CMPE 490 Design Project
Rotationally Refreshed Display

Patrick Boyd
pboyd@ualberta.ca

Tuesdays, Mondays (some), Wednesdays (some)

Daniel Hill
drhill @ualberta.ca
Available all days

Preferred Lab day will be Tuesday

Abstract

The main aim of this project will be to create a working display that consists of a column
of LEDs rotating in a circle around a fixed point. By controlling if a particular LED is on
at a particular point in the circle, we can “draw” an image on what would appear to be a
cylinder. This will be run by a DC motor and information about the rotational speed will
be relayed back to the display hardware located on the spinning apparatus. A sensor will
indicate that the device has completed a full rotation and the time taken to complete the
rotation will be saved. This information will be required to ensure that the LEDs are in
the correct position when they are turned on or off. The display hardware must be self
contained as well; no control wires will be run to the hardware as they would become
twisted in the rotation.

The components on the display must be as lightweight as possible; they will be spinning
quite quickly after all. This means that we can not use the provided ARM board or the
FPGA to control the hardware. Instead a PIC16 micro-controller will be used to control
the LEDs and monitor motor speed. This will all be mounted inside of a plastic shield to
protect people from the very fast spinning components.

Declaration of Original Content
The design elements of this project and report are entirely the original work of the
authors and have not been submitted for credit in any other course except as follows:

Support circuitry for PIC microcontroller taken from [8]
Template for PIC assembly code taken from [8]

Entry and Exit subroutines for ISRs taken from [8]
Format for PROGRAM_Read subroutine from [10]
p16873a.inc Library from [10]

Support circuitry for Hall Sensor taken from [4]

Table of Contents

Abstract 2
Function Requirements of Project 4
Design and Description of Operation 4
Parts List 6
Datasheet 9
Software Design 10
Test Plan 13
Results of Experiments and Characterization 15
Citations 16
Appendix 17
Quick Start Manual 17
Future Work 17
Hardware Schematics 19
Source Code 20

Function Requirements of Project
The main functional requirements of this project will be a working rotationally refreshed
display. This will be defined as an apparatus that can:
1) Display an image upon what appears to be a cylinder by rotating a column of
LEDs in a circle with the same radius as the perceived cylinder
2) Able to display text that marquess around the perimeter of the display.
3) Able to display graphics and simple animations.

Design and Description of Operation

The spinning arm will be mounted inside of a 5 gallon plastic water bottle that will act as
a shield between the device and any users. The diameter of the plastic bottle is 0.254m.
From tests done on the motor with the full arm assembly attached, it reached a maximum
speed of roughly 630RPM. Assuming an arm length of 0.127m, the tangential velocity of
the LEDs is 8.37m/s. This speed is well below our ideal speed of 1800RPM. However, it
is still sufficiently fast for persistence of vision effects to occur. The major side effect of
the lower speed is a flashing quality to the display.

The height of each pixel as determined from the soldering is 3.5mm. To achieve an ideal
pixel aspect ratio of 1:1, we would need to turn on the LEDs for each pixel for 3.5mm as
the arm swings. This means that with a radius of 0.127m we would have room for 228
pixels, or a little over 28 characters (assuming a 8x8 area for each character). However, in
the interests of saving clock cycles for the PIC, we made the display 256 pixels wide.
This results in a pixel width of 3.117mm and an aspect ratio of 0.891:1, which is still an
acceptable size for the pixels.

With a tangential speed of 8.37m/s and a pixel width of 3.117mm, the length of time that
each column of pixels needs to be turned on is 3.72%10™s. Since the external oscillator we
are using has a frequency of 4MHz which is then divided by 4 internally by the PIC, this
corresponds to 372 clock cycles per pixel column. The software as it stands now, takes
about 80-90 cycles to output data to the LED drivers, and 40-60 to load new data from
Program memory into registers. This leaves more than 100 cycles to spare per column of
pixels.

