

CMPE 490

FINAL REPORT

VIDEO GAME WITH WIRELESS
ACCELEROMETER-BASED CONTROLS

Project Summary: Space-shooter arcade emulator with wireless accelerometer-based controller

Group Members: Preferred email:

Billy Kozak kozak@ualberta.ca
Nathan Sinnamon sinnamon@ualberta.ca
Jeff Theriault jtheriau@ualberta.ca

(Available for both lab days, registered for Monday labs)

Submission Date: April 13th, 2011

Abstract

Our group has created an original video game similar to classic space-shooter arcade games
such as Taito Corporation’s Space Invaders. This project centers on the use of the Altera
DE2 development board and the NIOSII microprocessor, and the necessary software was
written using µC/OSII. The aim of the game is to shoot down and evade enemy spacecraft
and their projectiles. We have also created our own controllers which will take advantage of
accelerometers to provide the basic two-axis movement of the protagonist spacecraft along with
a ‘fire’ and ‘start’ button which provide other functions which are standard to the genre. The
controllers use ZigBee links for wireless communication and PIC-based microcontrollers. Due
to the nature of the project’s output, video (VGA) interfacing was required. The cost of all parts
purchased for this project is $184.36.

1

Table of Contents
Functional Requirements 3
Design and Description of Operation 3

Hardware Design 3
Controller Design 4
Gameplay Design 5

Parts List 6
Datasheet 6

Controller I/O 6
Main Board I/O 7

Software Design 8
Game Engine Task 8
Controller I/O Tasks 9
Controller Firmware 9

Test Plan 10
Results of Experimentation 10

Controller Testing 10
VGA / Frame Reader Testing 11

Appendices 12
Declaration of Original Content: CMPE 490 Final Report 16

2

Functional Requirements

Functionally, our project must provide a smooth and consistent interface between user input
and the video output to maximize the entertainment value and minimize the frustration of the
user. Primarily, this means quickly and efficiently processing the user’s physical movement of
the controller and button presses, and converting that data into meaningful changes in the video
output feed at a consistent rate.

Design and Description of Operation

The data flow for this project can be seen in
Figure 1. Input signals from the user, in the form
of button presses and analog accelerometer data
will be passed to a local microcontroller on the
controller. After being processed and encoded
by the microcontroller, the data is sent
wirelessly from the each controller to a Xbee
wireless receiver which has a line to the NIOS II
[1]. Responding to this input data, the video
output frames are calculated according to the
game engine and are passed to a video output
monitor via VGA.

Hardware Design

The hardware environment for our game’s software includes the NIOS II/f processor and an
SDRAM. For our project we found that we were able to clock the system up to 100 MHz using a
PLL. This was crucial in allowing us to achieve a much higher performance than expected. Our
program runs from the 8MB SDRAM.

The VGA buffer system (shown in Figure 2) makes use of two RAM memories, a DMA and two
custom FPGA components (implemented in VHDL). The system works by having the NIOS
generate graphical data and placing it into a temporary frame stored in SDRAM. From there

3

Figure 2: VGA Buffer Diagram

Figure 1: Hardware Block Diagram

the NIOS queues up a DMA memory copy from SDRAM to SRAM. The DMA then moves the
frame into the final frame buffer stored in SRAM. Using the temporary frame with DMA allows
us to prevent the flicker and inconstancy in images that results from erasing and redrawing
inside of the active frame. The use of the DMA means that this has only a small performance
impact as the DMA transfers memory from the SDRAM in parallel with the CPU tasks (the
instruction and data caches prevent the competition for the SDRAM between DMA and NIOS to
be minimal). From there our two custom parts take the image stored in SRAM and output the
digital VGA signals so that the image is displayed onscreen.

