CMPE 450/490 DESIGN PROJECT

Intruder Alert System

Final Report

By:
Jordan Tymburski — tymbursk@ualberta.ca

Rachita Bhatia — rachita@ualberta.ca

Date: 4/13/2012

A security system that utilizes motion-tracking algorithms to detect intruders.

Abstract

Security is a vital issue that expands across many areas of life that require protecting vital information,
goods, or areas from those who would want to trespass or steal. The primary objective of our project is
to design a basic security system that would be able to track objects moving across the view of the
camera. This would enable a security system that wouldn't require manpower until it detected an
intrusion. It would also save space on local hard drives and backup devices since it would only need to
record sequences of time when movement is detected. This concept will be implemented on the Altera
DE2 board, which will be programmed to interface with an external VGA port and accept input through
the onboard RCA female jack. The frames from a video camera will be received through the RCA female
jack, processed using a micro C to detect motion in subsequent frames, and then the results will be sent
out of the VGA port to a viewing screen. The design also implements FPGA design elements using VHDL
to handle frame buffering in and out of the SDRAM. The micro C code can then access the frames from
within the memory as needed. Our design uses as much FPGA programming as possible to attain a
higher frame rate throughput, which results in a better, more accurate security system.

Contents

FUNCEIONAI REQUITEIMENTS ...uviiiiiiiiieee e ettt e e e e e e e et re e e e e e e e e e es e tabaaaeeeeeaaeeesesssnsassasssasaeeeeessannsssrssanees 3
Design and Description Of OPErationuiiiiiiiiie ittt e e et e e e e e e e e e e s e sabarraeeeeaeeeeeeesannsssraaaeees 4
Pl LiST ettt e e e e e e e e e s e e e 10
YU EY= o] Ll LTy Fed o T o 11 U ERUR 10
DY 1 o 111 A T T O PO UU PP PROPUPTPPPPPRINt 12
2 To] € oYU g Yo B U= To [] o =P EURR 15
Yoy n T =l D L=T] 1= o ST PPSPPR 16
TEST Pl ettt ettt e bt e e bt e e bt e e s bt e e e bt e e e bt e e e ah b e e e b bt e e aabe e e ahbeeeanbee e s beeeanteeesabeeenn 18
Results of Experiments and CharaCterizationcoiccciiiiiiiiie et e et ee e e e e e e e e e e arnr e aee e 20
LN =T =d Y (=To I O ol DL <T T4 o [T EURR 22
RETEIEINCES ..ttt et s bt e s bt e sttt e s bt e e s bt e e sa bt e s bt e e et e e e e be e e s abe e e aabe e e s beeeabeeesabeeenas 23
Appendix A: QUICK STart ManUal.........cuuiiiiiiiiie e e e e e e e e e e e e e e e aabtaaaeeeeeeaeeeeeesanrsrssanees 25
APPENIX B: FULUIE WOTK .uvviiiiiieiei ettt e e ettt e e e e e e e e e e e e e atb bt aaeeesaaeesseaesssstssaeeaeaaaeeesesanssssssanees 27
Appendix C: Hardware DOCUMENTATIONuiiiiiii ettt e e e et e e e e e e e e e et rra e e e e e eaeeeeeenanssraseneeas 28
Appendix D: SOftware DOCUMENTATIONuuuiiiiie e ittt e e e e e e e e e e e brrrr e e e e e e e e e e e e annssrasaneeas 31
Appendix E: Integrated Circuit DesigN RESUITS........ccccuviiiiiiiiee ettt e e e e e e e e e e e e areraraeeeas 33

PiN o] o1l oo [0 Yo IO ol I o [T =T u o] o[RS UU 58

Functional Requirements

The project entails the design of an Intruder Alert System, which monitors an area using a camera,
analyzes the captured video frames for detecting motion, and sends the resulting video feed to a screen.
The system tracks motion by outlining any moving subjects with a red box. The practical applications of
this project would be as a part of a larger security system, where monitoring may be done using multiple
cameras to capture a 360 degree view.

The core functionality of the project involves interfacing with a camera for input, and with a VGA screen
for output. The TV Decoder chip on the Altera DE2 board is then used for carrying out analysis based on
the input to detect motion in real time, and for sending the output to the VGA port. Additional features
that may be added to the project in future implementations are also discussed at the end of this section.

The three major components of our project and their functions are further explained below:
Monitoring via the Camera

Monitoring is done via a camera that takes pictures of its frame periodically and sends them to the TV
Decoder chip ADV7181B on the Altera DE2 board for analysis. We used a camera with a Video Out port
so that it can easily be interfaced with the Video In port of the DE2 board. The image frame received by
the TV Decoder chip is then sent to the software side of our program, which is micro C code that
implements a motion detection algorithm. It compares every subsequent frame with a static
background frame and uses this comparison to detect motion. In our design, the movement from one
frame to another is tracked by outlining the subjects with a red box. A more detailed explanation of our
motion detection algorithm is given in the Software Design section of this report. The following pictures
are an example of what our implementation looks like:

Motion Detection

The TV Decoder chip reads in each incoming frame from the camera and analyzes it by comparing
against a background frame. The background frame can be set by pressing the frame-reset button on
the DE2 board. To detect motion, we will then calculate the sum of absolute differences in pixel gray
scale values between the background and the current frame, and compare that to a previously chosen
threshold value. Once the sum is higher than that threshold, a red box outlining that corresponding area
will appear on the image that is sent over to the VGA screen [1].

Screen Implementation

The resulting video after analysis is simultaneously sent over to the VGA screen for display. We are
interfacing to a screen connected via a VGA port using the ADV7123 chip, because we can then
potentially connect to any monitor or projector through VGA.

All the functional requirements of our project were met to a satisfactory degree. The Intruder Alert
System does perform according to its specifications, and is able to detect any motion higher than its set
threshold. It does, however, have a margin for further improvement, particularly in terms of accounting
for light changes in the motion detection algorithm. Due to limited time, we could not implement any
additional features as we had initially planned, however, these features are discussed in the Future
Work section of this report.

Design and Description of Operation

Core Implementation

The core implementation can be split into two main components: the security camera video input and
the video output through the VGA interface. This is shown in the following block diagram:

Security
Camera
Video
QOutput
Monitor
Input
(VGA)
Video VGA Ethernet
In Output Interface
Interface | Interface 8010
Pins
Cyclone Il CPU
With
FPGAHardware Accelerator
Built for
Video Processing SD Card
Interface
Altera DE2 Board

The block diagram for the security system can be split into two primary components, the hardware and
the software layers:

Altera DE2 Board
Software Abstraction Layer (SAL)
A
v
SDRAM Memory (8 MB)
A
4
TV Decoding / VGA
Deinterlacing Conversion
(FPGA) (FPGA)
A Y

I

Camera VGA
Analog Screen
Output Input

The system starts by receiving an NTSC video feed from the security camera through the video in
interface. This is interfaced on the DE2 using the onboard video-in port with the onboard ADV7181B
chip. The NTSC standard supports a maximum of 30 frames per second which is the targeted rate that
the Cyclone Il CPU will be able to process the data. The video feed will then be processed, which will be

discussed in the next section, before sending it to the software layer. At this point, the micro C software
layer will then begin to algorithmically analyze the data frame by frame that was received from the
video input. The goal is to use an algorithm that will be able to detect motion that travels across the
video feed. After the software layer is done, the resulting frame data will be transferred into a separate
location in the SDRAM where it then can be processed and outputted to the VGA DAC chip on the Altera
board.

Hardware Layer

The hardware layer is split into two key components, the video in module and the video out module:

SDRAM Memory (8 MB)

A il
[Y
SDRAM SDRAM
Write Read
Control Control
I\Qdeo Motion
Deinterlacer Detection
Interface Box Finder

! v

Frame Scale

720 x 480 Video Grey-scale
To Out To
320 x 240 Interface RGB 10-bit
4 |

\J
ITU-R 656 VGA Feed
Decoding
Module
}
Video Feed

The video in interface takes the video in feed, which is decoded according to the ITU-R 656 standard,
and converts it into frame data that the software layer can process. The first block extracts the Y
component of the video from the serial feed. The Cb and Cr components (color luma values) are
discarded since we only need the video in grayscale. From there, it enters a frame scaling routine that
cuts the frame in half by removing every other x and y pixel. The y resolution is cut in half by only using
the even frame from the ITU-R 656 standard. The x resolution is cut in half by just removing every other
pixel from a line of data. The resulting frame resolution becomes 320 by 240 from dividing the height

and length of the frame by two. The new frame then enters the deinterlacer which takes on the task of
determining where each pixel belongs by assigning it an x and y coordinate in the range of [0,0] to
[320,240]. The pixels come with info bits that indicate end of line or end of even/odd frame to allow the
deinterlacer to maintain the proper count. The resulting data is given to the circular buffer which has
control over reads and writes to the SDRAM.

The circular buffer is a spinning buffer that points to three consecutive frame slots in memory. The first
slot is the VGA read slot frame where the VGA reads the current frame data to print to the screen. The
second consecutive slot is the frame which the software is currently executing motion detection on to
find parts of the frame that don’t match the reference frame, which is also stored in memory. The third
slot is where the deinterlaced and decoded data from the TV analog input is stored into a new frame.
This system shifts one slot when the software is finished with the motion detection algorithm. It
continuously shifts in the allocated 8 megabytes of SDRAM with the software controlling when it needs
to shift once. This design is required since there are three masters that are writing and reading from the
SDRAM and this avoids conflicts on the reading or writing to the same location in memory.

For the SDRAM, multiple masters had to be added in the SOPC builder in order to allow the video in
interface and the software layer both to read and write from memory. This is required since the SDRAM
only has a single bus that needs to be arbitrated between calls for reading and writing. If the bus wasn’t
arbitrated, the reads and writes between the software layer and the video in interface would conflict
which would result in incorrect data being read and written from memory. This system allows for the
Avalon bus to deal with the arbitration between the memory masters instead of having to write
separate VHDL code with an FSM machine to handle reads and writes to and from the SDRAM.

The VGA output is read from a location in the SDRAM that is specified by the circular buffer. This
location contains the frame data that has already been processed by the software motion detection
algorithm already. The pixel data is regular except for two special pixel values, Oxff and Oxfe. The
software places these two pixel values when it wants to outline motion that has been detected. The
pixel value Oxff corresponds to a red pixel (R=255, G=0, B=0) and the Oxfe corresponds to a green pixel
(R=0, G=255,B=0). The remaining pixels are sent to the VGA DAC normally by setting the pixel value to
the red register, the green register, and the blue register. The resulting image comes out as grayscale on
the screen since the three registers are set the same. The shade of darkness is then indicated by the
pixel value.

Finally, the system will interface with the external VGA port using the onboard ADV7123 chip. The data
that needs to be displayed on the screen is stored in the SDRAM as an array that is 320x240 bytes which
equals 76,800 bytes. This array is constantly updated by frames received from the software layer after
the motion detection program has been implemented. This system allows for the VGA driver to just
display the pixel values that are stored on the SDRAM. The VGA driver refreshes the displayed values as
they are updated in the SDRAM by the software layer. There is no conversion required to RGB since we
are printing to grayscale. The special cases where motion is detected and color needs to be printed to
the screen is discussed in the previous paragraph.

Software Layer

The software layer will start by reading the frame values from the video in interface using a circular
frame buffer. The circular frame buffer uses the SDRAM to store frames before the algorithm accesses
them to detect motion.

The algorithm that we plan to implement to detect motion requires 2 frames to process where
movement occurred. [1] It requires the current frame and a background frame which is retrieved from a
special location in the SDRAM pool of memory. The background frame is set by pressing a button on the
DE2 which gives the software a reference frame to use. Then we compare the current frame with the
background frame to determine where motion occurred. The algorithm checks blocks of pixels in the
background frame against blocks in the current frame to determine absolute differences between pixels.
If the absolute difference between blocks exceeds the threshold value, that block will be flagged as
detected motion. Sections of frames where motion is detected are outlined in red and green before the
frame is sent to the VGA port to be displayed on the screen. This would then be noticeable to anyone
watching the video feed to where the algorithm detected motion and what caused the motion.

The algorithm basically works on the principle that the if there is motion in a particular frame, its
grayscale pixel value would change in comparison to the background frame. We make use of this to find
the absolute difference between the 2 values and then take an average sum of all the absolute
differences over the frame. If this sum is greater than a set threshold, the moving subject is flagged by
creating a red outline around the pixels whose values were found to be changed in comparison to the
background frame. The algorithm is split into 5 different modules, each which are explained in detail in

the software design section.