Static Operation —-When the PIC is programmed, code and data is loaded into the non-
volatile memory of the PIC microcontroller. The code that runs on the microcontroller
then sequentially moves through the data stored in memory, calling subroutines to draw
the data to the display. The data is a preset buffer structure consisting of a series of
graphical objects, either strings or pictures, encoded into a data format used by the
display subroutines, that are to be displayed. When a new graphical object is loaded, an
offset into memory is initialized to the start of that object. Then for each column of
pixels, the data stored at that memory address is loaded into registers, then the LEDs are
turned on and off based on the contents of those registers. After a delay, an positional
offset is incremented, which shifts the position of the displayed string or picture around
the display.

LED Brightness Calculations
Maximum LED Brightness @150mA, 25°C, 0° viewing angle=7.2Im

Relative Luminous Intensity @75mA, 25°C, 0° viewing angle = 0.6lm
Relative Luminous Intensity @ 2mA, 25°C, 0° viewing angle = 0.005Im

Swing arm radius = 11.5cm

LED diameter = 2.6mm

Relative Brightness of a spinning pixel:
(PixelDiameter / 21mr) * MaxBright * RelativeRatio
@75mA, 25°C, 0° viewing angle = 0.01512Im

Brightness of a stationary pixel:
MaxBright * RelativeRatio
Relative Luminous Intensity @ 2mA, 25°C, 0° viewing angle = 0.0361Im

Ratio of spinning to stationary = 0.42

So we can see that by increasing the current we can ensure that the brightness of the
spinning pixelswill be about half of the stationary ones.

Parts List

Parts ordered from DigiKey:

http://www.digikey.com/

DC Motor - salvaged from past project.
2 Line Commutator - salvaged from past project.

Motor Base and Power Connections - salvaged from past project.

Bright LEDs — We have chosen 20 bright “hyper orange” LEDs.

Part No: 754-1382-1-ND

Price: 1.08 each

Quantity: 20

Data Sheet: http://www kingbrightusa.com/images/catalog/SPEC/AA3535SEL1Z1S.pdf

Reason for Choice: These are cheap, easily visible and with a wide viewing angle. There
were green LEDS that were brighter, but were 4.50 a piece. The specs for these come out
at 9 lumens, which should be plenty bright.

Update: Upon testing to see how bright these are, their maximum output is almost painful
to look at directly.

Hall Effect Sensor — This is a new choice, but due to their application in use with velocity
sensors in industry I feel this is a safe choice for our project. I have also been researching
similar projects on the Internet and a kit like version of this uses a hall effect sensor.
Which is where I got the idea. We will place a magnet just outside of the radius of the
swing arm and this should trigger only at that point.

Part No: TLE4906LINCT-ND
Price: 2.00 each
Quantity: 2

Data Sheet: TLE4906LINCT-ND Datasheet

Reason for Choice: This is a hall effect switch. As opposed to a latch, this will only
provide current when the sensor is in the presence of a magnetic field that is stronger than
the earth's is applied. The field required is not so strong that a fridge magnet or maybe a
bit stronger won't do the job though.

PIC16 Microcontroller — We do not need anything particularly heavy duty. Just
something to turn on our LEDs with respect to how fact the device thinks it's going. A
PIC is a perfect choice for this, the static operation information can be pre-loaded into
non-volatile memory or we can connect this to a wireless device.

Part No: PIC16F873A-1/SP-ND

Price: 5.72 a piece
Quantity: 2
Data Sheet: http://ww1.microchip.com/downloads/en/DeviceDoc/39582b.pdf

Reason for Choice: I was looking for something with the DIP package and quite a few 10
channels so each of the LEDs could be connected to it's own individual line. Everything
else on this chip is pretty standard and will work fine for our purposes.

PICStartPlus Development Programmer
Data Sheet: http://ww1.microchip.com/downloads/en/DeviceDoc/51028f.pdf

Reason for Choice: This programmer was chosen because it was what Ed Tiong had in
stock for us to use. It was also compatible with the PIC we were using.

LED Drivers — These are used to control the state of the LEDs and to drive appropriate
current to them.

Part No: 620-1165-5-ND

Price: 1.86

Quantity: 4

Data Sheet: http://www.allegromicro.com/en/Products/Part Numbers/6278/6278.pdf

Reason for Choice: High output current and allows up to 8 LEDs to be driven. As well as
supporting a wide range of input voltages and output currents.

