
MIDI Synthesizer
Kyle, Peter, and Eric

Motivation

● Interest in digital audio applications .
● A good way to learn about the hardware and

software aspects of system design
● Interactive and fun demo.
● Nice way to learn about an industry standard

interface.

Overview

● Up to six simultaneous notes playable at once
● Software supports all 128 MIDI note frequencies (8.175 Hz

up to 12.5 KHz)
● Ability to play different waveforms, including: Sine, Triangle

and Square
● Realistic ADSR envelope generator
● Uses sine table lookup to generator output

Midi Notes

NOTE 0 1 2 ... 126 127
NAME C -2 C# -2 D -2 ... F# 8 G 8

MIDI format has 128 notes, ranging from a C -2 to a G 8.
Both of these values aren't really in the range of normal
hearing/music. The lower values are useful for effects
such as tremolo and vibrato

MIDI Protocol

● MIDI is implemented as a Serial Communication Protocol
● MIDI Messages are 1 control byte and 1+ parameters

● So the message above would tell us that note 8 is turning
on with a velocity of 127

● Other status messages include Note Off, Control change
and Aftertouch (hitting the key harder after it reaches the
bottom).

INCOMING
MESSAGE

STATUS DATA

10010111
00001000
01111111

10010111

Message Type = Note
Is being turned on

00001000, 01111111

Note = 8
Velocity = 127

Simultaneous Notes

Wave Addition: This is the
method we use for playing
multiple notes at once. We add
the waves together and then
create a normalized output.

Wave Multiplication: This
method would be used for effects
like tremolo. Our current RAM
limitations did not allow us to
implement this in the end.

Images from http://www.jjgifford.com/expressions/geometry/wave_addition.html

Keyboard

61 keys, which range from a C1 (32.703 Hz) to a C7 (2.093
KHz). Acts as our MIDI Controller

Waveform Variations

● Capable of producing 3 types of waveforms.
● Sine wave produced with wavetable lookup
● Square and Sawtooth can be produced algorithmically

http://www.tronaudio.com/assets/Uploads/Images/waveforms.png

ADSR Envelope Generator

● In our design we implemented a modified (A)ttack (D)ecay
(S)ustain (R)elease envelope generator.

● Our ADSR is actually a ASR, because we took out the
decay stage to reduce memory usage.

http://abletonempire.com/wp-content/uploads/2011/08/adsr_envelope01.gif

Software Architecture

Software Architecture

● Needed Real-Time Responsiveness
○ Use Hardware Interrupts for all Inputs
○ Use Separate Task For Each Function

● Needed Simple and Efficient Output
○ Output Devices are Memory Mapped

● Needed to Avoid Resource Contention
○ MIDI Task Finds Unused Hardware

● Needed to Implement Pre-Produced Performances
○ Modular Design Allows Us To Input Task and

Write Directly to Audio Hardware

Physical Hardware

● MIDI physical connection uses current switching.
○ Current=1 - No Current=0

● Needed to convert to RS-232 +5V and -5V using MAX232
● MIDI Spec requires opto-isolator to prevent current loops

Issues Encountered
● Constrained by space on board

○ Insufficient RAM space to have all features
implemented at once.

○ Had to cut some effects from final version.
● Difficult to get additional "instruments" to sound right.

○ We tried to create additional instruments by using a
combination of harmonics in at various levels

○ As shown below, instruments are not a simple
waveform (Clarinet at 156 Hz vs 233 Hz)

MIDI Synthesizer
Got Questions?