The algorithm is designed to use the onboard SDRAM to store any necessary frames for the algorithm
computation. A small array of values that indicate if a block in a frame detected motion is also stored in
the SRAM to help reduce the number of reads and writes to the SDRAM. The background frame, the
current frame, and any other additional frames will be stored on the SDRAM to speed up the execution
of the algorithm. The newly analyzed frame will also be put onto the SDRAM overwriting the original
frame data from the TV input. After this is complete, the software sends a signal through the Avalon
fabric to the circular buffer that controls reads and writes to the SDRAM to indicate that the buffer
needs to shift to the next frame. A small timer is used in the software to slow down this process.
Without this timer, the SDRAM bus gets flooded with too many requests which can cause the system to
stop working.

Possible Additional Features

The possible additional features can be split into 4 sections: video compression and storage, menu
system for the VGA screen to access stored data, Ethernet implementation to access the security system
anywhere, and a touch screen interface to view and access the security data. This is shown in the
following block diagram:

Ethernet
Connection
(1)
LCD
Touchscreen
Input/Output
Video VGA
Ethernet
In Output || o ce Parallel ATA
Interface | Interface Hard Drive
8010
Cyclonell CPU Ethernet
With TCP/IP
FPGA Hardware Accelerator Hardware
Built for Only if (1) fails
Video Processing SD Card
Interface 4x4 keypad
with
Altera DE2 Board MM74c922
keypad encoder

Class 6 SDHC
Card (4-8 GB)

The first additional feature is the ability to store past data that was processed by the CPU. This would
require first a storage medium and also a method to compress the frame data into video files that can
be stored. The storage medium that we want to use is the SD card interface with the onboard SD
interface. For compression, we will try to utilize the MP4 compression algorithm to store the video.[8]

If the first additional feature is complete, our second feature is to create a menu system for the VGA
screen that will be controlled by the 4x4 keypad using the MM74c922 keypad decoder. The menu will
allow for past video data to be viewed and displayed on the screen as well as access to enabling and
disabling the motion detection. It will also give a menu system that will allow for past alarms to be

displayed and the ability to acknowledge current alarms.

For a third additional feature, we want to implement the Ethernet interface using the DM9000A
onboard chip. If we cannot figure out how to interface with the onboard Ethernet, we plan to use an off
board TCP/IP Ethernet hardware interface instead and connect it through the GPIO pins. Once we get
an Ethernet port working, we want to implement a web server that will allow access to both video feed
and to past data remotely. This would offer the ability to access and control the security system from
anywhere in the world that is connected to the Internet.

For a final additional feature, we thought of interfacing with a touch screen. This touch screen would
allow full access and control to the system. The purpose for the touch screen would be an interface that
could be put up near the entrance or exit of the secured area to allow disabling/enabling the security
system or alarms. It would also allow the current video feed to be viewed without going to the main

10

viewing screen or on the internet. This screen would be connected and interfaced through the onboard
GPIO pins.

Parts List

We only had one part, aside from the DE2, that was used in our design:

1. VUS500-C - SVAT Indoor/Outdoor Night Vision CCD Camera [5]

This camera provides colour images during the day and black and white when it gets dark. The built-in
photo sensor activates the IR LEDs automatically to provide night vision in pitch black. Package includes
camera, mounting bracket, power supply and 60 foot power/video cable with RCA video connection.

e Colour during the day

e Black & White (gray scale) at night

e IR LEDs turn on automatically at night to provide up to 50 feet night vision in complete darkness

e 1/4" Sony CCD

¢ 6mm fixed focus lens, approximately 60 degree viewing angle

e |P65 outdoor rated, can be used indoors

e Includes power supply, mounting bracket, decals, 60 foot video/power cable

* Video connection DIN at camera end, RCA male and barrel power at other end. RCA to BNC
adapter included

Cost: $89.99
Order Status: sent the order to Nancy on Jan. 31, 2012
Link / Reference: http://www.aartech.ca/vu500-c-svat-long-range-night-vision-ccd-camera.html

Reusable Design Units

The primary three sets of reusable design units are the big three components that we could implement
during our project.

The first is the VGA controller to help with printing out of the VGA port. The best that we found was one
at opencores.org. [9]

11

Link: http://opencores.org/project,vga lcd

It offers an expandable approach and lots of flexibility for controlling and accessing the LCD screen. This
could really add as a feature for when we are programming the output port. This could provide better
access times and a more thorough development of the VGA access. However, our current design
currently works for our project so this could be counted as an extra addition.

Another block is the video compression algorithm that we may need if we implement video storage. [8]

Link: http://opencores.org/project,video_systems

This offers a great system since its working on compression in a pipelined interface. This would allow a
much faster implementation of the video compression and save us a lot of time. Testing would be
required though since the status of the online link is vague about how far along the project is.

For the ADV7181B chip, which controls the video input, we will be using some of the design ideas from
an implementation on the Altera DE2 board from the University of Toronto [13]

Link: http://www.eecg.toronto.edu/~jayar/ece241 08F/AudioVideoCores/vin/vin.html

This offers a working connection to the TV chip that we can modify to grayscale and change the
buffering system to work with our design. Parts of this design were included in our final design, with the
most important one being the ITU-R 656 Decoder module (in Verilog).

Datasheet

12

The following tables represent the top level signals that represent the user input and output. The input

power for the camera may change depending on what time of camera used to plug in the analog input.

The TV input and the VGA output are expanded below in the video in and the video out interface that

indicate how the chips onboard interpret the signals using the ADV7123 and the ADV7181B respectively.

Top Level User 1/0 Signals

Name Description Type

KEY(0) System Reset Input

KEY(3) Set Background Frame Input

SW(0) Switches the software motion | Input
detection on and off

VGA Video Output to VGA Monitor Output

Analog In (TV) The TV input from an analog in | Input
connection from a camera

DE2 Power Requires 9V, 1.3A N/A

Camera Power Requires 12V, 500mA N/A

The Video In interface is an internal FPGA module that takes the TV data from the ADV7123 chip and
converts it to a grayscale pixel value with a corresponding x and y coordinate. This module executes the

necessary deinterlacing, decoding and frame resizing before outputting the processed pixel data.

Video In Interface

Signal Description Type

TD_D [0...7] TV Data Input

CLOCK_27 27 MHz clock used to control the | Input
TV decoding

TD_RESET The TV chip reset control Output

TD_HS The Horizontal Size indication Input

TD_VS The Vertical Size indication Input

12C_SCLK The Clock for the 12C interface Input

12C_SDAT The Serial data to the 12C | Inout
interface that controls the TV
chip

Reset Module based reset — receives | Input
signal from KEY(0)

Pixel [7:0] Greyscale pixel value Output

X [8:0] The x value of the pixel — | Output
maximum of 320

Y [7:0] The y value of the pixel — | Output
maximum of 240

Pixel EN If the pixel is good (rising edge) Output

13

This module is also an internal FPGA module that controls the data access to the SDRAM to read out the
data for the VGA as well as the VGA controller to properly print data to the screen. The outputs plug
directly into the VGA ADV7181B chip that manages the final stage of printing to the output display. The
SDRAM signals below are sent to the Avalon fabric which handles arbitration for read and write access.

Video Out Interface

Signal Description Type

Clk25 25 MHz clock to control the VGA | Input

Clk50 50 MHz clock for testing Input

Clk100 100 MHz clock to control read | Input
access to the SDRAM

i_reset_n Module Reset Input

Sdram_x The X coordinate to read — max | Output
320

Sdram_y The Y coordinate to read — max | Output
240

Sdram_Read Read enable for SDRAM Output

Sdram_Data The read data from the SDRAM Input

Sdram_Ready Input to signal if the sdram is | Input
ready to read

VGA R Red pixel value to VGA Output

VGA G Green Pixel value to VGA Output

VGA B Blue Pixel value to VGA Output

VGA_BLANK Blanking signal to VGA Output

VGA_CLK VGA Clock — will be set to 25 | Output
MHz

VGA_HS Horizontal Position Control for | Output
VGA

VGA_SYNC VGA Sync for VGA Output

VGA_VS Vertical Position Control for VGA | Output

This module, the circular buffer, is the third remaining primary module (aside from the SOPC
connections) that was used in the design. This was also entirely concealed within FPGA and therefore
doesn’t have any power specifications. It handled the read and write address control for the SDRAM for
the three sections: TV, software, and VGA.

Circular Buffer

Signal Description Type

Clk Circular buffer clock control Input

Reset_N Module Reset Input

Control_device 0 for software disabled, 1 for | Input
enabled

Tv_base_addr The base tv address in memory Output

Tv_enable The enable to control when tv | Output
address is valid.

14

Software_finished This bit shifts the buffer by 1 on | Input
a rising edge. - software
controlled

Software_base_addr The software base address in | Output
memory

Software_ready The control to set the software | Output
finished back to 0 when this goes
high

Vga_base_addr The Base address for the VGA | Output
output

Set_background_n Set the background frame Input

Background_frame_addr The Background frame base | Output

address in memory

This is the set of signals that make up the three primary modules of the project. There are no other

external signals that use power or the GPIO pins which can be measured. The only requirement to run

this project is to turn on the board which will automatically load the code into SRAM and begin the

hardware/software process. The signals for the internal FPGA access cannot be measured for peak, idle,

or standby power.

15

Background Reading

A Color Video Camera Using FPGA Video Processor [14]

By: Yee-Lu Zhaog, Dar-chang Juang, Chun-Hsein Horng
Notes:

This provided the initial ideas on how to design connecting the video from the TV port to receive
streaming data. Although the reference is dated, the actual design ideas are usable. It discusses the
NTSC encoder as well as video processing in the pixel form (Y and chromiance). It gave an initial starting
point to begin working on the FPGA design and how to make it faster.

State Machine Design Techniques for Verilog and VHDL [15]

By: Steve Golson
Notes:

This was very important since memory is the foundation of our project. After a discussion with
Professor Elliott and Nancy, we realized that this project needed to arbitrate memory in order to have
multiple synchronous reads and writes happening on only one memory bus at any given time. This
paper helped with the design of the VHDL state machine that is going to be used to arbitrate the bus on
the SRAM. This also helped with ideas for working with managing the SDRAM as well. It also introduced
design times and how much time may be lost in between synchronous reads and writes.

A motion adaptive deinterlacing method with hierarchical motion detection algorithm

By: E. Shahinfard, M.A. Sid- Ahmed, M. Ahmadi
Notes:

This paper appears in the 15th IEEE International Conference in October 2008 [17]. It provided us with a
better understanding of how we can divide our image into slots and detect motion in those slots before
moving up a hierarchical level and highlighting the detected motion for the entire image. Even though
the article uses a different algorithm for motion detection and implements a recursive approach to the
different hierarchical levels of an image, it was helpful in the context of sub-dividing an image into
blocks and analyzing them first.

Software Design

16

The software design of our project essentially involves the set up of three major tasks:

*The video coming off the camera needs to be analyzed by the ADV7181B
chip. Each captured frame is sent over to the TV Decoder which in turn
sends the frame to the Micro-C motion detection algorithm code.

\

*This block is split further into the following tasks:
eSet Background - revises the background frame each time the reset
button is pressed
eCompare Frames - compares the current frame with the background
\ViTe[=Yo) frame to detect threshold violations
eHighlight detected motion - outline the pixels that violate the threshold
value with a red box. /

Processing

eDisplay the resulting video coming off of the TV Decoder chip on the
screen via the VGA port

Video-Out

Our design code is basically divided into the following modules:

- Building the Array: Once the camera read in the current frame and pushed it on to the hardware, the

software side was responsible for building an array to compare the frame with the background. This was
done by reading the base memory address of the array from the SDRAM and sending it over to the
MicroC code. In place modification was done to the array in SDRAM by the algorithm for comparison
and outlining. This is explained in the following sub points. The figure below is an overview of how an

array is built by the software:

17

Hardware - VHDL
and TV Decoder

Set Ready
tol

Hardware
+ Ready

Set Ready
Yes Backto 0
—————
Y
Motion Base Memory Address
— Detection <t
Algorithm

- Comparison: The next major task is to carry out the comparison between the 2 frames. As explained in
the design section, this is done by calculating the absolute difference of the gray scale pixel values
between the two 2-dimensional frame arrays:

[abs(backgroundFrame[pixel_i_grayscale_value] — currentFrame[pixel_(i_(grayscale_value)]

Our design does not take into account the day/night changes and minor light changes in the
background. Therefore, we only have a fixed threshold value in regards to our comparison of gray scale
values. This means that each time the absolute difference between a background pixel and a current
frame pixel is more than 16 shades of gray, then a variable keeping count of the number of violated
pixels is increased by 1.