We also required a variety of small capacitors and resistors as well as a 4MHz external
oscillator, all of which were acquired from the stores provided in the lab and from the
store room.

DataSheet

Parameter Symbol Operation Unit Conditions
~ Values 'S
Supply Vce Min Max V Recommended 5V, as DC
Voltage 3 5 motor is connnected to same
supply
Supply Intotor Min Max A If the motor stalls, it will attempt
Current 1.24 >3 to draw more current than the
lab supplies can provide. The
DC Motor min value occurs when the
motor is at speed and
ecountering it's lowest friction.
Circuit Ic Min Max A Max occurs when all LEDs are
0.02 093 on simultaneously. Min is all
off.
Power Poie 6.3 W P =(0.02A + 1.24A)(5V) =
Consumption 6.3W
Idle
Max (Motor Puax 10.85 W P=(093 A+1.24 A)(5V) =
at constant 10.85
speed of ~630
rpm)
Device Line Signals Function Direction
PIC16F 2 LED Serial VCC —High @ These lines will be Output
Data Interface Gnd - Low read into the shift
Lines register in each LED
driver
1 LED Driver VCC - High @ Controls the rate at Output
Clock Gnd - Low which the LED

driver shifts in new
signals to it's shift
register

1 LED Latch VCC - High Allows the shift Output
Enable Gnd -Low register to read the

Serial Data Interface

Lines
1 IRQ/Interrupt VCC —High Will connect to the Input

Gnd -Low hall effect sensor and

call an interrupt

routine to adjust the

speed variable

Software Design
The software design for our project can be broken down into 3 major components: the
main process loop, the external hall sensor triggered interrupt and the internal timer

interrupt.

Main Process Loop

This is the process that is running in the background at all times in our project. Its two
main responsibilities are to ensure that the data needed to be displayed for each column is
present in the assigned registers, and updating positional offest to ensure the object to be
displayed scrolls across the screen. It is also responsible for switching to a new object
whenver that is needed.

When a column of pixels has been sent to the LED drivers by the timer interrupt, a bit in
a user-defined status register is set high. The main process loop polls this bit, and when it
is high, the main loop calculates which memory location to access. This is based on a
base address for the current object, the positional offset of the displayed object and the
current column that is being drawn. It then goes into program memory using a
subroutine, stores the data there into the registers and clears the status bit.

When a certain number of rotations of the arm have passed, the main loop also will
increment a positional offset stored in a register. As this offset grows, the position where
the current object will begin to be drawn is shifted across the display. Since our display is
256 pixels wide, when this register overflows, it will return to the starting position.

10

External Interrupt Handler

The external interrupt is triggered by the Hall Effect Sensor passing within range of the
magnet mounted on the protective shield. Therefore it will run once per rotation of the
swing arm. Its primary purpose is to calculate the speed of the motor and set the timing of
the pixel columns accordingly.

It calculates the speed of the motor through the use of an onboard 16-bit timer. This timer
uses a prescaler that scales the clock input 2:1. This adjusts the range of timings that the
timer can measure to a range that the motor actually runs at. This also sets a minimum
rotational speed for the motor. If the motor falls below 457RPM the 16-bit timer will
overflow before the external interrupt is triggered causing undesired behaviour. The
current value of the timer is stored in two registers. Since there are 256 pixels that these
cycles need to be divided amongst, we simply take the high register as our value. This
register is equal to half the number of cycles that each column of pixels gets. This value
is subtracted from 256 to determine the starting value of the 8-bit timer used to control
the column timing. Finally the timers are reset and the rotations counter is incremented.

Internal Timer Interrupt

This internal interrupt is triggered when the onboard 8-bit timer, with a starting value
calculated in the external interrupt hander, overflows. This signals to the processor that a
new column of pixels needs to be sent to the LED drivers. This handler calls an output
subroutine to send new data out, resets the 8-bit timer to the base value calculated in the
external handler, and sets a status bit to indicate to the main loop that a new column
needs to be loaded.

