Application Note: Multiple Pulse Width
Modulation Signals

By: Group 5 W2016

Introduction

Pulse width modulation signals are commonly used to control servo motors. These signals
vary in both period and duration, corresponding to different angles in the motor itself. By
controlling the signal, you are able to move the motor to a desired location. This is done in
this application note for 12 servo motors composing a single robot. A single VHDL custom
component is used to control all of them, and it is interfaced with a C header file to allow for

easy control. Inspiration for this was taken from [1].

Design

This application note assumes that you have a fully compiled DEO Nano board with the stock

components. If not, please do so before continuing with this tutorial.

We will first look at the VHDL, and indicate areas for modification should you choose to use
this. Keep in mind that we used 12 servo motors, but the adjustments are quite minor if you

require a different amount.

library altera;

use altera.altera_europa_support_lib.all;

-- Repurposed for use by Group 5, uAlberta ECE 2016
library IEEE;

use |IEEE.std_logic_1164.all;

use |EEE.std_logic_arith.all;

use |IEEE.std_logic_unsigned.all;

entity multi_pwm is
generic(W:integer :=15);
port (
-- Avalon MM---------—-
clk : in std_logic;

reset_n :in std_logic;
readas : in std_logic;
writas : in std_logic;
chipselect : in std_logic;
address : in std_logic_vector(5 downto 0);
readdata : out std_logic_vector(31 downto 0);
writedata : in std_logic_vector(31 downto 0);

PWM1, PWM2, PWM3, PWM4, PWM5, PWM6, PWM7, PWM8, PWM9, PWM10, PWM11, PWM12: out
std_logic;
);

end multi_pwm;

architecture PWM of multi_pwm is

signal pwm_counter, pwm_value1, pwm_value2, pwm_value3,

pwm_value4, pwm_value5,pwm_value6, pwm_value7, pwm_value8, pwm_value9, pwm_value10,
pwm_value11, pwm_value12 : std_logic_vector(W downto 0);

signal control_reg: std_logic_vector(7 downto 0);

begin

process (clk, reset_n, chipselect)

begin

if reset_n='0" then

pwm_counter<=(others=>'0");

pwm_value1<=(others=>'0");

pwm_value2<=(others=>'0'

);
pwm_value3<=(others=>'0");
pwm_value4<=(others=>'0");
pwm_value5<=(others=>'0");
pwm_value6<=(others=>'0")
pwm_value7<=(others=>'0")
pwm_value8<=(others=>'0")
pwm_value9<=(others=>'0");
pwm_value10<=(others=>'0");
pwm_value11<=(others=>'0");
pwm_value12<=(others=>'0");

elsif clk'event and clk="1' then

PWM set
if address = "000000" and writas ='0' then -- PWM UPDATE COUNTER

pwm_value1<=writedata(W downto 0);
end if;

if address ="000001" and writas ='0' then -- PWM UPDATE COUNTER
pwm_value2<=writedata(W downto 0);
end if;

if address = "000010" and writas = '0' then -- PWM UPDATE COUNTER
pwm_value3<=writedata(W downto 0);
end if;

if address = "000011" and writas = '0' then -- PWM UPDATE COUNTER
pwm_valued4<=writedata(W downto 0);
end if;

if address = "000100" and writas = '0' then -- PWM UPDATE COUNTER
pwm_valueb<=writedata(W downto 0);
end if;

if address = "000101" and writas = '0' then -- PWM UPDATE COUNTER
pwm_value6<=writedata(W downto 0);
end if;

if address = "000110" and writas ='0' then -- PWM UPDATE COUNTER
pwm_value7<=writedata(W downto 0);
end if;

if address = "000111" and writas = '0' then -- PWM UPDATE COUNTER
pwm_value8<=writedata(W downto 0);
end if;

if address = "001000" and writas ='0" then -- PWM UPDATE COUNTER
pwm_value9<=writedata(W downto 0);
end if;

if address = "001001" and writas ='0' then -- PWM UPDATE COUNTER
pwm_value10<=writedata(W downto 0);
end if;

if address = "001010" and writas ='0' then -- PWM UPDATE COUNTER
pwm_value11<=writedata(W downto 0);
end if;

if address = "001011" and writas ='0' then -- PWM UPDATE COUNTER
pwm_value12<=writedata(W downto 0);
end if;

if address = "001100" and writas ='0' then -- PWM UPDATE COUNTER
control_reg(7 downto 0)<=writedata(7 downto 0);
end if;

--and (control_reg(0)="1")

pwm_counter<=pwm_counter+1;

if (pwm_counter ="11110100001001000000") then

pwm_counter <= "00000000000000000000";
end if;

if ((pwm_value1<pwm_counter)and (pwm_value1>0)) then
PWM1<="1";

else PWM1<='0"; end if;

if ((pwm_value2<pwm_counter)and (pwm_value2>0)) then
PWM2<="1";
else PWM2<='0"; end if;

if ((pwm_value3<pwm_counter)and (pwm_value3>0)) then
PWM3<="1",
else PWM3<="0"; end if;

if ((pwm_value4<pwm_counter)and (pwm_value4>0)) then
PWM4<="1";
else PWM4<='0"; end if;

if ((pwm_value5<pwm_counter)and (pwm_value5>0)) then
PWM5<="1";
else PWM5<="0"; end if;