The Frame Reader was the most difficult piece of the puzzle to implement. The Frame Reader
uses the Avalon memory mapped master interface to read from the SRAM as fast as possible,
buffering pixels for output. The frame reader is needed because the SRAM is too slow for
the syncer to read pixels on demand without errors. Arbitration is handled by the system
interconnect fabric so long as the interface is used correctly. The Frame reader has two buffers:
a read buffer and a write buffer. When a special signal from the VGA syncer arrives the frame
reader swaps the read and write buffers. Each buffer is exactly large enough to contain an entire
line of pixels from memory so that the syncer will request a swap in buffers only when it finishes
reading a line. Originally we attempted to use a 640*480 resolution but it proved to be too hard
to fill the entire buffer in time so we divided the resolution to 320*240 using the frame reader.
When the syncer requests pixels it reads every horizontally adjacent pixel twice and then reads
the entire line from the read buffer again to create pixels that are 4times larger. However it
wasn’t until we implemented burst reads using the Avalon memory mapped interface that we
were finally able to achieve a performance that seemed sufficient.

The VGA snycer generates RGB, horizontal sync, and vertical sync signals at precise timings
to produce an image on the screen. Furthermore the syncer drives x and y lines that show which
pixel it wants to output and reads the pixel value from RGB input lines. Finally the syncer
generates a signal when it is done reading a line and about to read the next so that the frame
reader can switch read and write buffers in time. The signal is generated during a (rather lengthy)
period where the syncer is not outputting RGB values so that it is safe to swap read and write
buffers without getting graphical glitches.

Controller Design

Communication with the controllers will be over a wireless ZigBee link. Each controller has an
accelerometer (MMA8452Q) to detect motion of the controller and two buttons to signal actions
to the system. A PIC-based microcontroller (PIC16F877A) will be on the controller board to
process the accelerometer data, and to communicate the current state of the controller to the
main system. The PIC microcontroller was chosen because of previous team experience with the
platform. (See Appendix C for controller hardware diagram.) The microcontroller communicates
with the chosen accelerometer via the I2C bus. Fortunately, the microcontroller has I2C built
into the hardware, which makes communicating with the accelerometer quite painless. To use the

4

ZigBee link, each controller has a Xbee wireless radio on board. Communication with the XBee
is done over a simple serial link running at 3.3V.

The accelerometer unit chosen outputs acceleration data in both 8-bit and 12-bit formats. The 8-
bit format yields 256 possible output values representing +/- 2g. During testing, it was decided
that the 8-bit format provides sufficient resolution to determine the controller’s movements.
Using the 8-bit format also simplifies the controller software as the microcontroller being used
is an 8-bit part. The state of the controller will be transmitted as a packet over the ZigBee radio
link. Initially, the controller data format included a controller ID, and a battery level indicator.
Further into the development of the game, it was determined that using a single base-station
XBee would prove complicated as the two controller’s output would interleave in a non-specific
manner. The design was therefore changed to include two XBees on the main unit, one for each
controller for a total of four radios in the system. This eliminates the need to transmit the ID of
the controller. Due to time constraints having the battery level communicated to the main unit
was deemed a non-essential feature and was eliminated.

Each packet transmitted from the controller contains the following things: the current
acceleration in the X, Y, and Z axis, and the state of the start and fire buttons. Each of these
values are encoded into ASCII format and separated by the colon (“:”) character. ASCII
encoding was chosen to simplify the processing of the data at the main unit and to help in
debugging.

Field X : Y : Z : Fire : Start \n
Width
(bits)

8 8 8 8 8 8 8 8 8 8

Figure 3: Controller Packet Format

Each packet has a total length of 80 bits. Assuming a baud rate of 9600 and 8-N-1 format for the
serial Zigbee link, roughly 120 controller updates can be transmitted (neglecting latency). Using
documentation from Digi, it can be determined that after factoring in worst-case latency, we can
expect only 20 updates per second. [2] After testing, we felt that 20 updates per second proved to
be sufficient for smooth user input despite the fact that we were able to get more than 20 updates
per second.

Additional RAM will be needed to facilitate the VGA output. If we use 8-bits to represent each
pixel, we only need 300Kbytes. This will fit nicely into our 512Kbyte SRAM with room to
spare. If 256 colors proves too limiting, we can increase color depth as needed until we run out
of memory. The resolution of 640x480 was purely chosen to minimize RAM space, if there is
time to implement, the resolution may be increased for better aesthetics. According to datasheet
timing diagrams, the read cycles on both the on-board SRAM and SDRAM take roughly
between 15-20ns. Given that for 640x480 our pixel clock is 25Mhz, we have 20ns left over after
reading to send the pixel signal.

