devices such as the audio codec, and launching the

web server as a separate task (whose operation is discussed in detail later).

StartupState TrackSelectionState

PlaybackState ErrorState

Error
Error

Error

OK

Stopped/Paused

Volume Change

Play track from

byte offset X
Stop/Pause/Change

Tracks

Volume Change

Valid File System

for Restart

Page 12 of 41

The distinction between the track selection and playback states is most clearly illustrated by

the use of the libmad MP3 decoder. There is a logical separation between the track selection

state, in which nothing is actively playing, and the playback state, in which MP3 data is being

actively decoded and played through the audio codec. We have hence distinguished

between user controls that can be done actively during playback, and those which require

returning from the MP3 decoding functions of the current track to a non-playing (or what we

call track selection) state. It was determined that the only change that can be applied during

playback without altering the decoding process is a volume change. All other events such as

pausing, stopping, or changing tracks require stopping the decoding of the current track

either indefinitely, or for the purpose of restarting decoding on a new file. Track selection

state however deals with switching between tracks and restarting from a paused or stopped

state by interfacing with the file system and offsets into given files. Note that to provide users

with expected functionality in all states, volume change functionality is duplicated here.

It is worth noting that the error state of the player is entered in the case that an

unrecoverable error has occurred. Typically, this is indicative of an SD read failure, and as

such the error state simply prompts the user to enter a valid SD card and will wait until

readable data exists for it to re-enter the startup state.

RTOS Tasks and Division of Functionality

The use of the MicroC/OS-II real-time operating system (RTOS) [25] affords us multitasking

within our software design through the use of operating system tasks. Upon startup, a task is

created to initialize and startup all other tasks for the system as a dispatcher task. Upon

successful completion of this trivial process, the design of the system is such that all work is

partitioned into two tasks:

 Player task:

As discussed above, this task maintains a state machine-like process for indexing the

SD card, selecting files, and MP3 decoding and playback. MicroC/OS-II lends itself to

having long running tasks implemented as infinite loops, and as such each state in the

state machine described above is implemented as a separate infinite loop, with the

exception of the startup state which will not infinitely loop if it doesn’t reach the track

selection state, but rather move to the error state.

State transitions between the two non-trivial states (i.e., the track selection state and

the playback state) occur based on explicit polling of a semaphore-synchronized

shared (with the web server task) player data structure that indicates control requests

from the user. This polling model is similar in execution to a condition variable

concept used by many multi-threaded applications, but does not require long-term

Page 13 of 41

blocking (through the use of semaphore “accept” calls rather than “pend”), so

responsiveness to audio playback or events such as SD card removal are not inhibited.

Given the free time afforded in the track selection state due to lack of decoding being

performed, polling is an acceptable mechanism that ensures responsiveness and ease

of implementation for features that cannot easily be mapped to hardware interrupts

(such as the SPI interface to the SD card for example). In the playback state, polling

occurs as the lone task as long as enough decoded audio is buffered for playback in

the audio codec’s output FIFO buffer. An interrupt is configured from the audio codec

hardware core to signal that buffered data in the FIFO is running low. Within the

interrupt service routine, the interrupt is disabled (to prevent hammering the ISR while

we deal with the lack of buffered audio) and a binary semaphore is posted to indicate

to that task that in addition to polling for control requests, time must be spent reading

the file further from the SD card, and decoding MP3. Upon re-filling the buffer, the

interrupt is re-enabled to allow for signaling once the audio FIFO runs low again. This

synchronization of running the decoder is crucial so as not to overrun the output

buffer due to faster than real-time decoding speeds.

 Web server task:

In order to enable timely responses to requests, the web server is run as a separate

task in the RTOS. In practice, the operation of the web server is to serve static web

pages from the zip file system stored in flash memory in response to HTTP GET

requests, and to route HTTP POST requests through to the MP3 player’s API handlers.

API requests that query for data are responded to by generating a JSON formatted

message from the data available in the semaphore-synchronized shared player data

structure. For example, requests to get the track list are implemented in this way. API

requests to perform an action or control the player work similarly, but write to the

shared player data structure to pass the control along to the player task to be

handled. Full documentation for the supported API functionalities is given below.

Page 14 of 41

RTOS Inter-task Message Passing

As previously mentioned, at the crux of the player’s operation is the player data structure that

stores all currently relevant information about the state of the player. The structure can best

be understood by viewing the C code definition:

typedef struct

{

 int currentTrack;

 int changeTrackTo;

 int volume;

 int currentPosition;

 unsigned int pausedAtFileOffset;

 bool isPaused;

 bool isStopped;

 bool shouldChangeOffset;

 int pausedPosition;

 bool shouldGoNext;

 bool shouldGoPrev;

 char *trackIndex;

 int timesIndexed;

 bool dataReadError;

} PlayerDataStruct;

Note that this structure encompasses all necessary information to recover the current status

of the player, and is also sufficient for passing messages related to the nature of track

iteration or selection, pausing or resuming playback, and other status information such as

error indicators, or a count of times the SD card has been indexed.

Message passing between the two major tasks running in MicroC/OS-II on the MP3 player

(that is, the player task and the web server task) occurs by sharing a single instance of this

structure, taking care to acquire the associated binary semaphore guarding this structure as a

mutex. Values set by the web server task in response to an API handler (e.g., shouldGoNext,

to indicate the player should switch to the next track) will be noted by the player task during

its polling of the structure, and it may respond appropriately. Further, the web server uses the

structure to reply to web requests inquiring about the state of the player (e.g., exposing the

index of tracks on the SD card to a client via the trackIndex structure member).