- Creation of Image Slots: We divide the main frame into several smaller slots (squares), each of
dimensions 10x10 pixels. This is done to account for another threshold - that of the total number of
violated pixels. If the total number of violated pixels in a slot is less than 10% of the area of that slot,
then that slot is not flagged and the error in the pixel values is ignored as it is too small. If the total is
greater than 10% of the slot area, however, then that slot is flagged. The flagging was done by building
another array, which was smaller in size as compared to the main array: 32x24. Each element of this

18

array represents a 10x10 slot in the current frame. The value of that element is settoa O ora 1l
depending on whether the slot is flagged or not. This array is then helpful in checking adjacency and
outlining the slots, which is explained below.

- Outlining the Slots: Once all the slots with detected motion have been flagged, the next step is to
check which slots are adjacent to each other. This is done because we do not want to outline all moving
parts of a single subject with multiple small red boxes; we aim to have one bigger red box for the entire
moving body instead. Adjacency is checked by traversing through the smaller array and checking which
elements have a neighbor set to 1. The ones that do, the shared boundaries for them are not outlined.
Only the non-shared boundaries of adjacent slots are outlined with red. In this way the entire moving
subject is outlined with a single box.

The languages that we have used to design the Intruder Alert System include MicroC and HDL. All our
code has been archived and submitted along with this report.

Test Plan

Hardware

The hardware testing can be split into sections for each part that we will be interfacing on the Altera
DE2 board. Since most of our hardware is onboard, we won’t need to test if the hardware works and
instead test that the interface for reading/writing to the onboard chips is working. The devices that we
will be testing is the ADV7181B (TV Decoder Chip), the ADV7123 (VGA output chip), and the interface
with the SDRAM.

The functional requirements testing will be setting up test benches that compare the connected signals
against what the data sheets specify. This includes checking each signal and writing across them. These
tests will be built in software as their own MicroC implementation and do full tests. For the VGA, the
test will be visual since we can’t actually confirm that data is being written to the screen.

The process of writing to the SDRAM is controlled by the Avalon memory fabric for arbitration but the
address control is done by a separate circular buffer that we wrote. This section was included in the
testing since it’s a very essential feature in the design. To do this, we implemented read and write tests
to the SDRAM to create simulated frames of a specific pattern that would then be read at the other end
and displayed to the VGA. Testing of this section occurred after the VGA section was completed which
allowed us to view the success or failure of the SDRAM components. Timing was also tested to
determine how much of the SDRAM bus time was being used by the TV in, VGA out, and software

19

processing. This section required the longest amount of time due to the fact that if something goes
wrong here, it will result in very unpredictable errors.

The testing of the FPGA code can also be split into sections, one for the incoming data processing and
one for the exit data processing. The incoming will be tested by taking the incoming feed, putting it into
the frame buffer, and outputting single frames through the JTAG interface in MicroC. Using this system,
we can then see the pixel values of actual frames to confirm that the proper data is actually coming
through. For the outgoing FPGA module, a test module will be used to simulate printing a frame to the
screen. It will produce a specified pattern that can be changed by selecting different buttons on the
Altera DE2. This will confirm two things: that the video out module is working and that the SDRAM

reading into an alternating line by line FIFO system is working properly.

Software

One of the major tests on the software side includes testing the hardware-independent components in
order to ensure that the signals are coming in properly. This means testing all the read and write signals
available in the ‘system.h’ and confirming that they are working according to the specification.

For the individual software tasks, we will be performing tests to check for both memory leaks by
watching the memory and making sure there are no deadlocks that cause the synchronization of the
tasks to fall apart. To test this, we will be running the system for prolonged periods of time and
watching the results over time.

Testing of the software modules was done by the creation of simultaneous test suites alongside the
motion detection algorithm code that was initially written in C. Therefore, testing was done in C by
creating two-dimensional arrays filled with random char values from 0 to 255 representing the grey
scale pixel values of the current and the background images. The elements at each row and column
were then compared to each other and absolute differences between their values were calculated,
which were then compared to the thresholds. Slots were accordingly flagged and outlined by changing
the boundaries to a particular char value if the thresholds were exceeded,

We also tested the algorithm by sending in pixel values generated using MATLAB from still images taken
from an external camera. Timing was tested with respect to different images and arrays to find out the
optimum speed with which our algorithm could handle the current resolution of 320x240.

Overall Plan
We will be following a similar structure to what was discussed in the lecture: [11]

1. Unit Testing — Subsystem
- The first sub system will be the TV input
- The second sub system will by the VGA output interface

The third will be the SDRAM FSM interface
The fourth will be the software on a computer using GCC

2. Integration Testing — Groups of subsystems
Determine if our algorithms work

This will include connecting the TV and VGA together
Testing the SDRAM for valid reads and writes on the 100 MHz clock.
And testing the software on the DE2 board.

3. System Testing
Check that our whole system works together as a whole.

Check that it meets requirements

20

We will test motion detection limitations and requirements by moving through

the camera feed.

This will be the last test, ran near the end of the term

Here, we connect everything together and test.

4. Acceptance Testing
Ran by Nancy or Elliott to determine if our design conforms to the expectations.

Results of Experiments and Characterization

Frame Sizes and Color Scheme

640 x 480 = 307, 200 pixels

320 x 240 = 76,800 pixels

Greyscale: 8 bits (1 byte) — 256 bit grayscale value.

Color: 24 bits (3 bytes) — 256 R, B, and G values.

Frame Analysis

Frame Resolution

Greyscale or Color

Frame Size (bytes)

of Frames in 4

of Frames in 512

MB SDRAM * KB SRAM
640 x 480 Color 921,600 bytes 4 0
640 x 480 Greyscale 307,200 bytes 13 1

21

320 x 240

Color

230,400 bytes

18

2

320 x 240

Greyscale

76,800 bytes

54

6

* Assuming 4 MB of SDRAM used out of the total 8 MB for frame buffers. The remaining 4 MB would be

used for the program stack and heap.

FPGA Requirements Analysis

Onboard Total Logic Elements: 33,216

Onboard FPGA Memory: 483,840 bits

TV Compilation

Logic Elements Usage: 1% (400/33216)

Memory Bits Usage: 2% (8956/483,840)

VGA Compilation

Logic Elements Usage: 1% (200/33216)

Memory Bits Usage: 2% (8192/483,840)

CPU Compilation (For Software/MicroC implementation)

Logic Elements Usage: 12% (4089/33216)

Memory Bits Usage: 41% (195,968 / 483,840)

Embedded Multipliers 6% (4/70)

PLL: 1/4 (25%)

* This is currently using the fastest processor available on the DE2

22

Integrated Circuit Design

We decided to implement a counter and a circular buffer that we used in our project for creating an
Integrated Circuit Design. The files “counter.vhd” and “circular_buffer.vhd” were used, and are attached
in Appendix F. The code was initially compiled and synthesized in Synopsys, and the synthesis area,
power and speed reports were generated. The timing constraint used for the Synthesis was 10ns. The
performance of this IC was a little bit worse in comparison to the FPGA as there were a number of slack
and hold time violations that needed to be fixed for a timing constraint of 10 ns, whereas the FPGA ran
flawlessly at 100 MHz.

The reports generated during synthesis, along with a script showing the commands used to generate the
reports, are attached in Appendix E.2 and E.1 respectively. Finally, a .v and a .sdc file was generated as a
result of the synthesis process, and these files are attached in Appendix E.3.

Following the Synthesis, Place & Routing of the circuit design was carried out in Encounter. A command
log file “encounter.cmd” shows the details of the P&R process and is attached in Appendix E.4. During
place & routing, timing reports were generated at the following intervals to detect and fix hold time

violations:

¢ Pre CTS Timing Report (Appendix E.5) — circular_buffer_preCTS.summary,
circular_buffer_preCTS_all.tarpt, circular_buffer_preCTS.slk

¢ Hold Time Report Post CTS (AppendixE.6) — circular_buffer_postCTSHold.summary,
circular_buffer_postCTSHold_all.tarpt, circular_buffer_postCTSHold.slk

* In Place Optimization Post CTS to fix hold time violations (Appendix E.7) -
circular_buffer_postCTSHold_ipo.summary, circular_buffer_postCTSHold_ipo_all.tarpt,
circular_buffer_postCTSHold_ipo.slk

* Post Routing (Appendix E.8) - circular_buffer_postRoute.summary,
circular_buffer_postRoute_all.tarpt, circular_buffer_postRoute.slk

¢ At the end, for the final setup (Appendix E.9) — circular_buffer_ finalsetup.summary,

circular_buffer_finalsetup_all.tarpt, circular_buffer_finalsetup.slk

A snapshot of the final Integrated Circuit Design is shown in below:

23

References

[1] A. Kirillov, “Motion Detection Algorithms”, The Code Project,
http://www.codeproject.com/Articles/10248/Motion-Detection-Algorithms, Date Accssed: February 5,
2012.

[2] “DM9000A Ethernet Controller with General Purpose Interface - Datasheet”, DAVICOM
Semiconductor Inc., Version: DM900A-DS-P03, April 21, 2005.

[3]”Multiformat SDTV Video Decoder - ADV7181B"”, Analog Devices Inc, 2005.

[4] "CMOS, 240 MHz Triple 10-Bit High Speed Video DAC- ADV7123”, Analog Devices Inc, 1998.

[5] “VU500-C - SVAT Indoor/Outdoor Night Vision CCD Camera”, AARTech Canada,
http://www.aartech.ca/vu500-c-svat-long-range-night-vision-ccd-camera.html, Date Accssed: February
5,2012.

[6] “Multi-touch LCD Module (MTL)” Terasic Technologies Inc., http://www.terasic.com.tw/cgi-
bin/page/archive.pl?Language=English&CategoryNo=68&No=653, Date Accessed: February 5, 2012.

[7] “MM74C922 - Datasheet”, Fairchild Semiconductor, October 1987, Revised April 2001.

[8] R. Herveille and A. Henson, “Video Compression Systems” OpenCores.org,
http://opencores.org/project,video_systems, Date Accessed: February 5, 2012

[9]R. Herveille and Hoffer, “VGA/LCD COntroller” OpenCores.org, http://opencores.org/project,vga_Icd,
Date Accessed: February 5, 2012

[10] S. Nawaz et al, “VOIP Project: Final Report.” Internet:
http://www.cs.columbia.edu/~sedwards/classes/2009/4840/reports/VOIP.pdf, May 16, 2009 [Feb
5, 2012].

[11] D. Eliott. CMPE 490. Class Lecture, Topic: “Project Testing.” GSB 211, Faculty of Engineering,
University of Alberta, Edmonton, Alberta, Feb 2, 2012.

[12] E. Hamilton. “JPEG File Interchange Format.” Internet: http://www.jpeg.org/public/jfif.pdf,
September 1, 1992 [March 6, 2012].

[13] University of Toronto. “Video-in Controller.” Internet:
http://www.eecg.toronto.edu/~jayar/ece241_08F/AudioVideoCores/vin/vin.html, August 29, 2008
[February 29, 2012].

[14] Y.L. Zhaog, D.C. Juang, and C.H. Horng. (1991, Sept.). “A color video camera using FPGA video
processor.” ASIC Conference and Exhibit, 1991 Proceedings., Fourth Annual IEEE International. [On-line].

24
pp. P16-7/1-4. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp ?tp=&arnumber=242879 [March
7,2012].

[15] S. Golson. “State Machine Design Techniques for Verilog and VHDL.” Internet:
http://mail.littlepondfarm.com/pdf/golson_snug94.pdf, 1994 [Feb. 28, 2012].

[16] "MPEG Video Copression Technique - a brief discussion". Internet: http://vsr.informatik.tu-
chemnitz.de/~jan/MPEG/HTML/mpeg_tech.html, Accessed on March 7, 2012.

[17] E. Shahinfard; M.A. Sid- Ahmed, M. Ahmadi, "A motion adaptive deinterlacing method with
hierarchical motion detection algorithm" Image Processing 2008. [December 12, 2008]

25

Appendix A: Quick Start Manual

There can be two cases when starting up the project: either the project has been flashed to the board
and is available when the power button is pressed or the board is empty and needs to be programmed

with the code available online.

Case 1: Board has been flashed with the design
Since the board already has the design programmed in, the setup is fairly easy.

1. Plugthe VGA cord from an LCD monitor into the Altera DE2 board.
Turn on the LCD monitor
Plug the composite (yellow cable) connection from an NTSC camera source into the Altera DE2
board.
Turn on the camera (before turning on the board).
5. Press the red power button on the DE2 board to start it up.