Gameplay Design

5

Gameplay emulates the control of a spaceship from a top-down view by the player via the
controller(s). The accelerometer controls dictate the position of the ship in the two-dimensional
world; tilting of the controller to the right/left will determine horizontal movement, where
tilting of the controller to the front/back will determine vertical movement. Movement speed
has been designed to be consistent for movement in any direction. As the player-controlled ship
moves, enemy ships appear from the top of the screen moving downwards and exiting through
the bottom of the screen via paths determined by one of several AI routines described in the
game engine. The goal of the player is to fire as many projectiles – via a button press – at enemy
planes as is needed to destroy them before they exit the screen, while avoiding both enemy ships
and their respective projectiles. If the players’ ships comes into contact with either of these
obstacles too many times, their health bar depletes and the game ends. A scoring system has
been implemented for the sole purpose of bragging rights, though no high-score screen has been
implemented. The game consists of three unique levels for the player to progress through, with
each level only accessible by completing the previous; if the players survive all three levels, they
can start over at level one and continue improving upon their current score.

Parts List

Qty Part Name Unit Cost Total Order

Status
2 Accelerometer (MMA8452Q) (I2C +/-2g)

http://www.sparkfun.com/products/10955
9.95 19.90 Attained

3 PIC Microcontroller (PIC16F877A)
http://ww1.microchip.com/downloads/en/
devicedoc/39582b.pdf
(2x controller, 1x spare)

7.38 22.14 Attained

4 XBee ZigBee Radio
(2x Main System, 2x Controller)

35.58 142.32 Attained

 184.36

Datasheet

Controller I/O
All parts use 3.3V power supply.

Signal Name Description Tx Rx
Wireless Antenna Antenna of Xbee Bidirectional Air/Xbee Bidirectional Air/Xbee
Xbee Tx Serial Transmit line of

Xbee
Xbee PIC Microcontroller

Xbee Rx Serial Receive line of
Xbee

PIC Microcontroller Xbee Radio

6

http://www.sparkfun.com/products/10955

SDA I2C Serial Data line Bidirectional – PIC/
Accelerometer

Bidirectional PIC/
Accelerometer

SCL I2C Serial Clock line PIC Microcontroller Accelerometer
Start Button Digital I/O indicating

wether the start
button has been
pushed.

Button PIC Microcontroller

Fire button Digital I/O for Fire
button

Button PIC Microcontroller

Main Board I/O

Signal Name Description Generated From Received By
Wireless Antenna Antenna of Xbee Bidirectional Air/

Xbee
Bidirectional Air/
Xbee

Xbee Tx (x2) Serial Transmit line of Xbee Xbee FPGA (NiOS II)
Xbee Rx (x2) Serial Receive line of Xbee FPGA (NiOS II) Xbee Radio
SCLK SPI Clock for SD Card (If

Implemented)
FPGA (NiOS II) SD Card

MOSI SPI data line (If
Implemented)

FPGA (NiOS II) SD Card

MISO SPI Data line (If
Implemented)

SD Card FPGA (NiOS II)

CS_N Chip select for SD Card (If
Implemented)

FPGA (NiOS II) SD Card

VGA_BLANK_N VGA Blanking signal FPGA (VHDL) VGA DAC
VGA_SYNC_N VGA Sync Signal (tied high) FPGA (VHDL) VGA DAC
VGA_CLOCK VGA Pixel Clock FPGA (VHDL) VGA DAC
VGA_HSync VGA Horizontal Sync Strobe FPGA (VHDL) VGA DAC
VGA_VSync VGA Vertical Sync Strobe FPGA (VHDL) VGA DAC
VGA_R VGA 10-bit Red Signal FPGA (NiOS II) VGA DAC
VGA_G VGA 10-bit Green Signal FPGA (NiOS II) VGA DAC
VGA_B VGA 10-bit Blue Signal FPGA (NiOS II) VGA DAC
SRAM_ADDR 18-bit address bus for

SRAM
FPGA SRAM

SRAM_DATA 16-bit data bus for SRAM Bidirectional
FPGA, SRAM

Bidirectional FPGA,
SRAM

SRAM_CE_N SRAM Chip enable FPGA SRAM
SRAM_WE_N SRAM Write Enable FPGA SRAM
SRAM_UB_N SRAM Upper Byte Strobe FPGA SRAM
SRAM_LB_N SRAM Lower Byte Strobe FPGA SRAM
SRAM_OE_N SRAM Output Enable FPGA SRAM

7

Software Design

The software for our project will be a game that will showcase the motion controller and output
graphics to a VGA monitor. We plan to use the MicroC/OS-II RTOS to implement our game.