Web Server Task

HTTP Communication over Ethernet

To provide users with a web interface to control and interact with the MP3 player, network

communication over Ethernet is supported. This is accomplished through the use of the

DM9000A chip [4] on the DE2 board. In line with nearly every device hosting a web server,

reliable data transfer is to be facilitated by the TCP/IP protocol stack. Altera’s NIOS-II IDE

contains a sample HTTP server project utilizing the InterNiche TCP/IP implementation [9],

which has been modified for the purposes of the MP3 player to support API calls using

Page 15 of 41

standard HTTP POST requests [10]. The HTTP GET functionality in the sample code was left

largely unchanged and is used to serve web browser clients the static HTML files, images, and

scripts needed to populate the web application. A visual description of a typical client request

from the web server, requesting the index page is provided in Fig. 3.

Figure 3: Data flow between web server API and a user's web browser

Public Web API

In order to service requests from the web based user interface, an important consideration in

the design of the software is creating a publicly accessible API to easily query for data from

and send control signals to the MP3 player. The functions on this API are responsible for

notifying the player task of control requests made through the network, as well as exposing

status information to networked clients.

Calls to the API from clients result in the web server task changing the values of the

PlayerData structure based on the context of the API call. Meanwhile, the decoder task

checks PlayerData during buffer refilling and after a track has completed playing. In this

way, changes to PlayerData result in modifying the behavior of playback, based on the

logic of the decoding task. This decouples API logic from player logic so that each task may

focus on its own requirements instead of needing to know about the internal functionality of

other tasks.

•Request index
page via MP3
player's IP
address using
GET request

Client (Web
Browser)

•Retrieve the
static HTML
page and
associated
resources
(JavaScript,
images, etc.)

MP3 Player
Server

•Load static
content and
run client side
JavaScript

•Script will
query the web
server API via
HTTP POST
requests for
track
information

Client (Web
Browser)

•Consume
HTTP POST
request for
available
tracks, and
query SD card
for list,
generate JSON
structured
data to return
and send
response

MP3 Player
Server

•Consume JSON
response and
populate web
page with data

Client (Web
Browser)

Page 16 of 41

The table below indicates the available calls on the API and all expected parameters and data

returned. Note that all requests are required to be made in HTTP 1.0/1.1 POST request

format, and all returned data is formatted in JavaScript object notation (JSON) structures.

API Resource Parameters Description/Return Data

togglePause N/A Toggles the player’s current playback state between play and pause.

setVolume (int) vol Sets the audio codec’s volume to the value vol. This is in the range

[0,100] and is validated client-side. Regardless of malicious intent,

volume settings are still restricted server-side to be within [0,100],

and hence non-compliant parameters simply produce undefined, but

safe behavior.

stopPlayback N/A Stops playing the current track.

previousTrack N/A Stops the current track and starts playing the previous track in the

player’s logical play order.

nextTrack N/A Stops the current track and starts playing the next track in the

player’s logical player order.

trackList N/A Request for a JSON string containing the current track index.

playerStatus N/A Request for a JSON string containing the player’s status. This can be

used as a heartbeat for a client to periodically ensure

synchronization with the player.

playTrack (int) id Stops the current track and starts playing a track with id id. Note that

track id’s are defined in the JSON returned via the trackList API call.

Track Indexing

In order to provide the user with intuitive information regarding the contents of their music

library on the SD card, the contents of the card are indexed as part of startup of the MP3

player. This is accomplished by mounting the card and its file system using EFSL, and iterating

the root directory (support for a nested directory structure was not implemented in order to

focus on more forward-facing features) in search of files with an “mp3” extension. For each

MP3 file found, the ID3 track metadata is parsed (as outlined later in this report) and stored

for later user friendly display. Following this, sorting of the indexed tracks is performed first by

artist, followed by album title, and finally track number. This allows for continuous playback in

an intuitive and natural ordering. Lastly, a JSON string is generated and stored in the player

data structure to facilitate fast responses to clients requesting the available tracks from the

player.

SD Card File System

To allow for interfacing with the SD card, two approaches were taken. The first was to use

Altera’s University Program SD Card core [5], which provides a software HAL for high level file

Page 17 of 41

system access to the SD card, and an IP core, which abstracts away the serial peripheral

interface (SPI) needed to communicate with the SD card in SPI bus mode [6]. While we were

able to successfully read data from the SD card (after fixing a bug in the provided HAL), we

found that the core did not give us the performance necessary to saturate the MP3 decoder

with file data at real time playback speeds. Upon investigation we found that this was due to

a number of poor design choices in the core, such as busy waiting on data reads, and

inefficient code (e.g. a single value might be calculated several places in a function rather

than caching the result). Of chief concern was the inability to clock the core at frequencies

other than 50 MHz, which would have limited our entire system. Additionally, it was also

noted that the HAL did not function properly for modern SD cards and success was only

achieved with an old 512 MB card.

A better alternative to the University Program core is to use the 3-wire SPI interface natively

provided in SOPC Builder, directly to the pins in the card. This allows for minimal delay in

hardware, customizability of the clock speed, and simple memory mapped read and writing

in software.

However, a file system is still desirable so users can configure their music library on a

consumer device such as a laptop computer, and then playback with our MP3 player. The

Embedded Fileystems Library (EFSL) provides such functionality by providing FAT16 and

FAT32 support for embedded devices provided a few functions are written to translate library

calls into the memory mapped I/O to the storage device [7]. We found that such a wrapper

for the NIOS-II was already publicly available, which made implementation easier [8]. We

noted a significant performance improvement with the use of this library and the direct SPI

hardware core, and were able to read and write files quickly on SD cards of varying sizes and

FAT partitions.

Parsing ID3 Metadata from MP3 Stream Data

ID3 Specification and Background

In order to display useful information about the tracks to the user, the player must extract

and parse ID3 tag information from each file during the initial indexing process. Examples of

such metadata include the name of the track, artist, and album, and perhaps the track’s

genre and year of release.

