
MIDI Synthesizer
Kyle, Peter, and Eric

Current Work Accomplished

Kyle: Started work on envelope generator.

Eric: Working on getting Audio Chip interfaced.
Peter: Wrote Simple NCO, Working with Eric on Audio Chip

Feature List

(BASIC FUNCTIONALITY)

1. Play accurate notes when
keyboard keys are
pressed, via the MIDI
protocol.

2. Ability to add effects.
(Wah, Tremelo, Vibrato)

3. Pre-recorded
performances (MIDI Files)

4. Up to 10 keys played at
once.

5. 48kHz 16bit Audio

(POSSIBLE ADDITIONS)

1. Arpeggiator.
2. Display notes played on

screen.
3. Multiple sound sets.
4. External Custom MIDI

Instrument.

Motivation

● Digital synthesis is an interesting area.
● Straightforward core project with lots of room

for expansion.
● Fun demonstration.
● Something a bit different.
● Interesting DSP applications.

Basic Functionality Component Diagram

Challenges

The challenges currently ahead.

1. Create the VHDL components for basic functionality
2. Connecting the components together
3. Create MIDI controller in MicroC/OS II on NIOS II
4. Connect the external components, keyboard, speakers

Components

Hardware Based:
● Physical MIDI Interface to UART

FPGA Based:
● Numerically Controlled Oscillator
● Envelope Generators
● Mixer
● Effects Core
● Volume Control

Code Exampleentity nco is
 port (
 clk : in std_logic; -- System Clock
 rst : in std_logic; -- Reset
 nco_inc : in std_logic_vector(31 downto 0); --Freq Increment
 wave_out : out std_logic_vector(11 downto 0) --Output Waveform
);
end nco;

architecture arch of nco is
 component lut
 port (
 clk : in std_logic; --Clock
 addr : in std_logic_vector(11 downto 0); --Address in LUT
 waveform : out std_logic_vector(11 downto 0) --Waveform Val
);
 end component;

 signal accumulator : std_logic_vector(31 downto 0);
 signal lut_address : std_logic_vector(11 downto 0);

Code Example
2

begin -- arch
 lut_address <= accumulator(31 downto 20); --12 bits=4096 samples

 inc: process(clk, rst)
 begin
 if rst = '0' then
 accumulator <= x"00000000";
 elsif rising_edge(clk) then
 accumulator = unsigned(accumulator) + unsigned(nco_inc);
 end if;
 end process;

 lut: lut port map(
 clk => clk,
 addr => lut_address,
 waveform => wave_out
);
end arch;

Test Plan

We will be testing each component as we complete them. Then
do various integration tests as the system is connected
together.

● NIOS II: To test setup, connection and operation we will
compile and run a simple program. Will also be used used
for other tests.

● RAM: We will test connection and functionality by running a
standard memory tester. Similar to Lab 1.

● Flash: To test connection,storage and loading we will store
and load a simple program on the flash. Power cycle the
board and have the program start and run from flash.

● MIDI Controller: We will write testing harnesses to simulate
input and verify the expected output is produced.

Test Plan

● MIDI Input: We will test proper connection and signal
reading by connecting the keyboard, pressing a key and
having it displayed on the LCD.

● Sub-components: For the various sub components that will
make up the system (ADSR Envelope generator, oscillators,
etc) we will run basic functional testing.

Application Notes

● None so far.
● When we get audio working we'll release that...

MIDI Synthesizer

Questions?

