Application Note:

Interfacing with the SDRAM controller and implementing a Circular
Buffer

By: Aaron Arnason, Edrick de Guzman & Byron Maroney
Group 4

Assumptions:

1. You have a base project similar to that of the Introductory Labs.

2. This also means that you have included the SDRAM controller interface in your QSYS
setup

3. You have a working knowledge of Quartus and Qsys.

Hardware Requirements:

Altera DE2
Speakers
Audio cables
Audio Source

e

Software Requirements:

1. Quartus Il 32-Bit Version 12.1 SP1

Source Code:

1. The source code in order to fully build this application note can be found in the course
website at
https://www.ualberta.ca/~delliott/local/ece492/appnotes/2016w/g4_CircularBuffer SDRA
M/

Purpose

1. The purpose of the application note is to guide users on how to utilize the Off-chip
SDRAM using a custom SDRAM core component. The SDRAM is useful in many ways.


https://www.ualberta.ca/~delliott/local/ece492/appnotes/2016w/g4_CircularBuffer_SDRAM/
https://www.ualberta.ca/~delliott/local/ece492/appnotes/2016w/g4_CircularBuffer_SDRAM/

a. First, the SDRAM has the most space out of all the off-chip memories on the
FPGA. It has a whopping 8 MB of memory available to fulfill your desires.

b. Secondly, the SDRAM enables for data manipulation. This means that once you
have stored information into the SDRAM, the user is provided the option to
access different address spaces in the SDRAM. This was useful in our audio
implementation because the manipulation of the addresses allowed us to apply
delay and echo to the audio data.

SDRAM

1. Using the SDRAM gives you the ability to utilize memory up to 8MB.

2. Utilizing the SDRAM requires the SDRAM controller component in Qsys to be able to
interface with it. Assuming that you have used the Introductory Labs as you base project,
the SDRAM controller component should already be instantiated.

3. The SDRAM is byte-addressable, this means that each address space is able to store up
to 1-byte (8-bits).

4. This space is very useful for applications such as a delay line in which the SDRAM is
used as a circular buffer where data can be stored and accessed.

5. The SDRAM controller provides the following signals to use in your application. For this
application note, the signals are used to implement a circular buffer to pass through
audio data to demo that the SDRAM functions accordingly.

avm_me&_address : out std_logic_wector{31l downto 8);

avm_mé_read : out std_logic;

avm_m@_waitrequest : in  std_logic = 'a";
avm_m@_readdata : in std_logic_wvector{l5 downto @) := {(others => '@");
avm_m@_write : out std_logic;

avm_m@_writedata : out std_logic_vector{l5 downto 8);
avm_m@_readdatavalid : in std_logic =g

a. These are the signals you use in order to access the SDRAM and implement the
circular buffer.

i. address is the address you want to access in the SDRAM

i. readis a signal to notify the SDRAM that we’re ready to read from it

iii. waitrequest must be checked whether it is “0” in order for you to begin

reading or writing.

iv.  readdata is the data coming out of SDRAM.

v.  writeis a signal to notify the SDRAM that we’re writing to it.

vi.  writedata is the data you want to write into the SDRAM.

vii.  readdatavalid is not used in this app note.

6. For your application, you will need to add these signals in your custom component’s
VHDL code to interface with the SDRAM controller.



Circular Buffer - Custom Component

1.

In this application note, we’re implementing the SDRAM as a circular buffer for the audio
to demonstrate the functionality of the application note.

The circular buffer is used by the Audio Core to store audio samples.

The SDRAM will also output data in it to the Audio Core, generally proving that data can
be written and read from the SDRAM.

A buffer is considered circular when the write pointer reaches the end of the specified
buffer length and loops back to the beginning of the buffer. This process overwrites the
old data stored in that space.

The circular buffer also requires a read pointer to read data from it. This read pointer can
be initialized wherever the designer wants it to be. For this application, the read pointer
is lagging behind the write pointer by 2 address spaces (2 bytes, in order to
accommodate for the 16-bit audio sample).

read pointer

write pointer

Figure 2. Circular Buffer [2]

Base address and buffer size are values provided by the user for the circular buffer. The
base address is the starting address of the SDRAM, while the “buffer size -1” becomes
the end address of the SDRAM.