ID3 is a standard for encoding metadata in MP3 files, and there are two encoding formats:

ID3v1 and ID3v2. (Although they share similar names, they are somewhat different in their

structure).

Page 18 of 41

ID3v1 data was introduced at a time when not all players supported metadata. It consists of a

fixed-length header 128 bytes long that is appended to the end of the MP3 file to allow for

error-free playback in devices that were not designed to parse it. Valid ID3v1 headers always

start with the string “TAG”, so the presence of an ID3v1 tag can be checked by examining the

bytes corresponding to the header at the correct offset and performing a string comparison.

The structure of an ID3v1 header is shown in the figure below using data from [12]. Bytes are

zero-indexed.

ID3v1 Data Specification

0-2 3-32 33-62 63-92 93-96 97-124 125 126 127

“TAG”

string

Title Artist Album Year Comment Track

Valid Bit

Track

Number

Genre

Code

All characters are encoded in ASCII, with the exception of the track number and genre code.

The genre can be looked up by consulting the ID3v1 specification genre lookup table [13] and

finding the entry that corresponds to the encoded value.

ID3v2, unlike ID3v1, is a variable-length header prepended to the front of an MP3 file. ID3v2

consists of a header followed by a series of frame-length-data segments, and thus allows for

a wider variety of data to be encoded into the stream. A valid ID3v2 header always starts with

the “ID3” string, so the presence of an ID3v2 header can be checked by examining the first

few bytes of an MP3 file and performing a string comparison. A valid header is then followed

by a variable number of frames, ending at an offset specified by the header. The format for

the header and frames are shown in the tables below using data from [13].

ID3v2 Header Specification

0-2 3-4 5 6-9

“ID3” string ID3v2 version Flags Size of ID3 data (excl. header)

ID3v2 Frame Specification

0-3 4-7 8-9 10…data size

Frame tag name Frame data size Flags Tag data

Using these standards, a small ID3 parser can be written that reads values at fixed and at

variable offsets depending on the ID3 version and places the parsed data into pre-allocated

strings. The strategy for doing this is outlined in the next section.

Page 19 of 41

Parsing Strategy

No external ID3 parsing libraries are used. We have implemented our own ID3 parser that is

lightweight and supports most of the common and desirable metadata attributes encoded by

MP3 encoders. The ID3 parser does not parse fields that the embedded MP3 player does not

present to the user.

An MP3 can be encoded with ID3v1 metadata, ID3v2 metadata, both, or neither. Each of

these cases must be considered when designing for maximum compatibility with an arbitrary

MP3 file.

Since ID3v2 provides possibly richer data than ID3v1, the ID3 indexer checks if the stream

contains an ID3v2 header. It will look for all the data that it needs in the ID3v2 frames first. If

any of the needed attributes are null or are not included in the ID3v2 header, the parser will

then check for the existence of an ID3v1 header. If it exists, the indexer will attempt to fill in

missing data fields using the ID3v1 data. If both ID3v2 and ID3v1 tags have been exhausted

and attributes are still null, then we can assume that no other metadata can be used to get

the missing data and the field is left null.

If the stream does not contain and ID3v2 header, the player will attempt to fill all fields using

ID3v1 tag data. As in the first case, if data is missing (or if there is no ID3v1 header), then the

fields are left null by the indexer.

One caveat to this hierarchical parsing strategy is that the genre field in ID3v2 can legally

contain genre codes specified by the ID3v1 specification. Therefore, the indexer must

explicitly check the ID3v2 genre data for the presence of an ID3v1 genre code and use the

ID3v1 lookup table to replace it; otherwise, the genre will left as a coded decimal string that is

of no real use to the user.

Calculating Track Length using MPEG Headers

An important role of any audio player is keeping track of time and displaying it to the user in

some way. Unfortunately, ID3 tags do not specify track lengths. This is due to the variation in

encoders and the stream types supported by the MPEG format.

To complicate things further, MPEG streams can be constant bit rate (CBR) or variable bit rate

(VBR); therefore, a naïve length calculation using file size cannot always be a reliable way to

measure stream duration. It is also impractical to calculate the average bitrate for a variable

bitrate stream since it would require parsing every encoded frame of every track during the

indexing process, a costly and unnecessary operation.

Page 20 of 41

In order to calculate the length of a track during the indexing process, the indexer must peek

into the first encoded frame of the MPEG stream. This is located at an offset equivalent to the

ID3v2 data size, or if there is no ID3v2 header, an offset of zero. The length can be calculated

using one of two ways depending on the bitrate type.

An MPEG header contains a variety of data about the encoded data stream. In the case of

this MP3 player, we choose to support only the most common type of stream: MPEG Layer-III

audio sampled at 44 100Hz. The vast majority of MP3 files fit this description, as most CDs are

sampled at that frequency. We also support all standard bitrates, including variable bit rates.

Bitrate type can be determined by looking for the presence of a variable bit rate header

immediately after the first MPEG header. Similar to ID3v2 tags, variable bit rate headers are

identified by a string – in the case of VBR headers, “Xing”, “Info”, or “VBRI”. [14]

Constant Bit Rate Track Length

If the bit rate is a constant number b kilobits per second, then the length of the track in

seconds can be calculated to be

𝐿𝐶𝐵𝑅 =
(𝑆 − 𝐼) ∗ 8

𝑏 ∗ 1000

Where L is the calculated length in seconds, S is the size of the file (in bytes), I is the size of

the ID3 tag data (in bytes), and b is the constant bit rate in kilobits per second. The 8 and

1000 are unit conversion multipliers (8 bits in one byte; 1000 bits in one kilobit. Bit rates use

1000 bits per kilobit, not 1024).