The game is implemented as three separate tasks
(described in more detail below) that handle user
input, control the game’s state (game engine), and
create graphical output respectively. The user input
task processes and interprets user input and sends
the processed data to the game controller task. The
game engine task updates the game’s internal
model as time progresses with new user data as it is
received and sends select information concerning
the game’s state to the graphics thread. The
graphics thread will interpret data from the game
engine as graphical output and write to the frame
buffer for VGA output.

Game Engine Task
The game engine works by repeating 8 basic steps in a continuous loop.

• Step 1: Fetch new ships from memory and mark them for drawing to the screen. Ships
are added as predetermined amounts of time pass.

• Step 2: Read data from the controller and update the position of the payer’s ship (two
short integers representing x and y coordinates). Projectiles can be created at the player’s
location.

• Step 3: Update the location of enemy ships (similar to updating player ship position)
according to simple AI routines. AI routines can fire projectiles from the ship’s position.

• Step 4: The locations of all onscreen projectiles are updated.
• Step 5: Detect and resolve collisions. A grid is kept in memory that mirrors the game’s

video output and tracks the position of every ship’s pixels for the purpose of collision
detection. If a ship is found to be trying to move into space occupied by another ship a
collision has occurred and must be resolved by deleting enemy ships and projectiles or
removing health from the player.

• Step 6: Redraw every ship and projectile in the temporary frame buffer according to their
coordinates and the shape of the object then queue a DMA copy to place the frame into
the frame buffer.

• Step 7: Check for victory or loss conditions. Advance Level or restart the game as
required.

• Step 8: Update the game’s time count and ensure that at least 15ms have elapsed
since step 1 before going back to the first step. Done so that the game does not slow
noticeably under moderate to heavy loads (some slowdown may occur under exceptional
circumstances).

8

Figure 4: Software Data Flow Diagram

Some additional details about the engine are as follows:

1. Our software design is such that we are able to update the screen over 60 times per
second (note that this works very well with the VGA refresh rate of 60Hz). We
had originally anticipated only 17 frames per second but with some unexpected
improvements to our hardware environment we were able to achieve over 3 times our
expected performance.

2. We made extensive use of function pointers so we could run AI, collision detection, and
draw/Erase routines on ships with completely different dimensions.

3. Levels are done by loading arrays of ships (structures) each with their own behaviour
appearance starting location and starting time.

4. We explicitly defined the location and color of each pixel of each type of ship by creating
arrays containing the appropriately placed pixel values. We then copy the array to
memory at the target ship’s location when we need to check for collisions or redraw the
ship.

Controller I/O Tasks

On the main unit, controller input is handled by two MicroC/OS-II tasks, one for each controller.
The tasks open a UART connected to an XBee (there is one for each controller) and sits in a
loop. On each execution of the loop, it attempts to read a line from the serial line, blocking if
one isn’t available. Once a line has been read, it is broken up into its respective components
according to the controller packet format. The acceleration data is used to compute the roll and
pitch angles of the controller. These two values give us an indication of how the controller is
tilted. The roll and pitch angles [3] are computed as follows:

€

Pitch = tan−1 Ay
Ax

2 + Az
2













Roll = tan−1 Ax
Ay

2 + Az
2













Once these two values have been calculated, a global structure for the controller’s state is
updated. This structure is used inside the game engine for computing changes in the game’s
state.