That's the extent of the initial setup.

Case 2: The DE2 board has not been flashed with the design (the default DE2 case — especially if this is
the first time you are running this design).

In this case, the design needs to be programmed to the board that you are running.

1. Make sure to start that you start by following the steps in case 1 which include plugging the
devices to the DE2 board and then turning on the board.
Now, untar the project that was available in the same location as this report
Inside the ‘capstone_main’ directory is a directory called scripts which has the three necessary
files for running the project. In each file, you need to change the following variables to the
appropriate paths on your machine: QUARTUS,NIOS2_IDE,SOPC_KIT_NIOS2,and JTAGCONFIG.
Once these are changed, ‘cd’ into ‘capstone_main’ and run ‘./scripts/launch_quartus.sh’

5. This will open the familiar quartus interface where you can now program the design to your DE2
using the Programmer.

6. After this is complete, go back to the terminal where you launched quartus and run
‘./scripts/launch_nios2_ide.sh’

7. Clean, build and run as nios Il hardware the project ‘motion_detection’.

Now, both the software and hardware portion of the design is now programmed to your DE2.

26

After programming is complete and the project is running, the following list is the available

features/buttons that can be pressed during operation.

KEY(0) is the reset button. Press and hold it to restart the project
SW(0) is to enable motion detection. It needs to be flipped on (up) for detection to be enabled.
At this point, the frame rate will be approximately 8 frames per second.

3. KEY(3) sets the background reference frame that the algorithm uses to compare against the
current frame. However, this button won’t set the background frame if SW(0) is in the off

position (which will mean motion detection is disabled).

27

Appendix B: Future Work

Due to a limited amount of time, our final design could not include all the features that we had initially
planned to add. Therefore, future implementations of our project could improve upon our current
design and modify it to include the following features:

Build a GUI which can be Video Storage

used by the external
keypad control as well as
the touchscreen.

: Video Compression
Interfacing an SD card

with the Altera DE2
board to enable video

Use a suitable algorithm

Provide options to view | storage to implement' video
old feed, set off an alarm, compression in order to
turn off the alarm, turn provide storage support.

off the camera etc.

¢ Extend the functionality from grey scale to color display.

* Improve upon our existing motion detection algorithm to account for day/night changes.

* Increase the video quality from 320x240 to 640x480.

* Achieve higher frames per second video feed.

* Implement an external keypad control for the VGA monitor.

¢ Extend the VGA screen and external keypad control functionality to a touch screen interface
that would provide the user with options to control the camera and the video feed. The touch
screen would display a menu with options that would allow the user to set off a manual alarm,
view the feed, turn off the camera etc.

* Provide the user with options to view old videos that have been stored in memory. This would
need video compression and storage as well. Compression algorithms may be used, such as the
Discrete Cosine Transform, where values above a certain frequency are rejected to give result to
a compressed form of the initial video [16].

* Finally, create a web server for the Intruder Alert System so that it can be accessed remotely.

Appendix C: Hardware Documentation

28

Primary Features

Security
Camera
Video
Output
Monitor
Input
(VGA)
Video VGA Ethernet
In Output Interface
Interface |Interface 8010
Pins
Cyclone Il CPU
With
FPGA Hardware Accelerator
Built for
Video Processing SD Card
Interface
Altera DE2 Board
Main Design

Altera DE2 Board

Software Abstraction Layer (SAL)

A

\J

SDRAM Memory (8 MB)

A

(FPGA)

TV Decoding /
Deinterlacing

e

/

VGA

Conversion
(FPGA)

T

Camera
Analog
Output

%

VGA
Screen
Input

Hardware Design

SDRAM Memory (8 MB)

A I
[Y
SDRAM SDRAM
Write Read
Control Control
I\gdeo Motion
Deinterlacer Detection
Interface Box Finder
f y
Frame Scale
720 x 480 Video Grey-scale
To Out To
320 x 240 Interface RGB 10-bit
f \
ITU-R 656 VGA Feed
Decoding
Module
A

[
Video Feed

29

SDRAM Design

SDRAM
Controller

A

\

Avalon Fabric

SDRAM

A

MM Write

MM Read

Circular Buffer Control

!

Chip

LCD
Touchscreen
Input/Output

Parallel ATA
Hard Drive

Ethernet
TCPI/IP
Hardware
Only if (1) fails

4x4 keypad
with
MM74c922

_ |keypad encoder

TViIn VGA Out
FPGA FPGA
Additional Features
Ethernet
Connection
Video VGA Ethernet
In Output Interface
Interface | Interface 8010 |
Cyclonell CPU
With
FPGA Hardware Accelerator
Built for
Video Processing SD Card
Interface
Altera DE2 Board
Class 6 SDHC

Card (4-8 GB)

31

Appendix D: Software Documentation

Primary Software Tasks:

*The video coming off the video chip needs to be analyzed by the
ADV7181B chip. We plan to use hardware accelerated video to increase
the overall processing speed.

*This block is split further into the following tasks:
eSet Background - revises the background frame periodically
eCompare Frames - compares the current frame with the background
. frame to detect threshold violations
Video eHighlight detected motion - outline the pixels that vioulate the
Processing threshold value with a red box.

eDisplay the resulting video coming off the TV Decoder chip on the screen
via the VGA port

Video-Out

An overview of how the software interacts with the hardware:

Set Ready
tol

>

Hardware
+ Ready

Hardware - VHDL
and TV Decoder

Set Ready
Yes Backto O
EE—
Y
Motion Base Memory Address
Detection -
Algorithm

32

33

Appendix E: Integrated Circuit Design Results

E.1 Script for synthesizing the IC in Synopsys: compile_circular_buffer.tcl

gui_start

analyze -format vhdl ./counter.vhd

analyze -format vhdl ./circular_buffer.vhd

elaborate circular_buffer

check_design -multiple_designs

uniquify

create_clock "clk" -period 10

current_design circular_buffer

compile -map_effort high -boundary_optimization
report_area

report_power

report_timing -path full -delay max -max_paths 1 -nworst 1
write_sdc ./Synthesized/circular_buffer.sdc

write -format verilog -hierarchy -output ./Synthesized/circular_buffer.v

E.2 Area (size), Power and Timing (speed) Reports generated in Synopsys after Synthesis

3k 3k 3k 3k 3k %k 3k 3k 3k 3k 3k 3%k %k >k >k 3k 3k 3k 3%k %k %k >k 3k 3k 3k 3%k 3%k %k >k 3k 3k 3k 3k %k %k %k %k %k k %k

Report : area

Design : circular_buffer
Version: Y-2006.06-S5P4

Date : Fri Apr 13 11:55:00 2012

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k %k >k 3k 3k 3k 3%k %k %k >k 3k 3k 3k 3%k 3%k %k >k 3k 3k 3k 3k %k %k %k %k %k k k

Library(s) Used: GSCLib_2.0 (File: /EDA/kits/gpdk18/GSCLib_3.0/timing/GSCLib_3.0.db)

Number of ports: 74
Number of nets: 24
Number of cells: 4

Number of references: 4

Combinational area: 0.000000
Noncombinational area: 0.000000
Net Interconnect area: undefined (No wire load specified)

Total cell area: 0.000000

Total area: undefined

Loading db file '/EDA/kits/gpdk18/GSCLib_3.0/timing/GSCLib_3.0.db'

Loading db file '/EDA/kits/gpdk18/GSCLib_10_1.4/timing/GSCLib_10.db'

Information: Propagating switching activity (low effort zero delay simulation). (PWR-6)
Warning: Design has unannotated primary inputs. (PWR-414)

Warning: Design has unannotated sequential cell outputs. (PWR-415)

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k >k >k 3k 3k 3k 3%k %k %k >k 3k 3k 3k 3%k 3%k %k >k 3k 3k 3k 3k %k %k %k %k %k k %k

Report : power
-analysis_effort low
Design : circular_buffer
Version: Y-2006.06-S5P4
Date : Fri Apr 13 11:55:05 2012

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k >k >k 3k 3k 3k 3%k %k %k >k 3k 3k 3k 3%k 3%k %k >k 3k 3k 3k 3k %k %k %k %k %k k %k

Library(s) Used: GSCLib_2.0 (File: /EDA/kits/gpdk18/GSCLib_3.0/timing/GSCLib_3.0.db)

Operating Conditions: typical Library: GSCLib_2.0
Wire Load Model Mode: top

Global Operating Voltage = 3
Power-specific unit information :
Voltage Units = 1V
Capacitance Units = 1.000000pf
Time Units = 1ns
Dynamic Power Units = 1ImW (derived from V,C,T units)
Leakage Power Units = 1nW

Cell Internal Power =201.5325 uW (86%)
Net Switching Power = 31.5499 uW (14%)
Total Dynamic Power =233.0825 uW (100%)
Cell Leakage Power = 11.9846 nW

3k 3k sk 3k sk sk sk sk sk sk 3k sk 3k sk sk sk sk sk sk 3k sk sk sk sk sk sk sk sk ok koo skosk sk sk sk sk sk kk
Report : timing

-path full

-delay max

-max_paths 1
Design : circular_buffer
Version: Y-2006.06-SP4
Date :Fri Apr 13 11:55:12 2012
3k 3k sk 3k sk 3k sk sk 3k sk 3k sk 3k sk sk sk sk sk sk 3k sk sk sk sk sk sk sk sk ok koo skosk sk sk sk sk sk kk
Operating Conditions: typical Library: GSCLib_2.0
Wire Load Model Mode: top

Startpoint: software_finished
(input port)
Endpoint: curr_state_reg
(rising edge-triggered flip-flop clocked by clk)

34

Path Group: clk
Path Type: max

Point Incr Path

clock (input port clock) (rise edge) 0.00 0.00

input external delay 0.00 o0.00f
software_finished (in) 0.00 o0.00f
curr_state_reg/D (SDFFSRX1) 0.00 o0.00f
data arrival time 0.00

clock clk (rise edge) 10.00 10.00
clock network delay (ideal) 0.00 10.00
curr_state_reg/CK (SDFFSRX1) 0.00 10.00r
library setup time -0.14 9.86
data required time 9.86

data required time 9.86

data arrival time 0.00

slack (MET) 9.86

E.3 Resulting Files after Synthesis: circular_buffer.sdc and circular_buffer.v
-- circular_buffer.sdc

HUHH R R R R R
Created by write_sdc on Fri Apr 13 10:36:16 2012

HEHHEH S S S
set sdc_version 1.6

create_clock [get_ports clk] -period 10 -waveform {0 5}

-- circular_buffer.v

module counter_ 0_DWO01 inc 0O(A 4 ,A3 ,A 2 ,A 1 ,A 0 ,SUM 4 ,SUM 3,
SUM_2_,SUM_1_,SUM 0_);
inputA 4 ,A 3 ,A2 A1,A0;
output SUM_4_, SUM_3_,SUM_2_,SUM_1_, SUM_0_;
wire \A[4],\A[3], \A[2], \A[1], \A[O],, \SUM[4] , \SUM[3] , \SUM[2],
\SUM([1],\SUM[O0], \carry[4] , \carry[3], \carry[2] ;
assigh \A[4] =A 4 ;

35

assign \A[3] =A 3 ;
assigh \A[2] =A 2 ;
assigh\A[1] =A 1 ;
assign \A[0] =A O ;
assigh SUM_4_=\SUM[4];
assign SUM_3_ =\SUM[3];
assigh SUM_2_ =\SUM[2];
assign SUM_1_=\SUM[1];
assign SUM_0_ =\SUMI[O0] ;

ADDHX1 U1_1 3 (.A(\A[3]), .B(\carry[3]), .CO(\carry[4]), .S(\SUM[3]));
ADDHX1 U1_1 2 (.A(\A[2]), .B(\carry[2]), .CO(\carry[3]), .S(\SUM[2]));
ADDHX1 U1_1 1 (.A(\A[1]), .B(\A[O]), .CO(\carry[2]), .S(\SUM[1]));
XOR2X1 U1 (.A(\carry[4]), .B(\A[4]), .Y(\SUM[4]));
INVX8 U2 (.A(\A[O]), .Y(\SUMI[O]));

endmodule

module counter_ 1 DWO01 inc 0O(A 4 ,A3 ,A 2 ,A 1 ,A 0 ,SUM 4 ,SUM 3,

SUM 2 ,SUM_1 ,SUM 0);

inputA_ 4 A3 ,A2 A1,A0;

outputSUM_4_,SUM_3_,SUM_2 ,SUM_1_,SUM_0_;

wire \A[4],\A[3], \A[2], \A[1], \A[O], \SUM[4],\SUM[3],\SUM[2],
\SUMI[1],\SUM[O0], \carry[4], \carry[3], \carry[2] ;

assigh\A[4] =A 4 ;

assign \A[3] =A 3 ;

assigh \A[2] =A 2 ;

assigh\A[1] =A 1 ;

assign \A[0] =A O _;

assigh SUM_4_=\SUM[4];

assigh SUM_3_ =\SUM[3];

assigh SUM_2_=\SUM[2];

assign SUM_1_=\SUM[1];

assign SUM_0_ =\SUMI[O0] ;