Variable Bit Rate Track Length

If the bit rate is variable, we cannot rely on the bitrate of any particular MPEG frame.

Fortunately, the variable bit rate header (added by both of the mainstream MP3 encoders)

supplies the total number of MP3 frames F in the encoded stream. Then,

𝐿𝑉𝐵𝑅 =
𝐹

𝑅

where F is the number of frames in the entire MPEG stream, and R is the number of frames

per second in the bit stream.

R can be calculated as

Page 21 of 41

𝑅 =
𝑓𝑠
𝑥

Where fs is the sampling rate of the MP3 stream and x is the number of samples per frame.

Given that our player only officially supports MPEG Layer-III audio sampled at 44 100 Hz, the

number of frames per second is always 1152 (as per [14]), and thus R can be calculated to be

38.28125.

External Libraries and Components

Libraries used inside DE2

MicroC/OS-II is used as a real time operating system to run the MP3 player’s controller as a

task, as well as introduce tasks as needed for I/O operations that can be performed in parallel

with other processing. One such example is web server activity, which can serve pages over

Ethernet asynchronously with limited effect on MP3 decoding.

As previously discussed, the open-source library libMAD is used for MP3 file decoding, the

NicheStack TCP/IP stack is used for network communication over Ethernet, and the

Embedded Filesystems Library (EFSL) is used for file allocation table (FAT) file system support

for the SD card.

Libraries used in client-side web application

The client-side web-application leverages the industry-standard jQuery JavaScript library [17]

to perform all of its asynchronous requests, as well as to support other libraries required by

the user interface. jQuery also facilitates visual and content-related functionality such as

animations and DOM manipulation for dynamic page content. The other libraries used in the

client-side application are jQuery UI [18], jQuery hoverIntent [19], jQuery Coda Slider [20],

jQuery Simple Slider [21], and jQuery Timer [22]. Lastly, icon images are used from a batch

icon library provided by Adam Whitcroft [23].

User Interface Design

Client-Server Architecture

Due to the limited capabilities of the NicheStack protocol stack in terms of performance, the

web application was designed to perform most of the intensive work on the client’s side.

To reduce the number of bytes required to load the page, all CSS and HTML files were

minified by removing white space, new lines, and tab characters. The Google Closure

compiler was used to minify the JavaScript functions [26]. The total size of the web

application when minified, and including all server-slide images, is 172KB.

The fundamental design idea behind the client is that of a heartbeat API call. The

“playerStatus” API call is performed by all connected clients every second. The player

Page 22 of 41

responds with information about which track it is playing, the position in the track, whether it

is paused or stopped, the current volume, and the current re-index count.

When the client receives these values, it changes its state to synchronize with them if its own

state is different than that of the server. This facilitates multi-client interaction, since if one

client changes a parameter such as the volume, other clients will synchronize to the player’s

values at most one second later.

Visual Design

Since MP3 players are common, users have high and rigid expectations about the ease of

interaction with the device. This places much responsibility on user interface designers to

design interfaces that are consistent with these expectations.

In general, the design of the web application’s interface was approached with Jakob’s Law in

mind, which states, “users prefer interfaces that work the same way as other interfaces they

already know” [27]. This was mostly applicable to the way navigation was designed and the

way the controls work. The control icon behavior most closely resembles YouTube’s

controller behavior, a behavior that most users will be familiar with.

In addition to incorporating standard UI elements and icons to provide visual cues to users,

overall aesthetic and fluidity were considered when designing the application to be pleasant

and easy to use. Animations are liberal but are only used when the effect of responsiveness

needs to be elicited.

On the next page are screenshots of the user interface (bitmap images are used because

they are screenshots of a pixelated display). Following them are the same images with

annotations and descriptions of the high-level UI features.

Page 23 of 41

Figure 4: Example home page and artist screen for web application.

Page 24 of 41

Figure 5: Example album view and now playing screen.

Page 25 of 41

Figure 6: Annotated home screen.

Element Description

1 Main screen selector, used to switch between browsing the library and viewing

the currently playing track.

2 The search pane. The artists, albums, and/or tracks that match a query will be

shown to the user, sorted by category. If the query is more than 3 characters in

length, the insides of all library metadata strings are searched in addition to the

front of the strings. For example, the query “The” will return all artists, albums,

and tracks containing the word “The”, whereas the query “Th” will return only

artists, albums, and tracks beginning with “Th”, and not artists, albums or tracks

that contain the string “Th” anywhere.

3 The view context selector for the main browsing mode. It allows the user to

group the main pane contents by artist, by album, or by track. Results are

alphabetized by their respective category depending on the view context.

4 The primary content window. Clicking on a thumbnail will take the user to the

thumbnail’s logical details page. If an artist is clicked, the artist’s albums will be

shown. If an album is clicked, the album’s tracks will be displayed. If a track is

clicked, the player will begin to play the track.

1 2

3

4

Page 26 of 41

Figure 7: Annotated artist view.

Element Description

1 The artist breadcrumb and back button. In the current context, the back button

will return to the main screen. Clicking on an artist’s name will bring the user to

the artist’s album view.

2 The content area for the artist’s albums and details about how many tracks for

that album are in the library.

3 The artist’s background pane. If the client is connected to the internet, the

lastFM API [24] will be queried and an artist image will be downloaded and

displayed alongside the artist’s biography.

1

2

3

Page 27 of 41

Figure 8: Annotated album view.

Element Description

1 Artist and album breadcrumbs. In this context, clicking the back button or the

artist’s name will take the user to the artist’s albums page.

2 The track listing of the current album. Clicking any track will make an API call to

the player to begin playing the track. The user will then be brought to the “now

playing” screen.