Controller Firmware

The controller’s firmware is simple and straightforward. When the controller is powered
up, the firmware initializes the hardware USART for communication with the XBee that is
on the controller. Once this has been accomplished, it transmits a “Hello” message. This is
purely a diagnostic message and is ignored by the main unit. After serial communications
are up, the hardware I2C controller built into the microcontroller is configured and activated.
Communication with the accelerometer is then verified by accessing a “WhoAmI” register

9

on the accelerometer that always returns a known value. If this value matches, the firmware
configures parameters on the accelerometer and enters a tight loop. The loop reads acceleration
data from the accelerometer, formats it into the controller packet format described in “Hardware
Requirements” and transmits it down the serial link to the XBee where it is communicated
wirelessly to the main unit. This loop also contains a delay at the end to implement data
throttling.

Test Plan

Test-driven development is an important strategy in any engineering project, and it is especially
important in the case of a project which requires interfacing of computer hardware and software.
Therefore, our test plan encompassed breaking the project into multiple smaller units, to test
these units individually, and to perform tests to ensure that each unit works as expected with the
others when these units are combined into a larger system.

First, upon assembling the controller hardware and programming related microcontrollers, we
tested the connection and transmission of data between the controller and the Altera DE2 board.
The VGA connections were first tested with simple video output (e.g. a color pattern) from
the DE2. Past a simple static test pattern, the frame reader component was tested to ensure that
multiple frames could be read in sequence from a memory location in SDRAM and output via
VGA during runtime and as directed by software. To test these units’ interaction, a test was
implemented by which the video output could be altered via controller input (e.g. a horizontal
shift in the pattern displayed on the screen). Finally, as the game engine was designed and new
features were added to game, testing was done at each step to ensure that the controller input
affected the video output as directed by the game engine software.

Results of Experimentation

Controller Testing
Once the controller prototype was assembled and the firmware programmed into the
microcontroller, a computer was connected to the microcontroller’s serial port to examine output.
Several iterations of the controller firmware were required to get reliable output to be displayed
on the computer.

After serial data output was verified, the XBees were introduced into the mix. Two of the major
concerns with the XBees were the latency of the connection, and whether or not one XBee at
the main unit could be used to receive data from both controllers. By replacing the computer
connection with an XBee and connecting the computer to another XBee, the data transmission
could be evaluated. It was determined that the latency in the connection was minimal at the
distances the controllers would likely be used at. The testing did show that an additional
XBee would need to be installed in the main unit. When one is used to receive data from both
controllers, it interleaves the two streams, making interpretation of the data difficult.

10

With wireless communication verified, a test harness was built using the DE2 board. The DE2
board would receive data from one controller to evaluate the NiOS’s ability to keep up with
the controller data stream. During testing it was found that 20 updates per second is taxing
on the board when MicroC/OS-II multitasking is enabled. Error rates were seen as high as
20% as the software struggled to keep up. To manage this, throttling was implemented in the
microcontroller code to reduce the updates to only ten per second. Following this, the error rate
dropped dramatically however further performance testing will have to be done once the game
engine is fully implemented on the board. Once the DE2 was receiving data from the controllers,
the software was updated to light LEDs in rough similarity to how the controller is being rotated
around.

VGA / Frame Reader Testing
A system was set up with SOPC builder into which the test pattern generator was inserted;
this successfully showed the expected VGA output results. However, when the frame reader
component was substituted for the working test pattern generator component, the output was
all but incomprehensible. A single uniform color could be output to the screen by writing the
same value to every pixel location in memory, but this was later found to be because the frame
reader was only reading (and outputting) a single pixel per frame. With the aide of Signaltap
II software, we were able to take a look into the signals corresponding to the (video) control
packets and regular video packets, with the intent of establishing some source of error. However,
the control packets’ contents seemed to exhibit signs that writing to some of the control registers
caused an overlap of information between said registers, but not in a predictable manner.

Due to these and other apparent bugs in the Altera-provided frame reader component, it was
decided that a new frame reader should be written from scratch; in addition, a syncer component
was also written to replace the clocked video output component to better suit our unique needs.