if ((pwm_value6<pwm_counter)and (pwm_value6>0)) then
PWM6<="1";
else PWM6<="0"; end if;

if ((pwm_value7<pwm_counter)and (pwm_value7>0)) then
PWM7<="1"
else PWM7<='0"; end if;

if ((pwm_value8<pwm_counter)and (pwm_value8>0)) then
PWM8<="1",
else PWM8<='0"; end if;

if ((pwm_value9<pwm_counter)and (pwm_value9>0)) then
PWM9<="1",
else PWM9<='0"; end if;

if ((pwm_value10<pwm_counter)and (pwm_value10>0)) then
PWM10<="1";
else PWM10<='0"; end if;

if ((pwm_value11<pwm_counter)and (pwm_value11>0)) then
PWM11<="1";
else PWM11<='0"; end if;

if ((pwm_value12<pwm_counter)and (pwm_value12>0)) then
PWM12<="1";
else PWM12<='0"; end if;

end if;

end process;
end PWM;

Note the PWM1-12 outputs declared from the component. These are direct bit outputs, firing
quick pulses out to 12 different named areas. Define however many signals you wish to
generate (equal to your number of motors or other devices controlled in this method) as

output bits, and use the method shown to create additional signals if needed. Note the line:

if (pwm_counter ="11110100001001000000") then
pwm_counter <= "00000000000000000000";

end if;

This number will change based on the frequency required for your devices. We used servo
motors with a 20 Hz refresh rate, which corresponded to 1 million in binary. Take note that
this value will likely change based on your use case. One other line that is important to note

is this:

if address = "001100" and writas ='0" then -- PWM UPDATE COUNTER PWM12

Each PWM signal contains this line in its definition, which allows us to map accordingly to it.
The address is of particular importance, as it gives us easy access to the specific signal in
the pre-defined header file. For additional PWM signals, simply add to each address in
sequential order (for example, if you added a PWM13 signal the address for the check would
be 001101). Pretty straightforward.

Now, we will use this file to create a custom component in our system and implement itin C

code. As stated before, you must have a basic, fully compiled DEO project before continuing.

First up, open up Qsys and create a new component on the left hand side.

: Applications Places System % do # FriApr8,10:29AM
A osy & Component Editor - multi_pwm_hw.tcl* x - o x

o) (W< o) B[] 2|
3

1R 0| IRQ 316

1] 0x0100_977F

b loxo100_7¢¢¢

b 0x0100_a257

0x0100_a21

5 0x0100_az57

D 0x0100_a237

port reversed-direction signals to connect to external modules. Template HOL for the component can

] I D

derev [neap | [Cgmisn

2 [App Note: PWM - G... |[(] [Downloads] . [multiPwM] J[= Itutorial.pdf - Adobe ... || €& Quartus Il 32-bit - /a... || £ AppNoteTest [% Qsys - niosil_system...| [®

Add the VHDL file we defined earlier as the synthesis file, and click Analyze Synthesis Files
to check and make sure that no errors exist. This should give us our signal definitions for

later.

%) Component Editor - multi pwm_hw.tcl* *

File Templates

[Component Type rFiIes I’Parameters rSignaIs rlnter‘races |

b About Signals

MName Interface Signal Type Width Direction
clk clock clk 1 input
freset_n reset reset_n s input
readas avalon_slave_b read_n 1 input
writas avalon_s lave_0 write_n 1 input
chipselect avalon_s lave_i chipselect 1 input
address avalon_s lave_i address & input
readdata avalon_s lave_0 readdata 32 output
writedata avalon_s lave_0 writedata 32 input
FWM1 conduit_end export 1 output
PWM2 conduit_end export 1: output
PWM3 conduit_end export 1 output
PWM4 conduit_end export 1: output
PWM5 conduit_end export 1 output
FWM6 conduit_end export at output
FWM7 conduit_end export i autput
FWM3 conduit_end export s autput
FWM9 conduit_end export 1 autput
FWM10 conduit_end export s autput
PWM11 conduit_end export 1 output
FWM12 conduit_end export ik output

Match your signals to the above screenshot. You may need to declare a conduit_end for
your exports, as well as set the reset of the Avalon slave in the Interfaces tab. Following that,
ensure that you have correctly mapped the interfaces for proper Avalon MM useage.

Basically change things until it doesn’t complain anymore.

Now, add the component to your system and hook up the clock and reset sources. Export

the conduit as well, assign base addresses and generate the system.

After this, add the top level VHDL file shown below, as well as the Qsys file to your project.
Compile your design, and pray that everything works. You should have some warnings. This

is normal. Program your device as normal, then open Eclipse.

Create a new Niosll project with associated BSP, and point it to your SOPC file. We will use
this file to generate PWM signals. Import the associated multi_pwm.h file that we have
provided. It provides useful C wrappers to access the outputs. See the attached C files for

sample code.

Getting the Base Project

Download the qar file and open it in Quartus, compile and program the board. Download and
the C and header files included, create an Eclipse project and open the files from there.
Running this on a DEO Nano should result in different PWM signals on GPIO 0 through 11.
Check pin alignment files to check pin mappings if you are unsure which GPIO pins align

with physical pins.

References

[1]: hitp://www.grigaitis.eu/?p=566