1

2

Page 28 of 41

Figure 8: Annotated now playing view.

Element Description

1 Current track metadata. Clicking on the artist will bring the user to that artist’s

album view. Clicking on the album will bring the user to that album’s track view.

Genre and year are shown only if the information is available for the track;

otherwise, it is hidden.

2 The artist biography and similar artists pane. The same biography shown in the

artist’s album view is shown here. Clicking on “Similar Artists” will display artists

that the user may also be interested in. If the lastFM API is unreachable, the

words “Not available” will populate the pane.

3 The progress bar and player controls. The progress bar is a graphical view of

how far the player is into playing the track. The control icons (from left to right)

are previous, play/pause, next, stop, and volume control. The controls turn

black when hovered over with a mouse.

Clicking previous or next will tell the player to start playing the previous or next

tracks, respectively.

Clicking the play/pause control will toggle the player’s pause state. When the

player is paused, the icon is a play icon; when the player is playing, the icon is a

paused icon.

Hovering over the volume control area will bring up a volume slider, which can

be clicked or dragged. The speaker icon will change depending on the volume.

If the volume icon is clicked, the player will be muted. If it is clicked while muted,

the player will set the volume to the volume it was at when it was muted.

1

2

3

Page 29 of 41

Test Plan

Software

In order to facilitate progress on the MP3 player, iterative and regression testing was used

throughout development. As expected for a finished project, all tests discussed in this section

passed and met any acceptance criteria (logically implied or otherwise). A general approach

to designing software with care to minimizing repetition of common tasks and to limiting the

responsibilities of code segments to singular or small sets of actions. This allowed for the

testing of entire functionalities to often be isolated to testing the correct operation of only a

few lines of code.

Hardware independent software within the system, such as the logic representing playback

state transitions was tested for correct operation by forcing values of various flags and

conditions that are used to indicate state changes. In this way, we were able to confirm

expected operation of software flow simply by assuming values of hardware dependent

components.

The nature of embedded systems however is such that most software written is inherently

dependent on the underlying hardware and devices being interfaced with. Due to this an

idealized case of an automated test suite is very difficult to achieve due to hardware

requirements. However, manual testing was performed by isolating small units of functionality

in the software and verifying operation and expected program flow through the use of

printing debug information on the LCD screen or over the JTAG UART.

Some examples of hardware dependent software testing include testing of the Ethernet

driver and web server component by sending cURL (a command line tool for transferring

data using various protocols) HTTP requests to the player over Ethernet and printing to the

console the data received. Correctness of SD card driver software and file system code was

verified by both writing and reading files from the card and confirming compliance with the

file system as interpreted by a Windows based laptop computer. MP3 decoding was also

tested for correctness by decoding an MP3 file and storing it on the SD card to ensure

correct operation with various media players on personal computers.

Testing of memory usage was performed through the use of a function provided in

MicroC/OS-II named “OS_STK_DATA” [25]. This function allows for examining the amount of

stack memory being utilized by each task. This was valuable in ensuring that our code did not

overrun the stack memory allotted for each task, even in deeply nested function call chains.

Additionally, heap memory usage was tested by adding debug printing statements to

indicate the memory addresses and size of each heap allocated memory block within the

program. We were able to leverage the output to confirm that memory was not being

Page 30 of 41

allocated in any unexpected program control flow cases and that all heap allocated memory

was in fact being freed. The information regarding address locations was used to ensure no

collisions between the stack and heap were occurring during runtime.

Further reliability checks were also performed as outlined in the below table.

Reliability and Stress Testing

Component

Under Test

Test Plan Acceptance Criteria

Ethernet driver

and web server

software module

Manual spamming of the refresh key

requesting the index HTML page of the

player was repeated for indefinite periods

of time.

The system should appropriately refuse

connections when pushed to a reasonable

connection limit, and must remain

functional, although certainly less

responsive.

Software control

request

handling

Fast clicking of user interface controls was

tested. One such test case was repeatedly

hammering the skip track button.

The system should appropriately queue

requests and respond in an orderly, though

delayed fashion.

MP3 decoder Playback of high and variable bitrate MP3

files was tested to ensure playback remains

acceptable even with increased load.

The system should handle high bitrates

without stuttering the audio output.

Hardware

Hardware testing was largely performed tangentially through software. Since all components

used in the design were on-board the DE2, facilities for probing with an oscilloscope or other

debugging tools were limited. However, through utilization of simple software test cases, the

correctness of both hardware and software components could be verified simultaneously.

Results of Experiments and Characterization

Multitasking Performance

Due to the streaming nature of the MP3 data, the multitasking strategy was designed

carefully to permit intermittent suspension of the decoder task. It was essential to measure

the decoder’s optimized performance and to characterize the CPU time spent decoding so

that we could ensure the CPU would be able to spend a reasonable amount of time serving

web pages and processing (possibly several) client API requests.

Testing was performed by preventing the decoder task from being suspended and by

removing all audio codec buffer writes. In this manner, the CPU is solely decoding samples so

that a measurement of performance can be completed. The results are summarized in the

table below.

Page 31 of 41

gcc Optimization Stream Type Actual Length Decoding Time Actual/Decode Time Ratio

None @ 100MHz 128kbps CBR 74s 113s 1.88

None @ 100MHz High VBR 60s 115s 1.92

-O3 @ 100MHz 128kbps CBR 74s 45.5s 0.615

-O3 @ 100MHz High VBR 224s 151s 0.674

Therefore, we can expect that by using optimizations, it will take approximately 0.67 seconds

to decode 1 second of audio samples, which, on average, would allow the HTTP server 0.33

seconds per second of runtime to serve pages and process API requests (in an optimal

multitasking scheme).