11

Timing Diagram:

PROGRAM TMR ISR OUTPUT PROGRAM TMR_ISR OUTPUT
EXT ISR Read ‘_ ‘ Read ‘ ‘
]
MamLoop
Maguet Passed Magnet Passed

Data Flow Diagram:

MainLoo
P PROGRAM _Read

Magnet
Passed pRotations

EXT_ISR TMR_ISR
TMR_Base >

L Data

Output

12

Initalization and Data Storage

The PIC requires a large number of register to be initialized for its peripherals. For this
project we must initialize the control registers for external and peripheral interrupts,
Timer(O and Timer1, and for the EEPROM memory. This is all done at the start of the
program code, before the main loop is entered into for the first time.

The data is stored in memory as a series of 8-bit short integers. Each bit corresponds to
one LED on the LED driver that it is being sent to. Since the characters are 8 pixels high,
and 8 pixels wide, the are stored as 8 short ints. Graphics can also be stored this way

using alternating short ints for the high and low LED banks. All of these values must be
hard coded onto the PIC beforehand.

Test Plan

Software:

For the software we will do incremental tests, with each one adding a new layer of
functionality.

Test 1: Stationary Line

Draw a stationary vertical line where the hall sensor passes the magnet.

Test 2: 4 Stationary Lines

Draw 4 lines quartering the display.

Test 3: Stationary Test Pattern

Draw a stationary test pattern that fills the entire display.

Test 4: Draw Stationary Message

Draw a message loaded from memory, that doesn't move.

Test 5: Draw a Scrolling Message
Draw a message from memory that marquees around the display.

13

Hardware:

For the hardware, we will test each stage of the circuit from the operations of the LEDs to
the ability of the PIC to accurately send out control signals.

LEDs: We will first test the correct operation of the LEDs by providing them with enable
signals independent of the PIC to ensure that they will turn on and off, given the correct
enable signal.

Status: All of the LEDs have been properly connected to their array and are functional.

LED Driver: A test rig will be assembled to provide the clock and input signals to the
LED driver. This will be connected to the LED array and will be checked with various
configurations of the LED output to ensure that all of the LEDs are working with the
driver. This test also aims to prove that the LED drivers are working before we connect
them to the PIC microcontroller.

Status: Both drivers provided the expected functionality once wired to the LED arrays.

PIC: Once we are sure that the LEDs and the LED drivers are operating correctly; we will
attach the PIC and test some sample output signals to test whether the PIC can correctly
output control signals to the LEDs. A second item used to test was a software based
PIC16 simulator we obtained from the internet. We could run our PIC software and
monitor the output much easier than doing it in hardware. Once the code was verified to
work in software, we could port it over to the hardware.

Hall Sensor: We have already constructed a simple ciruit consisting of a hall sensor
attached to an LED to see the hall sensor in action. This worked fine, and also showed us
the range that was required of the hall sensor for a weak magnet (1-2cm away minimum).
Further tests will be undertaken with stronger magnets.

It is difficult to test whether the hall sensor is accurately measuring the rotational speed
of the motor directly. However, if the sensor is not providing accurate measurements, the
test case for drawPixel will fail, as a vertical line will not be able to be maintained
without a horizontal translation.

14

Results of Experiments and Characterization
Software Tests:

All tests succesfully completed. After test number 4, the size of the characters was
reduced from 16x8 to 8x8. This was due to the protective shielding having a opaque strip
that made reading the 16 pixel high characters difficult.

Test of LEDs:
The LEDs were soldered to the frame that will be attached to the spinning arm.
With 75mA they were sufficiently bright to be seen from a distance in a lit room.

Test of Hall Sensor:

The test of the Hall Effect sensor was succesful. When hooked up to the circuit
detailed in [4], the Hall sensor correctly detected the presence of the magnet at a range
well within what we require for our sensor. Using a pair of rare earth magnets we have
determined that the hall sensor is capable of detecting the field from 2-3 cm away. This
will be acceptable for our needs.