ADDHX1 U1_1 3 (.A(\A[3]), .B(\carry[3]), .CO(\carry[4]), .S(\SUM[3]));
ADDHX1 U1_1 2 (.A(\A[2]), .B(\carry[2]), .CO(\carry[3]), .S(\SUM[2]));
ADDHX1 U1_1 1 (.A(\A[1]), .B(\A[O]), .CO(\carry[2]), .S(\SUM[1]));
XOR2X1 U1 (.A(\carry[4]), .B(\A[4]), .Y(\SUM[4]));
INVX8 U2 (.A(\A[O]), .Y(\SUMI[O]));

endmodule

module counter_ 2 DWO01 inc 0O(A 4 ,A3 ,A 2 ,A 1 ,A 0 ,SUM 4 ,SUM 3,
SUM_2_,SUM_1_,SUM_0_);
inputA_4 ,A 3 ,A2 A1 ,A0;
output SUM_4_,SUM_3_,SUM_2_,SUM_1_,SUM_O0_;
wire \A[4],\A[3],\A[2],\A[1], \A[O], \SUM[4],\SUM[3],\SUM[2],

36

37

\SUM([1],\SUM[O0], \carry[4] , \carry[3], \carry[2] ;
assigh\A[4] =A 4 ;
assign \A[3] =A 3 ;
assighn \A[2] =A 2 ;
assigh\A[1] =A 1 ;
assign \A[0] =A O_;
assigh SUM_4_=\SUM[4];
assign SUM_3_ =\SUM[3];
assigh SUM_2_ =\SUM[2];
assign SUM_1_=\SUM[1];
assign SUM_0_ =\SUMI[O0] ;

ADDHX1 U1_1 3 (.A(\A[3]), .B(\carry[3]), .CO(\carry[4]), .S(\SUM[3]));
ADDHX1 U1_1 2 (.A(\A[2]), .B(\carry[2]), .CO(\carry[3]), .S(\SUM[2]));
ADDHX1 U1_1 1 (.A(\A[1]), .B(\A[O]), .CO(\carry[2]), .S(\SUM[1]));
XOR2X1 U1 (.A(\carry[4]), .B(\A[4]), .Y(\SUM[4]));
INVX8 U2 (.A(\A[O]), .Y(\SUMI[O]));

endmodule

module counter_0 (count_up, reset_n, init_count_4_, init_count_3_,
init_count_2_, init_count_1_, init_count_0_, count_4_, count_3_,
count_2 ,count_1 ,count 0_);
input count_up, reset_n, init_count_4_, init_count_3_, init_count_2_,
init_count_1_, init_count_0_;
output count_4_, count_3_, count_2_, count_1_, count_O_;
wire N7, N8, N9, N10, N11, N12, N13, N14, N15, N16, n9, n10, n3, n4;

DFFSRX1 pre_count_reg 0_(.D(N12), .CK(count_up), .RN(reset_n), .SN(1'b1),
.Q(count_0_));

DFFSRX1 pre_count_reg 1 (.D(N13), .CK(count_up), .RN(1'b1), .SN(reset_n),
.Q(count_1));

DFFSRX1 pre_count_reg 2 (.D(N14), .CK(count_up), .RN(reset_n), .SN(1'b1),
.Q(count_2));

DFFSRX1 pre_count_reg 3 (.D(N15), .CK(count_up), .RN(reset_n), .SN(1'b1),
.Q(count_3), .QN(n9));

DFFSRX1 pre_count_reg 4 (.D(N16), .CK(count_up), .RN(reset_n), .SN(1'b1),
.Q(count_4), .QN(n10));

AND2X1 U8 (.A(N11), .B(n3), .Y(N16));

AND2X1 U9 (.A(N10), .B(n3), .Y(N15));

AND2X1 U10 (.A(N9), .B(n3), .Y(N14));

AND2X1 U11 (.A(N8), .B(n3), .Y(N13));

AND2X1 U12 (.A(N7), .B(n3), .Y(N12));

NAND4X1 U13 (.A(count_1), .B(count_0_), .C(count_2), .D(n4), .Y(n3));

NOR2X1 U14 (.A(n9), .B(n10), .Y(n4));

counter_0_DWO1_inc_0add 37 (.A_4 (count_4),.A_3 (count_3),
A 2 (count_2),.A 1 (count_1),.A 0 (count_0), .SUM 4 (N11),
.SUM_3 (N10), .SUM_2_(N9), .SUM_1_(N8), .SUM_0_(N7));

38

endmodule

module counter_1 (count_up, reset_n, init_count_4_, init_count_3_,
init_count_2_, init_count_1_, init_count_0_, count_4_, count_3_,
count_2 ,count_1 ,count 0_);
input count_up, reset_n, init_count_4_, init_count_3_, init_count_2_,
init_count_1_, init_count_0_;
output count_4_, count_3_, count_2_, count_1_, count_O_;
wire N7, N8, N9, N10, N11, N12, N13, N14, N15, N16, n9, n10, n3, n4;

DFFSRX1 pre_count_reg 0_(.D(N12), .CK(count_up), .RN(1'b1), .SN(reset_n),
.Q(count_0_));
DFFSRX1 pre_count_reg 1 (.D(N13), .CK(count_up), .RN(reset_n), .SN(1'b1),
.Q(count_1));
DFFSRX1 pre_count_reg 2 (.D(N14), .CK(count_up), .RN(reset_n), .SN(1'b1),
.Q(count_2));
DFFSRX1 pre_count_reg 3 (.D(N15), .CK(count_up), .RN(reset_n), .SN(1'b1),
.Q(count_3), .QN(n9));
DFFSRX1 pre_count_reg 4 (.D(N16), .CK(count_up), .RN(reset_n), .SN(1'b1),
.Q(count_4), .QN(n10));
AND2X1 U8 (.A(N11), .B(n3), .Y(N16));
AND2X1 U9 (.A(N10), .B(n3), .Y(N15));
AND2X1 U10 (.A(N9), .B(n3), .Y(N14));
AND2X1 U11 (.A(N8), .B(n3), .Y(N13));
AND2X1 U12 (.A(N7), .B(n3), .Y(N12));
NAND4X1 U13 (.A(count_1), .B(count_0_), .C(count_2), .D(n4), .Y(n3));
NOR2X1 U14 (.A(n9), .B(n10), .Y(n4));
counter_1 DWO1 _inc_0add 37 (.A_4 (count_4),.A_3 (count_3),
A 2 (count_2),.A 1 (count_1),.A 0 (count_0_),.SUM 4 (N11),
.SUM_3 (N10), .SUM_2_(N9), .SUM_1_(N8), .SUM_0_(N7));
endmodule

module counter_2 (count_up, reset_n, init_count_4_, init_count_3_,
init_count_2_, init_count_1_, init_count_0_, count_4_, count_3_,
count_2 ,count_1 ,count 0_);
input count_up, reset_n, init_count_4_, init_count_3_, init_count_2_,
init_count_1_, init_count_0_;
output count_4_, count_3_, count_2_, count_1_, count_O_;
wire N7, N8, N9, N10, N11, N12, N13, N14, N15, N16, n7, n10, n3, n4;

DFFSRX1 pre_count_reg 0_(.D(N12), .CK(count_up), .RN(reset_n), .SN(1'b1),
.Q(count_0));

DFFSRX1 pre_count_reg 1 (.D(N13), .CK(count_up), .RN(reset_n), .SN(1'b1),
.Q(count_1));

DFFSRX1 pre_count_reg 2 (.D(N14), .CK(count_up), .RN(reset_n), .SN(1'b1),
.Q(count_2));

DFFSRX1 pre_count_reg 3 (.D(N15), .CK(count_up), .RN(reset_n), .SN(1'b1),
.Q(count_3), .QN(n10));

DFFSRX1 pre_count_reg 4 (.D(N16), .CK(count_up), .RN(reset_n), .SN(1'b1),
.Q(count_4), .QN(n7));

AND2X1 U8 (.A(N11), .B(n3), .Y(N16));

AND2X1 U9 (.A(N10), .B(n3), .Y(N15));

AND2X1 U10 (.A(N9), .B(n3), .Y(N14));

AND2X1 U11 (.A(N8), .B(n3), .Y(N13));

AND2X1 U12 (.A(N7), .B(n3), .Y(N12));

NAND4X1 U13 (.A(count_1), .B(count_0_), .C(count_2), .D(n4), .Y(n3));

NOR2X1 U14 (.A(n10), .B(n7), .Y(n4));

counter_2 DWO1_inc_0add 37 (.A_4 (count_4),.A_3 (count_3),
A 2 (count_2),.A 1 (count_1),.A 0 (count_0_),.SUM 4 (N11),
.SUM_3 (N10), .SUM_2_(N9), .SUM_1_(N8), .SUM_0_(N7));

endmodule

module circular_buffer (clk, reset_n, tv_base_addr_22 ,tv_base_addr 21 ,
tv_base_addr_20_, tv_base_addr_19 , tv_base_addr_18 , tv_base_addr_17_,
tv_base_addr_16 ,tv_base_addr_15 ,tv_base_addr_14 ,tv_base_addr_13 ,
tv_base_addr_12 ,tv_base_addr_11 ,tv_base_addr_10 ,tv_base addr 9 _,
tv_base_addr_8 ,tv_base_addr_7 ,tv_base addr_6_,tv_base addr 5,
tv_base_addr_4 ,tv_base_addr_3 ,tv_base addr 2 ,tv _base addr_ 1 ,
tv_base_addr_0_, tv_enable, software_finished, software_base_addr_22_,
software_base_addr_21 , software_base_addr_20_, software_base_addr_19 ,
software_base_addr_18 , software_base_addr_17_, software_base_addr_16 _,
software_base_addr_15_, software_base_addr_14_, software_base_addr_13 _,
software_base_addr_12 , software_base_addr_11 , software_base_addr_10_,
software_base_addr_9 _, software_base_addr_8 , software_base_addr_7_,
software_base_addr_6_, software_base_addr_5_, software_base_addr_4 _,
software_base_addr_3_, software_base_addr_2 , software_base_addr_1 _,
software_base_addr_0_, software_ready, vga_base_addr_22 _,
vga_base_addr_21 ,vga base addr_20_, vga_base_addr_19 ,
vga_base_addr_18 ,vga base addr_17_,vga_ base_addr_16_,
vga_base_addr_15 , vga base addr_14 ,vga base_addr 13 ,
vga_base_addr_12 ,vga base addr_11 ,vga base_addr_10 ,
vga_base_addr_9 ,vga base addr 8 ,vga base_addr_7 ,vga base_addr 6 _,
vga_base_addr_5 ,vga base addr 4 ,vga base_addr_3 ,vga base_addr_2_,
vga_base_addr_1 ,vga base addr 0_);

input clk, reset_n, software_finished;

output tv_base_addr_22 ,tv_base_addr_21 , tv_base_addr_20_,
tv_base_addr_19 , tv_base _addr_18 ,tv_base addr_17_,
tv_base_addr_16 , tv_base _addr_15_, tv_base addr_14 _,
tv_base_addr_13 , tv_base _addr_12 ,tv_base addr_11 ,
tv_base_addr_10_, tv_base_addr_9 ,tv_base addr_8 ,tv_base addr 7_,
tv_base_addr_6_,tv_base_addr 5 ,tv_base addr_4_ ,tv_base addr 3,
tv_base_addr_2 ,tv_base_addr_1 ,tv_base addr_0_, tv_enable,
software_base_addr_22 , software_base_addr_21 ,