The provided sdrambuffer.vhd acts as the memory mapped master component for the
memory mapped slave port provided by the SDRAM controller core. This file uses the



signals required to use the SDRAM controller interface. In your application, your custom
component will act as the memory mapped master component.

Building Instructions

1. Start off by utilizing the Introductory Lab 1 to build a base project [1].
2. Download the files necessary from the course website

-0 Qo0 UTp

g.

Sdrambuffer.vhd - custom component
niosll_system.qgsys
niosll_system.sopcinfo
new_component_hw.tcl
sdram_circular_buffer.qar
sdram_circular_buffer.qpf
sdram_circular_buffer.vhd

3. Launch Quartus from the scripts folder of your working directory

a.
b.
c.

In Quartus go to File -> Open Project...
Choose the sdram_circular_buffer.qar
Remove the “restored” path in the Destination Folder after choosing the archive
file.
Open Qsys by selecting tools -> gsys (within Quartus)

i.  Open the niosll_system.qsys

ii.  Atthis point, everything in the project should be ready to be generated

and compiled.

iii. Go to Generation Tab and click Generate.
Go back to Quartus and compile the project.

i. Expectabout 443 warnings.
Once the compilation is done, program the DE2.



QSYS Configuration (Custom Component)

Adding the Hardware components in QSYS
- This section will describe how the sdrambuffer.vhd custom component is interfaced with
the SDRAM controller so that you can follow it to do the same with your custom
component.

Note:

1. At this point, you should have already added the necessary signals that were
described above in your custom component that will utilize the SDRAM.

2. The Avalon Memory Mapped Master utilizes those signals. If you don’t provide
them, the you will not be able to interface with the SDRAM.

3. The instructions below are for the provided custom component used to
demonstrate the functionality of the SDRAM. This will be very similar for your
application.

Add SDRAM buffer custom component : New Component
On the project pane of Qsys, double click “New Component”
Component Type Tab
- Name: sdram_buffer
- Display name: sdram_buffer
Files tab
- Click “+”, then search for sdramBuffer.vhd
- Once added, click “Analyze Synthesis files”
- Once completed with no errors, click on the Interfaces tab
Interfaces tab
Under “m0Q”
- Associated clock to clock
- Associated reset to reset
Under Clock
- Type to Clock Input
Under Reset
- Type to Reset Input
Then add the follow interfaces
- Add Interface
- Change type to avalon_streaming_sink
- Change the name to streaming_in
- Set the clock and reset
- Add Interface
- Change type to avalon_streaming_source




- Change the name to streaming_out
- Set the clock and reset
Signals Tab
- Change Interface to streaming_in and signal type to valid for “buffer_in_valid”
- Change Interface to streaming_in and signal type to data for “buffer_in”
- Change Interface to streaming_out and signal type to valid for “buffer_out_valid”
- Change Interface to streaming_out and signal type to data for “buffer_out”
Switch back to Interfaces Tab
- Remove Interfaces Without Signals
Click “Finish”

Add SDRAM controller:
On the Component Library look for the SDRAM Controller under Memories and Memory
Controllers, then External Memory Interfaces, then SDRAM Interfaces, then add the SDRAM
Controller.

- Set Presets to Custom

- Set data width to 16

- Click “Finish”

Connecting the SDRAM controller to the SDRAM Buffer

“m0” of SDRAM buffer is connected to “s1” of SDRAM controller
Connect the “clock” to the system clock

Create Global Reset Network to connect the “reset”
streaming_in and streaming_out will require timing adapters




References:

(1]

https://eclass.srv.ualberta.ca/pluginfile.php/2247658/mod_resource/content/5/ECE492 W16 La
b1.pdf

(2]

http://jugglingpirate.net/final-year-project-electronics/



https://eclass.srv.ualberta.ca/pluginfile.php/2247658/mod_resource/content/5/ECE492_W16_Lab1.pdf
https://eclass.srv.ualberta.ca/pluginfile.php/2247658/mod_resource/content/5/ECE492_W16_Lab1.pdf
http://jugglingpirate.net/final-year-project-electronics/