11

Appendices

Appendix A – Quick Start Manual

To re-assemble, connect, configure and demonstrate this project:

1. Launch Quartus II, create new project targeted for the DE2 board
2. Open niosII.sopc in SOPC builder, generate
3. Add all .vhd files in PROJECT_SOURCE directory except for niosII_inst file
4. Import all pin assignments
5. Set niosII_finalProject.vhd as top level file, compile
6. Program the device
7. Launch NiosII IDE, create new Nios II C/C++ Application project
8. Select the niosII.ptf file
9. Open the Project properties and under the System Library set the RTOS to

MicroC/OS-II, set sdram_0 for all memory components, under C/C++ Build
-> Nios II Compiler -> General set the compiler flags to “-std=c99” set the
optimization level to O3, also set the optimization level to O3 for the Syslib
project and apply all changes

10. Add all .c and .h source files to the project
11. Clean and Build the project
12. Connect receiver board to GPIO_0 on the DE2 board, connect monitor to VGA

output on the DE2 board
13. Run project as NiosII hardware

Note: Quartus/SOPC builder are very unreliable for building our project.

Alternatively, the niosII_finalProject.sof (and niosII_finalProject.pof) can be used to program the
hardware and the niosII.ptf file can be used to program software.

Note: Switch 0 can be used to toggle multiplayer capabilities.

12

Appendix B – Future Work

To extend on this project we would create an audio output that would go along with the game
which would entail sound effects as well as a background music track that plays continuously.
The actual gameplay software could be altered as well; vertically-scrolling background graphics
(eg. in the style of Xevious) could be implemented, features such as ship upgrades could be
added and the number and length of game levels could be extended. It would also be possible to
create other games, using the controllers and other hardware already in place from creating the
first.

13

Appendix C – Hardware Block Diagram

14

Appendix D – Source Code Documentation

File(s) Description Status
frameReader.vhdl A substitute SOPC builder component written to

replace the Altera-provided component by the same
name

T

vga_sync.v A substitute SOPC builder component modified from
to replace the clocked video output component

T

AI.c, AI.h Determines the movement and behavior of enemy
ships within the game, and associated header file

T

engine.c Mathematical modelling responsible for gameplay
mechanics

T

graphics.c, graphics.h Responsible for ship and other generalized graphics,
and associated header file

T

fontGraphics.c, fontGraphics.h Responsible for alphanumeric font and score area
graphics, and associated header file

T

initialization.c, initialization.h Responsible for game startup, and associated header
file

T

levels.c, levels.h Responsible for creating the game’s list of ships via
hard-coded patterns that can be repeated any number
of times, and associated header file

T

moveCollide.c, moveCollide.h Responsible for the checking and resolution of game
projectiles, and associated header file

T

startScreen.c, startScreen.h Responsible for the display of the title screen, and
associated header file

T

userIO.c, userIO.h Responsible for controller input tasks, and associated
header file

T

vgaDrive.c, vgaDrive.h Responsible for driving the DMA and VGA as needed
by the game, and associated header file

T

world.c, world.h File in which the current state of the game is held, and
associated header file

T

main.asm Reads triple-axis accelerometer data and outputs in a
friendly format for main console to interpret.

T

ControllerDE2TestBench.c Testbench for controller/DE2 board interaction T

Software Design Diagram

15

Declaration of Original Content: CMPE 490 Final Report

The design elements of this project and report are entirely the original work of the authors and
have not been submitted for credit in any other course except as follows:

[1] The Nios II embedded processor, DE2 Development and Education Board, and the
Cyclone II FPGA are all Altera products. Altera’s website: http://www.altera.com/

[2] Digi, Inc. “Sending data through an 802.15.4 network latency timing.” Internet: http://
www.digi.com/support/kbase/kbaseresultdetl?id=3065, [February 3, 2012]

[3] Freescale. “Tilt Sensing Using Linear Accelerometers.” Internet: http://
www.freescale.com/files/sensors/doc/app_note/AN3461.pdf, [Feb. 12, 2012]

______________________ _____________
Billy Kozak Date

______________________ _____________
Nathan Sinnamon Date

______________________ _____________
Jeff Theriault Date

a signed hard copy of this page will be dropped into the CMPE 490 drop box

16

http://www.digi.com/support/kbase/kbaseresultdetl?id=3065
http://www.digi.com/support/kbase/kbaseresultdetl?id=3065
http://www.freescale.com/files/sensors/doc/app_note/AN3461.pdf
http://www.freescale.com/files/sensors/doc/app_note/AN3461.pdf