39

40

software_base_addr_20_, software_base_addr_19 _,
software_base_addr_18 , software_base_addr_17_,
software_base_addr_16_, software_base_addr_15_,
software_base_addr_14_, software_base_addr_13 _,
software_base_addr_12_, software_base_addr_11 ,
software_base_addr_10_, software_base_addr_9_, software_base_addr_8 ,
software_base_addr_7_, software_base_addr_6_, software_base_addr_5_,
software_base_addr_4_, software_base_addr_3_, software_base_addr_2 _,
software_base_addr_1_, software_base_addr_0_, software_ready,
vga_base_addr_22 ,vga base _addr_21 ,vga base addr_20_,
vga_base_addr_19 ,vga base _addr_18 ,vga base addr_17_,
vga_base_addr_16 ,vga base _addr_15 , vga base addr_14 _,
vga_base_addr_13 ,vga base _addr_12 ,vga base addr_11 ,
vga_base_addr_10_, vga base_addr_9 , vga base_addr_8 ,
vga_base_addr_7 ,vga base addr_6_,vga_base_addr_5_,
vga_base_addr_4 ,vga base addr_3 ,vga_base_addr 2 ,
vga_base_addr_1 ,vga base addr O_;

wire next_state;

assign vga_base_addr_0_=1'b0;

assign vga_base_addr_1_ =1'b0;

assign vga_base_addr_2 =1'b0;

assign vga_base_addr_3_ =1'b0;

assign vga_base_addr_4_=1'b0;

assign vga_base_addr_ 5 =1'b0;

assign vga_base_addr_6_=1'b0;

assign vga_base_addr_7_=1'b0;

assign vga_base_addr_8 =1'b0;

assign vga_base_addr_ 9 =1'b0;

assign vga_base_addr_10_ =1'b0;

assign vga_base_addr_11 =1'b0;

assign vga_base_addr_12 =1'b0;

assign vga_base_addr_13 = 1'b0;

assign vga_base_addr_14_ =1'b0;

assign vga_base_addr_15_ =1'b0;

assign vga_base_addr_16_ = 1'b0;

assign vga_base_addr_22 =1'b0;

assign software_base_addr_0_ =1'b0;

assign software_base_addr_1_ =1'b0;

assign software_base_addr_2_=1'b0;

assign software_base_addr_3_=1'b0;

assign software_base_addr_4_=1'b0;

assign software_base_addr_ 5 =1'b0;

assign software_base_addr_6_=1'b0;

assign software_base_addr_7_=1'b0;

assign software_base_addr_8 =1'b0;

assign software_base_addr_9_=1'b0;

assign software_base_addr_10_=1'b0;

assign software_base_addr_11_ =1'b0;

41

assign software_base_addr_12_=1'b0;
assign software_base_addr_13_=1'b0;
assign software_base_addr_14_ =1'b0;
assign software_base_addr_15_=1'b0;
assign software_base_addr_16_ = 1'b0;
assign software_base_addr_22 =1'b0;
assign tv_base_addr_0_=1'b0;

assign tv_base_addr_1_ =1'b0;

assign tv_base_addr_2_ =1'b0;

assign tv_base_addr_3_=1'b0;

assign tv_base_addr_4_=1'b0;

assign tv_base_addr_5_ =1'b0;

assign tv_base_addr_6_=1'b0;

assign tv_base_addr_7_=1'b0;

assign tv_base_addr_8 =1'b0;

assign tv_base_addr_ 9 =1'b0;

assign tv_base_addr_10_=1'b0;

assign tv_base_addr_11_=1'b0;

assign tv_base_addr_12_=1'b0;

assign tv_base_addr_13_ =1'b0;

assign tv_base_addr_14_=1'b0;

assign tv_base_addr_15_=1'b0;

assign tv_base_addr_16_ = 1'b0;

assign tv_base_addr_22_ =1'b0;

assign next_state = software_finished;

SDFFSRX1 curr_state_reg (.D(next_state), .SI(1'b0), .SE(1'b0), .CK(clk),
.SN(1'b1), .RN(reset_n), .Q(software_ready), .QN(tv_enable));

counter_2 f0 (.count_up(software_ready), .reset_n(reset_n),
.init_count_4_(1'b0), .init_count_3_(1'b0), .init_count_2 (1'b0),
.init_count_1_(1'b0), .init_count_0_(1'b0),
.count_4_(vga_base_addr_21), .count_3 (vga_base_addr_20),
.count_2 (vga_base_addr_19), .count_1 (vga_base_addr_18),
.count_0_(vga_base_addr_17));

counter_1 f1 (.count_up(software_ready), .reset_n(reset_n),
.init_count_4_(1'b0), .init_count_3_(1'b0), .init_count_2 (1'b0),
.init_count_1_(1'b0), .init_count_0_(1'b1),
.count_4_(software_base_addr_21), .count_3_(software_base_addr_20),
.count_2_(software_base_addr_19), .count_1_(software_base_addr_18),
.count_0_(software_base_addr_17_));

counter_0 f2 (.count_up(software_ready), .reset_n(reset_n),
.init_count_4_(1'b0), .init_count_3_(1'b0), .init_count_2 (1'b0),
.init_count_1 (1'b1), .init_count_0_(1'b0),
.count_4_(tv_base_addr_21), .count_3_(tv_base_addr_20),
.count_2 (tv_base_addr_19), .count_1 (tv_base_addr_18),
.count_0_(tv_base_addr_17_));

endmodule

E.4 Command log file for Encounter — encounter.cmd

HHHHHHHH R R R R R

#
Encounter Command Logging File
Created on Fri Apr 13 10:40:40 2012
#

HHHHAHHHHHHH R R R R

#@ (#)CDS: Encounter v09.11-s084_1 (32bit) 04/26/2010 12:41 (Linux 2.6)

#@ (#)CDS: NanoRoute v09.11-s008 NR100226-1806/USR63-UB (database version 2.30, 93.1.1)
{superthreading v1.14}

#@ (#)CDS: CeltlC v09.11-s011_1 (32bit) 03/04/2010 09:23:40 (Linux 2.6.9-78.0.25.ELsmp)

#@ (#)CDS: CTE 09.11-s016_1 (32bit) Apr 8 2010 03:34:50 (Linux 2.6.9-78.0.25.ELsmp)

#@ (#)CDS: CPE v09.11-s023

getenv ENCOUNTER_CONFIG_RELATIVE_CWD

setDoAssign

getloFlowFlag

setUIVar rda_Input rel_c_thresh 0.01

setUIVar rda_Input ui_gndnet GRND

setUIVar rda_Input ui_cts_cell_list {buf inv}

setUIVar rda_Input ui_timingcon_file Synthesized/circular_buffer.sdc
setUIVar rda_Input ui_leffile {/EDA/kits/gpdk_MIET_2.0/GSCLib_3.0/lef/GSCLib_3.0.lef
/EDA/kits/gpdk_MIET_2.0/GSCLib_IO_1.4/lef/GSCLib_l0.lef}
setUIVar rda_Input ui_timelib {/EDA/kits/gpdk MIET_2.0/GSCLib_10_1.4/timing/GSCLib_10.lib
/EDA/kits/gpdk_MIET_2.0/GSCLib_3.0/timing/GSCLib_3.0.lib}
setUIVar rda_Input ui_netlist {Synthesized/circular_buffer.v
J/EDA/kits/gpdk_MIET_2.0/GSCLib_3.0/verilog/GSCLib_3.0_stub.v}
setUIVar rda_Input ui_topcell circular_buffer

setUIVar rda_Input ui_rel_c_thresh 0.01

setUIVar rda_Input ui_pwrnet POWR

commitConfig

fit

setDrawView fplan

getloFlowFlag

setFPlanRowSpacingAndType 0.66 1

setBottomloPadOrient R180

setloFlowFlag 0

floorPlan -site CORE -r 0.1 0.7 20 20 20 20

uiSetTool select

getloFlowFlag

fit

addRing -spacing_bottom 1 -width_left 5 -width_bottom 5 -width_top 5 -spacing_top 1 -layer_bottom

42

Metall -stacked_via_top_layer Metal6 -width_right 5 -around core -jog_distance 0.33 -offset_bottom 2

-layer_top Metall -threshold 0.33 -offset_left 2 -spacing_right 1 -spacing_left 1 -offset_right 2 -

offset_top 2 -layer_right Metal2 -nets {GRND POWR } -stacked_via_bottom_layer Metall -layer_left

Metal2

43

addStripe -block_ring_top_layer_limit Metal3 -max_same_layer_jog_length 0.6 -
padcore_ring_bottom_layer_limit Metall -set_to_set_distance 100 -stacked_via_top_layer Metal6 -
padcore_ring_top_layer_limit Metal3 -spacing 1 -xleft_offset 100 -xright_offset 100 -
merge_stripes_value 0.33 -layer Metal2 -block_ring_bottom_layer_limit Metall -width 2 -nets {GRND
POWR } -stacked_via_bottom_layer Metall

getMultiCpuUsage -localCpu

setPlaceMode -fp false

placeDesign -prePlaceOpt

setDrawView place

getloFlowFlag

clearGlobalNets

globalNetConnect GRND -type pgpin -pin GRND -inst *

globalNetConnect POWR -type pgpin -pin POWR -inst *

clearGlobalNets

globalNetConnect GRND -type pgpin -pin GRND -inst *

globalNetConnect POWR -type pgpin -pin POWR -inst *

clearGlobalNets

globalNetConnect GRND -type pgpin -pin GRND -inst *

globalNetConnect POWR -type pgpin -pin POWR -inst *

sroute -connect { blockPin padPin padRing corePin floatingStripe } -layerChangeRange { Metall Metal6 }
-blockPinTarget { nearestRingStripe nearestTarget } -padPinPortConnect { allPort oneGeom } -
checkAlignedSecondaryPin 1 -blockPin uselLef -allowJogging 1 -crossoverViaBottomLayer Metall -
allowLayerChange 1 -targetViaToplLayer Metal6 -crossoverViaTopLayer Metal6 -targetViaBottomLayer
Metall -nets { GRND POWR }

trialRoute -maxRoutelayer 6

setDrawView place

clearClockDomains

setClockDomains -all

timeDesign -preCTS -idealClock -pathReports -drvReports -slackReports -numPaths 50 -prefix
circular_buffer_preCTS -outDir report

setOptMode -fixCap true -fixTran true -fixFanoutLoad false

optDesign -preCTS

clearClockDomains

setClockDomains -all

timeDesign -preCTS -idealClock -pathReports -drvReports -slackReports -numPaths 50 -prefix
circular_buffer_ipo -outDir report

addCTSCellList {CLKBUFX1 CLKBUFX2 CLKBUFX3 INVX1 INVX2 INVX4 INVX8}

clockDesign -genSpecOnly Clock.ctstch

clockDesign -specFile Clock.ctstch -outDir output -fixedInstBeforeCTS

trialRoute -maxRoutelayer 6 -highEffort

setDrawView place

clearClockDomains

setClockDomains -all

timeDesign -postCTS -pathReports -drvReports -slackReports -numPaths 50 -prefix circular_buffer_cts -
outDir report

clearClockDomains

setClockDomains -all

44

timeDesign -postCTS -hold -pathReports -slackReports -numPaths 50 -prefix circular_buffer_postCTShold

-outDir report

setOptMode -fixCap true -fixTran true -fixFanoutLoad false
optDesign -postCTS -drv

clearClockDomains

setClockDomains -all

timeDesign -postCTS -hold -pathReports -slackReports -numPaths 50 -prefix
circular_buffer_postCTShold_ipo -outDir report
getFillerMode -quiet

findCorefFillerCells

findCorefFillerCells

addFiller -cell FILL8 FILL4 FILL2 FILL1 -prefix FILL -markFixed
wroute -multiCpu 2

rcOut -setload circular_buffer.setload

rcOut -setres circular_buffer.setres

rcOut -spf circular_buffer.spf

clearClockDomains

setClockDomains -all

timeDesign -postRoute -pathReports -drvReports -slackReports -numPaths 50 -prefix
circular_buffer.finalsetup -outDir report

clearClockDomains

setClockDomains -all

timeDesign -postRoute -hold -pathReports -slackReports -numPaths 50 -prefix
circular_buffer_postRoute_hold -outDir report

saveNetlist circular_buffer.v

global dbglLefDefOutVersion

set dbglLefDefOutVersion 5.4

defOut -floorplan -netlist -routing output/circular_buffer.def
set dbglLefDefOutVersion 5.4

saveDesign circular_buffer.enc

extractRC

write_sdf -version 2.1 -precision 4 design.sdf

zoomBox -9.733 77.350 350.593 -16.600

uiSetTool ruler

panPage 10

panPage-10

panPage 10

panPage-10

fit

uiSetTool ruler

E.5 Pre CTS Setup Timing Reports (.summary, all.tarpt, .slk files)
-- circular_buffer_preCTS.summary

HEHHEH S HE S
Generated by: Cadence Encounter 09.11-s084 1

OS: Linux x86_64(Host ID 5013-w47)
Generatedon: Fri Apr 13 11:00:25 2012
Command: timeDesign -preCTS -idealClock -pathReports -drvReport...