Test of PIC:

The simulator managed to find a fault in our original hardware wiring. The plan was to
have the LED driver's CLK line connected to RA4. This turned out to be a problem due
to the hardware not displaying the same behaviour as the software simulator. We were
able to determine that the RA4 line was incapable of driving the LEDs driver's CLK line.
Once we changed this over to the RB1 line on the PIC, the hardware started displaying
the same behaviour as the simulator.

Test of Motor:
The test of the motor was reasonably succesful. The approximate RPM of the
motor was determined to be 630RPM.

15

Citations

[1] http://www.robotroom.com/PWM4.html

[2] http://www.ladyada.net/make/spokepov/

Both websites used for parts inspiration

[3] PIC16F87xA Family Datasheet
http://ww1.microchip.com/downloads/en/DeviceDoc/39582b.pdf
[4] Melexis Hall Effect Sensor Datasheet

http://www.melexis.com/prodfiles/0004824 USS5881 rev007.pdf

[5] Infineon Technologies Hall Effect Sensor Datasheet

http://www.infineon.com/dgdl/TLE4906DataSheet_20V1_1.pdf?folderld=db3a304412b4
07950112b408e8c90004 & fileld=db3a304412b407950112b4091cd800e5

[6] LED Drivers Datasheet
http://www.allegromicro.com/en/Products/Part Numbers/6278/6278.pdf

[7] LED Datasheet

http://www.kingbrightusa.com/images/catalog/SPEC/AA3535SEL171S.pdf
[8] E. Tiong, “Resources — EE400/401”

http://www.ece.ualberta.ca/~ee401/resource circuits.html

[9] OshonSoft PIC Simulator IDE Homepage

http://www.oshonsoft.com/pic.html

[10] Microchip Technology Inc. Homepage

http://www.microchip.com

16

Appendix

Quick Start Manual
The only thing required for our project to run is a power supply plugged into it. It
takes 5V with at least 2.2A. To load a new message onto the display the PIC needs to be
reprogrammed. Run the StringEncoder to encode a new message into assembly code. The
generated code will be stored in the file stringcode.txt. Copy the contents of the file
into the bottom of the main.asm file in the memory location you want to overwrite. Move
the two lines with the form:

movlw 0xXX

movwf MSG_COUNT

Into the section labelled MessageXInit replacing the two lines of that form.

When plugging the PIC into the board on the swing arm, the socket is wired backwards,
so the indent on the socket does not line up with the indent on the PIC.

To change the font, change one of the files in the characters folder and then run the
CharEncoder program. The next time you run StringEncoder, the encoded string will use
the new font.

All work done on the PIC assembly code was done in the MPLAB suite available from
the Microchip website. This IDE comes packaged with all necessary libraries.

Future Work

The backup plan for this project, if it appears that the main requirements are in danger of
being left uncompleted, is to switch to a 2 dimensional array of LEDs with data being fed
in dynamically from the ARM processor. The 2 dimensional array’s hardware controller
would have a buffer to store images to be displayed, which can be filled dynamically. The
controller would be in charge of going through the buffer sequentially and displaying the
images. The ARM processor would be used to grab the content to be displayed from an
RSS feed on the Internet, Google news for example.

The optional/extension portions of this project would be similar to the backup plan
outlined above, but with the rotationally refreshed display used in place of the 2d array.

17

This brings about other challenges, as for the buffer to be filled dynamically, we will
need to create a serial interface with the ARM board along the commutator. Once the
device is communicating with a controller, we can go on to use the ARM as a more
powerful data processing tool. Longer messages and more inventive graphics can be
created using the ARM board, rather than the PIC16. The swing-arm mounted
components will fill the role of a video driver and display. They will serve to output a
buffer that is filled by the ARM board. From this we would aim to add Ethernet
functionality to the ARM board and create an application to harvest information to be
displayed from the Internet. For the Internet option we will maintain a list of RSS feeds
that can be accessed to provide a continuously updated supply of messages to be shown
on the display.