Hardware Resources and Utilization

All system hardware is well within the limits of the FPGA’s capabilities, and utilizes the

following resources:

Total logic elements 5,977 / 33,216 (18 %)

 Total combinational functions 5,235 / 33,216 (16 %)

 Dedicated logic registers 3,582 / 33,216 (11 %)

Total pins 226 / 475 (48 %)

Total virtual pins 0

Total memory bits 261,504 / 483,840 (54 %)

Embedded Multiplier 9-bit elements 12 / 70 (17 %)

Total PLLs 2 / 4 (50 %)

SD Card Buffering

libMAD requires buffered input to the decoding methods in order to provide uninterrupted

streaming output. Although a larger buffer size would result in fewer I/O calls to the SD card,

the time spent reading the SD card to fill the buffer increases linearly as the buffer size

increases.

We found that having an excessively large buffer of (1MB) resulted in large gaps in playback,

as the buffering time exceeded the gap between buffered output samples. We also found

that decreasing the buffer to a small amount resulted in a large number of unnecessary SD

card reads, producing similarly choppy output.

The tradeoff in input buffer size is between buffer filling frequency and time to fill the buffer.

Having a medium-sized buffer of 2048 bytes proved to be an adequate tradeoff that resulted

in smooth playback with fast buffer refilling.

Page 32 of 41

MP3 Decoding Optimizations

It was calculated that approximately 76 frames’ worth of PCM samples must be decoded by

the decoder every second. During initial development, system frequency was at 50MHz, and

the software was running without any compilation optimizations.

Under these conditions, libMAD was unable to produce samples at a constant rate, and the

audio was therefore choppy and of poor quality. We measured that it took approximately 3.1

seconds to decode one second of samples (44100 samples).

The first optimization made was to implement a custom instruction (FMUL), which outsources

libMAD’s most commonly called and intensive operation (fixed-point 16-bit multiplication) to

hardware [16].

Also, system clock frequency was increased to 100MHz and gcc compiler optimization was

turned to -O3, the highest level of optimization. libMAD’s ability to decode samples

increased dramatically and real time playback was achieved.

Page 33 of 41

References

[1] Altera. “Altera University Program Audio IP Core.” Internet:

ftp://ftp.altera.com/up/pub/Altera_Material/10.1/University_Program_IP_Cores/Audio_Video/Audio.pdf

, July 2010 [February 16, 2013].

[2] Altera. “Altera University Program Audio/Video Configuration Core for DE-Series Boards.” Internet:

ftp://ftp.altera.com/up/pub/Altera_Material/10.1/University_Program_IP_Cores/Audio_Video/Audio_an

d_Video_Config.pdf, July 2010 [February 16, 2013].

[3] Wolfson Microelectronics. “Portable Internet Audio CODEC with Headphone Driver

and Programmable Sample Rates.” Internet:

http://www.wolfsonmicro.com/documents/uploads/data_sheets/en/WM8731.pdf, October 2012

[January 19, 2013].

[4] Alex Newcomb, Tom Stefanyk. “Application Note – Webserver.pdf”. Internet:

http://www.ece.ualberta.ca/~elliott/ece492/appnotes/2012w/Webserver/, February 15, 2012 [February

28, 2013].

[5] Altera. “Altera University Program Secure Data Card IP Core.” Internet:

ftp://ftp.altera.com/up/pub/Altera_Material/10.1/University_Program_IP_Cores/Memory/SD_Card_Inter

face_for_SoPC_Builder.pdf, March 2009 [January 19, 2013].

[6] Wikipedia. “Secure Digital Transfer Modes”. Internet:

http://en.wikipedia.org/wiki/Secure_Digital#Transfer_modes, January 2013 [February 2, 2013].

[7] Lennart Ysboodt, Michael De Nil. “Embedded Filesystems Library”. Internet:

http://sourceforge.net/projects/efsl/, June 22, 2011 [February 21, 2013].

[8] Marcio Troccoli. “Embedded Filesystems Library”. Internet:

http://www.ohloh.net/p/efsl/commits/68269113, November 7, 20015 [February 21, 2013].

[9] Altera. “Chapter 11: Ethernet and the NicheStack TCP/IP Stack – Nios II Edition” in “Nios II Software

Developer’s Handbook”. Internet: http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf, May

2011 [March 2, 2013].

[10] Wikipedia. “POST (HTTP)”. Internet: http://en.wikipedia.org/wiki/POST_%28HTTP%29, Februrary

2013 [February 28, 2013].

[11] Underbit. “MPEG Audio Decoder”. Internet: http://www.underbit.com/products/mad/, [January 19,

2013].

ftp://ftp.altera.com/up/pub/University_Program_IP_Cores/90/SD_Card_Interface_for_SoPC_Builder.pdf
ftp://ftp.altera.com/up/pub/University_Program_IP_Cores/90/SD_Card_Interface_for_SoPC_Builder.pdf
ftp://ftp.altera.com/up/pub/University_Program_IP_Cores/90/SD_Card_Interface_for_SoPC_Builder.pdf
ftp://ftp.altera.com/up/pub/University_Program_IP_Cores/90/SD_Card_Interface_for_SoPC_Builder.pdf
http://www.wolfsonmicro.com/documents/uploads/data_sheets/en/WM8731.pdf
ftp://ftp.altera.com/up/pub/Altera_Material/11.0/University_Program_IP_Cores/Memory/SD_Card_Interface_for_SoPC_Builder.pdf
ftp://ftp.altera.com/up/pub/University_Program_IP_Cores/90/SD_Card_Interface_for_SoPC_Builder.pdf
ftp://ftp.altera.com/up/pub/University_Program_IP_Cores/90/SD_Card_Interface_for_SoPC_Builder.pdf
http://en.wikipedia.org/wiki/Secure_Digital#Transfer_modes
http://sourceforge.net/projects/efsl/
http://www.ohloh.net/p/efsl/commits/68269113
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://en.wikipedia.org/wiki/POST_%28HTTP%29
http://www.underbit.com/products/mad/

Page 34 of 41

[12] Wikipedia. “ID3”. Internet: http://en.wikipedia.org/wiki/ID3, February 2013 [February 26, 2013].