HHHHAHHHHHHH IR R R R

timeDesign Summary

+ 4 4 + + + + 4
T T T T T T T T

Setup mode| all | reg2reg | in2reg | reg2out | in2out | clkgate |

4 4 + + + + 4
T T T T T T T

| WNS(ns):| 9.859 | N/A | 9.859 | N/A | N/A | N/A |
| TNS(ns):| 0.000 | N/A | 0.000 | N/A | N/A | N/A |
|
|

Violating Paths:] 0 | N/A | 0 | N/A | N/A | N/A |
AllPaths:] 2 | N/A | 2 | N/A | N/A | N/A |

+ 4 4 + + + + 4
T T T T T T T T

| | Real | Total |

| DRVs + + + |

| | Nrnets(terms) | Worst Vio | Nr nets(terms) |
| max.cap | 0(0) | 0.000 | 0(0) |

| max_tran | 0(0) | 0.000 | 0(0) |

| max_fanout | 0(0) | 0o | 0¢(0) |

Density: 70.156%
Routing Overflow: 0.00% H and 0.00% V

-- circular_buffer_preCTS_all.tarpt

HEHHHH
Generated by: Cadence Encounter 09.11-s084 1

OS: Linux x86_64(Host ID 5013-w47)

Generatedon: Fri Apr 13 11:00:25 2012

45

Command: timeDesign -preCTS -idealClock -pathReports -drvReports -slackReports -numPaths
50 -prefix circular_buffer_preCTS -outDir report

HEHHEH S HE S HE

Path 1: MET Setup Check with Pin curr_state_reg/CK

Endpoint: curr_state_reg/D (v) checked with leading edge of 'clk’

Beginpoint: software_finished (v) triggered by leading edge of '@’

Path Groups: {in2reg}

Other End Arrival Time 0.000

- Setup 0.141
+ Phase Shift 10.000
= Required Time 9.859
- Arrival Time 0.000
= Slack Time 9.859
Clock Rise Edge 0.000
+ Input Delay 0.000
= Beginpoint Arrival Time 0.000
Timing Path:
| Instance | Arc | Cell | Slew | Delay | Arrival | Required |
I I | | | | Time | Time |
| + + + + + + |
| | software_finished v | | 0.000 | | 0.000| 9.859 |
| curr_state reg | Dv | SDFFSRX1 | 0.000 | 0.000 | 0.000 | 9.859 |
Clock Rise Edge 0.000
= Beginpoint Arrival Time 0.000

Other End Path:

Instance | Arc | Cell | Slew | Delay | Arrival | Required |
| | | | | Time | Time |

-+
t
| 4 + 4 4 1 1 I
-+
t

| clk A | |0.000| | 0.000| -9.859 |
curr_state_reg | CK~ | SDFFSRX1 | 0.000 | 0.000 | 0.000 | -9.859 |

+
T

Path 2: MET Recovery Check with Pin curr_state_reg/CK

Endpoint: curr_state_reg/RN (*) checked with leading edge of 'clk'
Beginpoint: reset_n (M) triggered by leading edge of '@'

Path Groups: {in2reg}

Other End Arrival Time 0.000

- Recovery 0.068
+ Phase Shift 10.000
= Required Time 9.932
- Arrival Time 0.005
= Slack Time 9.927
Clock Rise Edge 0.000
+ Input Delay 0.000
= Beginpoint Arrival Time 0.000

Timing Path:

47

+
T

Instance | Arc | Cell | Slew | Delay | Arrival | Required |
| | | | Time | Time |

4
T
| 4 4 + + + + |
4
T

| reset_nA | | 0.000 | | 0.000| 9.927 |
curr_state reg | RNA | SDFFSRX1 | 0.012 | 0.005| 0.005| 9.932 |

+
T

Clock Rise Edge 0.000
= Beginpoint Arrival Time 0.000
Other End Path:

+
T

Instance | Arc | Cell | Slew | Delay | Arrival | Required |
| | | | | Time | Time |

-+

t

| 4 + 4 4 1 1 I
-+

t

| clk A | |0.000| | 0.000]| -9.927 |
curr_state_reg | CK~ | SDFFSRX1 | 0.000 | 0.000 | 0.000 | -9.927 |

+
T

-- circular_buffer_preCTS.slk

Format: clock timeReq slackR/slackF setupR/setupF instName/pinName # cycle(s)
@(R)->clk(R) 9.859 */9.859 */0.141 curr_state_reg/D 1
@(R)->clk(R) 9.932 9.927/* 0.068/* curr_state_reg/RN 1

E.6 Hold Time Reports Post CTS (.summary, all.tarpt, .slk files)
-- circular_buffer_postCTSHold.summary

HEHHEH S HE S
Generated by: Cadence Encounter 09.11-s084 1

OS: Linux x86_64(Host ID 5013-w47)
Generatedon: Fri Apr 13 11:05:43 2012
Command: timeDesign -postCTS -hold -pathReports -slackReports -...

HHHHHHHHHHHH IR R R R

timeDesign Summary

+ 4 4 + + + + 4
T T T T T T T

Hold mode | all | reg2reg | in2reg | reg2out | in2out | clkgate |

+ + 4 + + + +

| WNS (ns):| -0.035 | N/A |-0.035 | N/A | N/A | N/A |
| TNS (ns):| -0.038 | N/A |-0.038 | N/A | N/A | N/A |

| ViolatingPaths:] 2 | N/A | 2 | N/A | N/A | N/A |
| AllPaths:] 2 | N/A | 2 | N/A | N/A | N/A |

4 4 + + + + 4
T T T T T T

Density: 69.933%
Routing Overflow: 0.00% H and 0.00% V

-- circular_buffer_postCTSHold_all.tarpt

HEHHEH S HE S HE
Generated by: Cadence Encounter 09.11-s084 1

OS: Linux x86_64(Host ID 5013-w47)
Generated on: Fri Apr 13 11:05:44 2012
Command: timeDesign -postCTS -hold -pathReports -slackReports -numPaths 50 -prefix

circular_buffer_postCTShold -outDir report

HEH S HE S HE
Path 1: VIOLATED Hold Check with Pin curr_state_reg/CK

Endpoint: curr_state_reg/D (*) checked with leading edge of 'clk'
Beginpoint: software_finished (*) triggered by leading edge of '@'

Path Groups: {inclkSrc2reg}

Other End Arrival Time 0.030

+ Hold 0.005
+ Phase Shift 0.000
= Required Time 0.035
Arrival Time 0.000
Slack Time -0.035
Clock Rise Edge 0.000
+ Input Delay 0.000
= Beginpoint Arrival Time 0.000
Timing Path:
| Instance | Arc | Cell | Slew | Delay | Arrival | Required |
I I | | | | Time | Time |
| + + + + + + |
| | software_finished # | | 0.000 | | 0.000| 0.035 |
| curr_state reg | DA | SDFFSRX1 | 0.000 | 0.000 | 0.000| 0.035 |
Clock Rise Edge 0.000
= Beginpoint Arrival Time 0.000

Other End Path:

+
T

| Instance | Arc | Cell | Slew | Delay | Arrival | Required |
| | | | | Time | Time |
|
|
|

4 4 + + + + |
T T T T T

| ek | |0.000| | 0.000| -0.035|
clk_L1.10 |AA->Yv]|INVX8 |0.007|0.017 | 0.017 | -0.018 |

48

|clk_ 1210 |Av->YA|INVX2 |0.011]0.013| 0.030| -0.005 |
| curr_state reg | CK A | SDFFSRX1 | 0.011 | 0.000 | 0.030| -0.005 |

+ +

Path 2: VIOLATED Removal Check with Pin curr_state_reg/CK
Endpoint: curr_state_reg/RN (*) checked with leading edge of 'clk'
Beginpoint: reset_n (M) triggered by leading edge of '@’

Path Groups: {inclkSrc2reg}

Other End Arrival Time 0.030

curr_state reg | RNA | SDFFSRX1 | 0.012 | 0.006 | 0.006 | 0.009 |

+

+ Removal -0.021
+ Phase Shift 0.000
= Required Time 0.009
Arrival Time 0.006
Slack Time -0.003
Clock Rise Edge 0.000
+ Input Delay 0.000
= Beginpoint Arrival Time 0.000
Timing Path:
| Instance | Arc | Cell | Slew | Delay | Arrival | Required |
I | I | | | Time | Time |
| + + + + + + |
| | reset_nA | | 0.000 | | 0.000| 0.003 |
I

Clock Rise Edge 0.000

= Beginpoint Arrival Time 0.000

Other End Path:

| Instance | Arc | Cell | Slew | Delay | Arrival | Required |
I | I | | | Time | Time |

| + + + + + + |

| |k~ | |0.000| | 0.000]| -0.003 |

clk_L110	AA->Yv]	INVX8	0.007	0.017	0.017	0.014
clk_ 1210	Av->YA	INVX2	0.011	0.013	0.030	0.026
curr_state reg	CK A	SDFFSRX1	0.011	0.000	0.030	0.026

4 +
T T

-- circular_buffer_postCTSHold.slk

Format: clock timeReq slackR/slackF holdR/holdF instName/pinName # cycle(s)
@(R)->clk(R) 0.035 -0.035/* -0.005/* curr_state_reg/D 1
@(R)->clk(R) 0.009 -0.003/* 0.021/* curr_state_reg/RN 1

49

50

E.7 In Place Optimization Post CTS to fix hold time violations (.summary, all.tarpt, .slk files)
-- circular_buffer_postCTSHold_ipo.summary

HEHHEH S HE S S
Generated by: Cadence Encounter 09.11-s084 1

OS: Linux x86_64(Host ID 5013-w47)
Generatedon: Fri Apr1311:13:16 2012
Command: timeDesign -postCTS -hold -pathReports -slackReports -...

HHHHAHHHHHHH IR R R H R

timeDesign Summary

+ 4 4 + + + + 4
T T T T T T T

Hold mode | all | reg2reg | in2reg | reg2out | in2out | clkgate |

4 4 + + + + 4
T T T T T T T

| WNS (ns):| -0.035 | N/A |-0.035 | N/A | N/A | N/A |
| TNS (ns):| -0.038 | N/A |-0.038 | N/A | N/A | N/A |

| ViolatingPaths:] 2 | N/A | 2 | N/A | N/A | N/A |
|

AllPaths:] 2 | N/A | 2 | N/A | N/A | N/A |

+ + + + + + +

Density: 69.933%
Routing Overflow: 0.00% H and 0.00% V

-- circular_buffer_postCTSHold_ipo_all.tarpt

HEHHEH S HE S
Generated by: Cadence Encounter 09.11-s084 1

OS: Linux x86_64(Host ID 5013-w47)
Generatedon: Fri Apr1311:13:16 2012
Command: timeDesign -postCTS -hold -pathReports -slackReports -numPaths 50 -prefix

circular_buffer_postCTShold_ipo -outDir report

HEHHEH S S HE S
Path 1: VIOLATED Hold Check with Pin curr_state_reg/CK

Endpoint: curr_state_reg/D (*) checked with leading edge of 'clk'
Beginpoint: software_finished (*) triggered by leading edge of '@'

Path Groups: {inclkSrc2reg}

Other End Arrival Time 0.030

+ Hold 0.005

+ Phase Shift 0.000

51

= Required Time 0.035

Arrival Time 0.000

Slack Time -0.035
Clock Rise Edge 0.000
+ Input Delay 0.000
= Beginpoint Arrival Time 0.000
Timing Path:
| Instance | Arc | Cell | Slew | Delay | Arrival | Required |
I | I | | | Time | Time |
| + + + + + + |
| | software_finished # | | 0.000 | | 0.000| 0.035]
| curr_state reg | DA | SDFFSRX1 | 0.000 | 0.000 | 0.000| 0.035 |
Clock Rise Edge 0.000
= Beginpoint Arrival Time 0.000

Other End Path:

| Instance | Arc | Cell | Slew | Delay | Arrival | Required |
| | | | | Time | Time |

I

I

4 + 4+ + 4 1 |

k		0.000		0.000	-0.035	
clk_L110	AA->Yv	INVX8	0.007	0.017	0.017	-0.018
clk_ 1210	Av->YA	INVX2	0.011]0.013	0.030	-0.005	
curr_state reg	CK A	SDFFSRX1	0.011	0.000	0.030	-0.005

+ +

Path 2: VIOLATED Removal Check with Pin curr_state_reg/CK
Endpoint: curr_state_reg/RN (*) checked with leading edge of 'clk'
Beginpoint: reset_n (M) triggered by leading edge of '@'