Optional Tasks:
1) Ensure that the image can be dynamically updated
2) Grab the dynamic display information from the Internet
3) Pulse-width Modulation could be utilized to allow for varying LED brightness
4) Full color LEDs could be used in place of the monochromatic ones

Dynamic Operation — The dynamic operation is designed to be quite similar to the static
operation. The major difference that is present is the use of the third contact of the
commutator (possibly a forth for bi-direction communication). This will be used to
receive transmissions of new data coming from the ARM board. When new data is
received, an interrupt will be sent to the PIC microcontroller, which will then read the
data from the serial interface, and find a place in the memory buffer to store the new data.
This allows the data that is being displayed to be constantly changing. Our ultimate goal
is also to have the ARM board be synched up to RSS feeds using an Ethernet controller
and the internet. This allows for various different themes of messages to be displayed,
such as news or stock prices.

Varying LED Brightness — This can be done via pulse-width modulation using only

software on the PIC with any drastic changes to the hardware. This would allow for more
complicated images to be displayed.

18

Full Color LEDs — If we had a larger budget we could implement a new version of this
project with color by using color LEDs. This does add more complexity to the software
and hardware, but the effect would be likely worth it.

19

m,u._.ﬂ ﬂu._.ﬂ Huﬂ wodL NE

v

3N

3]0
ol
lu3ssged @)
pulyial
@ 30 mwﬁ T SITT
oos T
e €1 I i
simifg .
3 1g1Esod 58 10 .
HECBATIIID [Blw Vi 8302 SE LA 9% Lo fE .
are I ELmays
S8 M 417 zLmapFE
g7 Feu 105 ATSET | . A os mfg s
57| /008 I [ZHA et -
Ko S| FodaL 130114100 B2 T i,
I_I Hy <odeond OsOTLAEH | _|m_ T
LNOATT/ETS0 [
T |_|u_._mv NIN13/1350 [=
22 53 o
m
— Z — 4 Fd anNa
BEHS INT SR
L[i z
= zaw THIELFHe
EzH._.m.}w_.m_.ﬂ___u.; e R ENH 2R WH AT
M £ +ad LR 14
2= oAy THK THY o
= b 7 sasoeq ansaua o mmm_m_mnnuc Al
£ e|ds09d
vy LMo [FT =T
FHLA T g
i &5 oS Z1mafr
oot el sinofa
S 1 .
Mg & mn = .
SHF FLMa|E -
Hugmy e HI1 e u|u
i 3 R Zim
2 10s T1mafgs oI
“ o .
Lyl rr
[r] [ap
== 5
a [}
5)
=
) I_I
9]
5 SHSg=M ._”h__.__u__u—..‘.m_m_ 24l F F H fpddng
5 wioly spusuodwod s3sn J11BWSUIS SIYL AMEOT e ATET - AAEE] G
=
=
=
=

Note: LED1-16 have the same configuration here as in the block diagram below

20

Block Diagram

YOO = 5% e
/‘\ _I B , 30 Ohm Resistors
[~]
5Dl 1 .8 171 W’"
X
; LED H
PIC1e 28 Pin <
; [~]
Microcontroller Driver 1 /\'A‘f\/_
J:; =l
LE . LED 18 3
QEF * Driver 4H_/\)/V\/—
sDl 2

Source Code

PROGRAM
EXT ISR Read

TVCC=5V

- Hall Effect Sensor

Bright LEDs & 73 mA

SOl 1 & 2 - Serial Data Interface for each LED Driver
OE - Output Enahle
LE - Latch Enable

Clk - Clock
Clk - Clock
TMR_ISR. QUTPUT PROGRAM TMR_ISR OUTPUT

Read

MainLoop

Magnet Passed

21

Magnet Passed

MainLoo
P PROGRAM _Read

Magnet
Passed pRotations

Col_Done

EXT_ISR TMR_ISR
TMR_Base
b

i Data

Output

main.asm — Code flashed onto PIC micro-controller for controlling LEDs and performing
timing calculations. Status: T

StringEncoder.cpp — Takes in a string and using the output of a previously run
CharEncoder creates assembly code to store a string in memory. Status: T

CharEncoder.cpp — Takes a collection of text files defining a font and encodes them into

integers. Status: T

22