[13] M. Nilsson. “ID3 Specification V2.3.0”. Internet: http://id3.org/id3v2.3.0, February 1999. [February

26, 2013].

[14] Konrad Windszus / CodeProject. “MPEG Audio Frame Header”. Internet:

http://www.codeproject.com/Articles/8295/MPEG-Audio-Frame-Header#XINGHeader, April 2007

[February 26, 2013].

[15] McCandless, M. "The MP3 revolution," Intelligent Systems and their Applications, IEEE , vol.14, no.3,

pp.8-9, May/Jun 1999. [March 2013]

[16] Nate Knight. “Embedded MP3 Player”. Internet: http://www.alterawiki.com/wiki/MP3_Player,

September 2010. [January 19, 2013].

[17] jQuery. “jQuery Javascript Library”. Internet: http://www.jquery.com, March 2013. [March 2013].

[18] jQuery UI. “jQuery UI Javascript Library”. Internet: http://www.jqueryui.com, March 2013. [March

2013].

[19] Cherne, Brian. “jQuery hoverIntent plugin”. Internet:

http://cherne.net/brian/resources/jquery.hoverIntent.html, March 2013. [March 2013].

[20] Batdorf, Kevin. “jQuery Coda Slider”. Internet: http://kevinbatdorf.github.io/codaslider/, October

2012. [March 2013].

[21] Smith, James. “jQuery Simple Slider.” Internet: http://loopj.com/jquery-simple-slider/, February

2013. [March 2013].

[22] Chavannes, Jason. “jQuery Timer.” Internet: http://jchavannes.com/jquery-timer/demo, February

2013. [March 2013].

[23] Whitcroft, Adam. “Batch Icon Library”. Internet: http://adamwhitcroft.com/batch, January 2013.

[March 2013].

[24] Last.fm Ltd. “Last.fm Web Services”. Internet: http://www.last.fm/api, 2013. [April 2013].

[25] Micrium. “uC/OS-II Overview”. Internet: http://micrium.com/rtos/ucosii/overview/. 2012. [April

2013].

[26] Google. “Closure Tools”. Internet: https://developers.google.com/closure/. May 2012. [April 2013].

[27] Nielsen, Jakob. “The Need for Web Design Standards”. Internet:

http://www.nngroup.com/articles/the-need-for-web-design-standards/. September 2004. [April 2013].

http://en.wikipedia.org/wiki/ID3
http://id3.org/id3v2.3.0
http://www.codeproject.com/Articles/8295/MPEG-Audio-Frame-Header#XINGHeader
http://www.alterawiki.com/wiki/MP3_Player
http://www.alterawiki.com/wiki/MP3_Player
http://www.alterawiki.com/wiki/MP3_Player
http://cherne.net/brian/resources/jquery.hoverIntent.html
http://kevinbatdorf.github.io/codaslider/
http://loopj.com/jquery-simple-slider/
http://jchavannes.com/jquery-timer/demo
http://adamwhitcroft.com/batch
http://www.last.fm/api
http://micrium.com/rtos/ucosii/overview/
https://developers.google.com/closure/
http://www.nngroup.com/articles/the-need-for-web-design-standards/

Page 35 of 41

Appendix

Quick Start Manual

Note that where applicable the “Non-persistent” and “Persistent” tags indicate steps (or sub-steps)

relevant only to the named mode of operation. All referenced files are relative to the root

“niosII_embeddedMp3” directory in the submitted project source archive.

1. Program the board with the appropriate configuration.

a. Non-persistent: Program the FPGA with “niosII_embeddedMp3.sof”.

b. Persistent: Program the FPGA with “niosII_embeddedMp3.pof”.

2. Write the website files (“./software/mp3_player_syslib/ro_zipfs.zip”) into flash memory at

offset 0x100000 using the flash programmer.

3. Launch the Nios II IDE using the “./scripts/launch_nios2_ide.sh” script.

4. Ensure the IDE is using the “software” directory as its workspace, and the “mp3_player”

project and its associated syslib are available.

5. Right-click on the “mp3_player” project and select “Run as -> Nios2 Hardware”

6. Upon startup of the web server for the first time, a prompt will appear in the console in

the IDE prompting for the board’s serial number in order to generate the MAC address

for the board. Provided the board is used only on the local network and does not require

global uniqueness, any 9 digit number will do.

7. The LCD screen will be prompting for insertion of an SD card. While in theory the

hardware and software should support any SD card (note, excepting SDHC) using any

FAT file system, we have tested and claim only full support for SD cards using FAT32 with

a 32 kb cluster size. Any mp3 files in the root directory on the card should be indexed via

the MP3 player upon card insertion.

8. Connect to a router via Ethernet on the 192.168.0.0/24 subnetwork. Any client machines

can access the MP3 player’s user interface by visiting 192.168.0.99 (a hard-coded static IP)

with a web browser. Note that Google Chrome is strongly suggested due to its

compliance with the emerging web standards used by the user interface.

9. Persistent: Write the software elf file (“./software/mp3_player/Debug/mp3_player.elf”) into

flash memory at offset 0x00 (i.e., no offset) using the flash programmer. Verify software

operation is consistent with the steps outlines starting at step 7 upon device reboot. This

step is explicitly placed last to discourage skipping step 6, in which launching from the IDE

is required to input a 9-digit number for MAC address determination.