Path Groups: {inclkSrc2reg}

Other End Arrival Time 0.030

+ Removal -0.021
+ Phase Shift 0.000
= Required Time 0.009
Arrival Time 0.006
Slack Time -0.003
Clock Rise Edge 0.000
+ Input Delay 0.000
= Beginpoint Arrival Time 0.000
Timing Path:
| Instance | Arc | Cell | Slew | Delay | Arrival | Required |
I | I | | | Time | Time |
| + + + + + + |
| | reset_nA | | 0.000 | | 0.000| 0.003 |

| curr_state_reg | RN~ | SDFFSRX1 | 0.012 | 0.006 | 0.006 | 0.009 |

+ +

Clock Rise Edge 0.000

= Beginpoint Arrival Time 0.000
Other End Path:

+
T

| Instance | Arc | Cell | Slew | Delay | Arrival | Required |
| | | | | Time | Time |
|
|

+ + + + + + |

|k | |0.000| | 0.000| -0.003 |
clk_L110 |AA->Yv|INVX8 |0.007 |0.017 | 0.017| 0.014 |
|clk_ 1210 |Av->YA|INVX2 |0.011|0.013| 0.030| 0.026 |
| curr_state reg | CK A | SDFFSRX1 | 0.011 | 0.000 | 0.030| 0.026 |

4 +
T T

-- circular_buffer_postCTSHold_ipo.slk
Format: clock timeReq slackR/slackF holdR/holdF instName/pinName # cycle(s)
@(R)->clk(R) 0.035 -0.035/* -0.005/* curr_state_reg/D 1

@(R)->clk(R) 0.009 -0.003/* 0.021/* curr_state_reg/RN 1

E.8 Timing Report Post Routing (.summary, all.tarpt, .slk files)
-- circular_buffer_postRoute.summary

HEHHEH S HE S
Generated by: Cadence Encounter 09.11-s084 1

OS: Linux x86_64(Host ID 5013-w47)
Generatedon: Fri Apr 13 11:19:39 2012
Command: timeDesign -postRoute -hold -pathReports -slackReports...

HHHHAHHHHHHH IR R R H R

timeDesign Summary

+ 4 4 + + + + 4
T T T T T T T

Hold mode | all | reg2reg | in2reg | reg2out | in2out | clkgate |

+ 4 4 + + + 4

| WNS (ns):| -0.031 | N/A [-0.031 | N/A | N/A | N/A |
| TNS (ns):| -0.032 | N/A |-0.032 | N/A | N/A | N/A |

52

| Violating Paths:] 2 | N/A | 2 | N/A | N/A | N/A |
| AllPaths:] 2 | N/A | 2 | N/A | N/A | N/A |

4 4 + + + + 4
T T T T T T

Density: 100.000%

-- circular_buffer_postRoute_all.tarpt

HEHHEH S HE S HE
Generated by: Cadence Encounter 09.11-s084 1

OS: Linux x86_64(Host ID 5013-w47)
Generatedon: Fri Apr 13 11:19:39 2012
Command: timeDesign -postRoute -hold -pathReports -slackReports -numPaths 50 -prefix

circular_buffer_postRoute_hold -outDir report

HEHHEH S S
Path 1: VIOLATED Hold Check with Pin curr_state_reg/CK

Endpoint: curr_state_reg/D (*) checked with leading edge of 'clk'
Beginpoint: software_finished (*) triggered by leading edge of '@'

Path Groups: {inclkSrc2reg}

Other End Arrival Time 0.026

+ Hold 0.005
+ Phase Shift 0.000
= Required Time 0.031
Arrival Time 0.000
Slack Time -0.031
Clock Rise Edge 0.000
+ Input Delay 0.000
= Beginpoint Arrival Time 0.000
Timing Path:
| Instance | Arc | Cell | Slew | Delay | Arrival | Required |
I | I | | | Time | Time |
| + + + + + + |
| | software_finished # | | 0.000 | | 0.000| 0.031]
| curr_state reg | DA | SDFFSRX1 | 0.000 | 0.000 | 0.000| 0.031 |
Clock Rise Edge 0.000
= Beginpoint Arrival Time 0.000

Other End Path:

+
T

| Instance | Arc | Cell | Slew | Delay | Arrival | Required |
| | | | | Time | Time |
|
|
|

4 4 + + + + |
T T T T T

|k | |0.000| | 0.000| -0.031]
clk_L1.10 |AA->Yv]|INVX8 |0.007|0.015| 0.015| -0.016 |

53

|clk_ 1210 |Av->YA|INVX2 |0.010|0.012| 0.026| -0.005 |
| curr_state reg | CK A | SDFFSRX1 | 0.010 | 0.000 | 0.026 | -0.005 |

+ +

Path 2: VIOLATED Removal Check with Pin curr_state_reg/CK
Endpoint: curr_state_reg/RN (*) checked with leading edge of 'clk'
Beginpoint: reset_n (M) triggered by leading edge of '@’

Path Groups: {inclkSrc2reg}

Other End Arrival Time 0.026

curr_state reg | RNA | SDFFSRX1 | 0.014 | 0.007 | 0.007 | 0.008 |

+

+ Removal -0.018
+ Phase Shift 0.000
= Required Time 0.008
Arrival Time 0.007
Slack Time -0.001
Clock Rise Edge 0.000
+ Input Delay 0.000
= Beginpoint Arrival Time 0.000
Timing Path:
| Instance | Arc | Cell | Slew | Delay | Arrival | Required |
I I I | | | Time | Time |
| + + + + + + |
| | reset_nA | | 0.000 | | 0.000| 0.001 |
I

Clock Rise Edge 0.000

= Beginpoint Arrival Time 0.000

Other End Path:

| Instance | Arc | Cell | Slew | Delay | Arrival | Required |
I | I | | | Time | Time |

| + + + + + + |

| |k~ | |0.000| | 0.000]| -0.001 |

clk_L110	AA->Yv	INVX8	0.007	0.015	0.015	0.014
clk_ 1210	Av->YA	INVX2	0.010	0.012	0.026	0.025
curr_state reg	CK A	SDFFSRX1	0.010	0.000	0.026	0.025

4 +
T T

-- circular_buffer_postRoute.slk

Format: clock timeReq slackR/slackF holdR/holdF instName/pinName # cycle(s)
@(R)->clk(R) 0.031 -0.031/* -0.005/* curr_state_reg/D 1
@(R)->clk(R) 0.008 -0.001/* 0.018/* curr_state_reg/RN 1

54

E.9 Timing Report Post Final Setup (.summary, all.tarpt, .slk files)
-- circular_buffer_finalsetup.summary

HEHHH
Generated by: Cadence Encounter 09.11-s084 1

OS: Linux x86_64(Host ID 5013-w47)

Generatedon: Fri Apr 13 11:19:22 2012

Command: timeDesign -postRoute -pathReports -drvReports -slackR...

HHHHAHHHHHHH IR R R H R

timeDesign Summary

+ 4 4 + + + + 4
T T T T T T T T

Setup mode | all | reg2reg | in2reg | reg2out | in2out | clkgate |

4 4 + + + + 4
T T T T T T T

| WNS (ns):| 9.870 | N/A | 9.870 | N/A | N/A | N/A |
| TNS (ns):| 0.000 | N/A | 0.000 | N/A | N/A | N/A |
|
|

Violating Paths:] 0 | N/A | 0 | N/A | N/A | N/A |
AllPaths:] 2 | N/A | 2 | N/A | N/A | N/A |

+ 4 4 + + + + 4
T T T T T T T T

| | Real | Total |

| DRVs + + + |

| | Nrnets(terms) | Worst Vio | Nr nets(terms) |
| max.cap | 0(0) | 0.000 | 0(0) |

| max_tran | 0(0) | 0.000 | 0(0) |

| max_fanout | 0(0) | 0o | 0(0) |

+ 4 + +
T T T T

+

Density: 100.000%

-- circular_buffer_finalsetup_all.tarpt

HEHHHH
Generated by: Cadence Encounter 09.11-s084 1

OS: Linux x86_64(Host ID 5013-w47)

Generatedon: Fri Apr 13 11:19:23 2012

55

56

Command: timeDesign -postRoute -pathReports -drvReports -slackReports -numPaths 50 -prefix

circular_buffer.finalsetup -outDir report

HEHHEH S HE S HE
Path 1: MET Setup Check with Pin curr_state_reg/CK

Endpoint: curr_state_reg/D (v) checked with leading edge of 'clk’
Beginpoint: software_finished (v) triggered by leading edge of '@’

Path Groups: {inclkSrc2reg}

Other End Arrival Time 0.026

- Setup 0.156
+ Phase Shift 10.000
= Required Time 9.870
- Arrival Time 0.000
= Slack Time 9.870
Clock Rise Edge 0.000
+ Input Delay 0.000
= Beginpoint Arrival Time 0.000
Timing Path:
| Instance | Arc | Cell | Slew | Delay | Arrival | Required |
I I I | | | Time | Time |
| + + + + + + |
| | software_finished v | | 0.000 | | 0.000| 9.870 |
| curr_state reg | Dv | SDFFSRX1 | 0.000 | 0.000 | 0.000| 9.870 |
Clock Rise Edge 0.000
= Beginpoint Arrival Time 0.000
Other End Path:
| Instance | Arc | Cell | Slew | Delay | Arrival | Required |
I I I | | | Time | Time |
| + + + + + + |
| |k~ | |0.000| | 0.000]| -9.870 |

clk_L110	AA->Yv	INVX8	0.007	0.015	0.015	-9.856
clk_ 1210	Av->YA	INVX2	0.010	0.012	0.026	-9.844
curr_state reg	CK A	SDFFSRX1	0.010	0.000	0.026	-9.844

Path 2: MET Recovery Check with Pin curr_state_reg/CK

Endpoint: curr_state_reg/RN () checked with leading edge of 'clk'
Beginpoint: reset_n (M) triggered by leading edge of '@'

Path Groups: {inclkSrc2reg}

Other End Arrival Time 0.026

- Recovery 0.064
+ Phase Shift 10.000
= Required Time 9.962
- Arrival Time 0.007
= Slack Time 9.955
Clock Rise Edge 0.000

+ Input Delay 0.000

57

= Beginpoint Arrival Time 0.000

Timing Path:

| Instance | Arc | Cell | Slew | Delay | Arrival | Required |
I | I | | | Time | Time |

| + + + + + + |

| | reset_nA | | 0.000 | | 0.000| 9.955 |

| curr_state_reg | RN~ | SDFFSRX1 | 0.014 | 0.007 | 0.007 | 9.962 |

4 +
T T

Clock Rise Edge 0.000
= Beginpoint Arrival Time 0.000
Other End Path:

+
T

| Instance | Arc | Cell | Slew | Delay | Arrival | Required |
| | | | | Time | Time |
|
|

4 4 + + + + |
T T T T T

k		0.000		0.000	-9.955	
clk_L110	AA->Yv	INVX8	0.007	0.015	0.015	-9.940
clk_ 1210	Av->YA	INVX2	0.010	0.012	0.026	-9.928
curr_state reg	CK A	SDFFSRX1	0.010	0.000	0.026	-9.928

4 +
T T

-- circular_buffer_finalsetup.slk
Format: clock timeReq slackR/slackF setupR/setupF instName/pinName # cycle(s)
@(R)->clk(R) 9.870 */9.870 */0.156 curr_state_reg/D 1

@(R)->clk(R) 9.962 9.955/* 0.064/* curr_state_reg/RN 1

E.10 Resulting Integrated Circuit snapshot (from Encounter)

Appendix F: Source Code Section

58

The code can be found tarballed on the server webpage. Here is an index to the files we
modified/created:

Hardware

capstone_main.vhd
hex_display_interface.vhd
sram_interface.vhd
write_to_memory.vhd
read_from_memory.vhd
frame_addressing.vhd
i2c_av_config/i2c_av_config.v
i2c_av_config/i2c_controller.v
video_in/itu_r_656_decoder.v
video_in/video_in.v
video_in/video_in_deinterlacer.v
video_in/video_in_fifo.v
video_in/video_in_resize.v
vga_interface/LineBuffer.v
vga_interface/LineBufferRam.v
vga_interface/process_data_out.vhd
vga_interface/vga_controller.vhd
vga_interface/vga_interface.vhd

process_data_in/data_in_buffer.vhd

process_data_in/process_data_in.vhd
frame_buffer/circular_buffer.vhd
frame_buffer/counter.vhd

frame_buffer/frame_buffer.vhd

* There is also a whole bunch of files generated by SOPC which can be viewed in the SOPC
editor

Software

motion_detection/main.c

motion_detection/main.h

These files are all included in the tarballed file with comments.

59