Page 36 of 41

Future Work

Commercial digital music players have many features that could have been implemented in

our embedded MP3 player if there were time. In no particular order, here is a list of

additional features that could be developed:

Hardware EQ Hardware filters could be added before the audio codec to give the

user the ability to equalize the music to their preferences.

Touchscreen: A touchscreen interface for a tactile and more portable user experience.

Network Uploading: MP3 files could be uploaded to the SD card from a remote network

location for playback.

Playlist Creation: Users can create playlists using the web application that persist across

multiple listening sessions.

Network Streaming: MP3 files could be streamed from a remote network location for

playback.

Remote Control: A wireless remote control for executing control functions remotely.

Implementations could either using infrared communication or a simple

radio system such as XBee radios.

Page 37 of 41

Hardware Documentation

System Block Diagram

System Boundary

NIOS II CPU

SDRAM

Audio Codec

LCD

SD Card SPI

Master

Push Buttons

Avalon Bus

I2C Bus & Data Signals

SD Card

With MP3

Data

Audio Out
(Headphone Jack)

Out In InOut

Ethernet

Controller
Ethernet

Port

Page 38 of 41

Clock and Abridged Data Flow Diagram

Not shown (to reduce risk of unnecessary clutter) are the memory mapped interfacing between the

NIOS II CPU core and the other hardware cores such as the SPI controller, the audio and audio

configuration controllers, SDRAM, and the Ethernet controller.

CLK

AUDI/O

CONFIG

AUD_XCK

University

Program Audio

Controller

CLK

CPU

PLL 1:

C0: 100Mhz
C1: 100Mhz -54°

C2: 25 MHz

PLL 2:

C0: 16.9344MHz

50MHz

Clock

27MHz

Clock

SDRAM
C1

C0

SD_CLK

SD Card

SD_DAT SD_DAT3 SD_CMD

C0

CLK SCLK

SPI Controller

MOSI SS_n MISO

I2C CLK

I2C DAT

CONTROL & DATA

SIGNALS

WM8731

Codec Chip

C
O
N
F
I
G
U
R
A
T
I
O
N

Ethernet

Controller

C2

Page 39 of 41

Source Code

An attached archive has been submitted with this report containing the current source code.

All files that have been authored by group members contain headers explicitly stating

authorship. It can be assumed that files not containing such headers are not authored by us

and have been referenced in the Declaration of Original Content.

We maintain full authorship of the files below, except where noted therein; libraries and other

files are in the archive but are not summarized here to avoid authorship ambiguity.

VHDL

File Description Status

niosEmbeddedMP3.vhd
LOC: 315

The toplevel VHDL file for the system. T

Software – On Altera DE2

File Description Status

audioControl.c / h
LOC: 142

Contains functionality to configure the audio codec

to the required specifications. Contains one function

for volume adjustment adapted from an Altera

sample project’s code.

T

http.c / h
LOC: 1419

Modified/Original LOC: ~180

Adapted from the Nios II IDE wizard generated

HTTP server to route HTTP POST requests to our

web API after some parameter parsing. Authorship

primarily Altera’s, except as noted in comments.

T

id3.c / h
LOC: 834

Contains a lightweight ID3 parsing library for MP3

files. The functions read a provided filename using

the SD card’s file system library and populate a

structure with the desired metadata. Full authorship.

T

id3Genres.c / h
LOC: 219

Contains enum values for ID3v1 genre codes. Genre

values are derived from the ID3 standard as

published on the ID3 organization’s site. Full

authorship.

T

jsonGenerator.c / h
LOC: 101

Generates a JSON-compliant string for a given array

of id3 structures. Full authorship.

T

lcd_helper.c / h
LOC: 57

Helper functions for writing to the LCD display. Full

authorship.

T

madDecoder.c / h
LOC: 412

Contains the primary entry points for buffering,

decoding, and playing audio samples. Implements

callbacks as defined by the libMAD library. Adapted

from skeleton code provided by libMAD.

Implementation of functions was done by group

T

Page 40 of 41

members. Other than two small acknowledged

functions provided by libMAD, we have full

authorship.

main.c / h
LOC: 439

Contains the entry point for execution. Includes

definitions for web server and decoder tasks. Sets up

RTOS and starts the tasks. Full authorship.

T

player.c / h
LOC: 538

Initializes audio devices, sets up SD card file system,

and makes calls to parse ID3 data and then play a

given track. Contains player state logic for moving

between tracks and for pausing playback. Full

authorship.

T

trackIndex.c / h
LOC: 174

Contains logical helper functions for indexing and

sorting an array of parsed Id3 structures. Full

authorship.

T

web_api.c / h
LOC: 296

Contains request hander functions for client API

calls. Full authorship.

T

Total LOC: 3392

Software – Client Application

File Description Status

default.js
LOC: 506

Entry point for client-side application. Provides initial

API calls to set up the client, as well as event

handlers for user actions. Full authorship.

T

nowplaying.js
LOC: 265

Contains application logic for handling player status

API calls. Populates now playing screen with track

metadata and updates control icons based on the

player’s state. Full authorship.

T

queries.js
LOC: 166

Contains functions called when users type data into

the search box. Updates application window with

relevant search results. Full authorship.

T

thumbnails.js
LOC: 451

Contains code to push main navigational elements

to the DOM of the web application. Contains state

logic for navigational elements like breadcrumbs

and the back button. Full authorship.

T

index.html
LOC: 93

Contains HTML markup for web application. Full

authorship.

T

style.css
LOC: 439

Contains information for web application, including

layout, margin, text, and image configuration

settings. Full authorship.

T

Total LOC: 1920

