
VGA Pixel Buffer
Stephen Just 2016-02-20

1 Introduction

Video output is often a useful addition to interactive projects but typically there
have been many performance limitations with respect to video out on the DE2.
This application note details how it is possible to provide a double buffered video
output without creating large memory bandwidth pressures on your system’s
SDRAM that you need to run your application code.

The code package provided with this application note is designed to work
on a DE2 board using any Nios II processor. As with most other applications,
the best performance can be achieved using a faster variant of the processor.

Using the provided code package, you will be able to generate video output
at a resolution of 640x480 with a video refresh rate of 60Hz and use 8-bit colour.
The maximum achievable frame update rate will vary depending on how you
choose to populate the video frame buffers.

2 Clocking

Outputting a video signal requires a variety of clocks. Your system clock, usually
running at 50MHz, will be faster than the video pixel clock. For a 640x480@60Hz
video signal, a typical pixel clock operates at 25.175MHz. [1] The DE2 is not
capable of producing that exact frequency, but it can come close enough with a
25.2MHz clock that can be derived from the 27MHz oscillator on the board.

To generate a 25.2MHz clock, you can connect the 27MHz clock input to a
PLL, and configure the PLL with a multiplication factor of 14 and a division fac-
tor of 15. In the provided sample code, this is produced by the altpll video
Qsys component.

3 VGA Output

Altera provides a video output module in the University Program IP collection
to generate the necessary signals to output to the VGA port on the DE2. This IP
is designed to output a 640x480 pixel video signal. The refresh rate of this VGA
signal is determined by the clock you supply to this component. In the provided
sample code, the VGA output block is called video vga controller 0. [2]

The Altera-provided output block has some notable quirks that you should
keep in mind if you want to use it in your own project. Most importantly, it

1



does not handle incorrectly formatted input in an acceptable way. For example,
if you generate an Avalon-ST data stream with packets of incorrect length, you
will completely lose your video sync and the picture on the screen will appear
incorrectly. The provided video fb streamer 0 component in the example
code correctly outputs video data for the VGA output block.

In figure 1, the relationship between a row of pixel data and the VGA hsync
signal is shown. The period surrounding the hsync pulse where no data is
visible is called the horizontal blanking period. The hsync pulse is preceded
by what is called the horizontal front-porch, and followed by what is called the
back-porch. All three of these components make up the horizontal blanking
period.

There is a similar mechanism for vertical timing, where the vertical blanking
period is several multiples of the horizontal timing period long.

pixclk

hsync

data 0 1 2 3 4 5 6 7 632 633 634 635 636 637 638 639

Figure 1: VGA Horizontal Timing

4 Avalon-ST

Avalon-ST is the interface used for streaming data between components. This
is the name of the interface that connects the video output components in the
provided example Qsys system.

This bus consists of a data signal, as well as several control signals. The
interface is not bi-directional, and must flow from source to sink.

For video data as we are using it, the Avalon-ST bus must be clocked at
the same rate as the VGA pixel clock: 25.2MHz. Each clock cycle, a pixel is
transferred over the data signal. The first pixel in a frame is transmitted with
the startofpacket control signal asserted. Likewise, the final pixel in a frame
is transmitted with the endofpacket control signal asserted. The sink will
assert ready when it is able to accept new pixel data. In the case of a VGA
video signal, ready is asserted while pixels are being output to the display,
and is de-asserted during the VGA blanking period. The valid control signal
is asserted by the source when its data is ready to send. The Altera-provided
video blocks expect this signal to always be asserted.

In figure 2, the end of transmitting a video frame is shown, with the last
several pixels being transmitted, and then the first pixel of the following frame
being sent, at which point the VGA controller begins a blanking period. Note
that the next data value must be available before ready is asserted again.

2



clk

ready

valid

data[7:0] dn−7 dn−6 dn−5 dn−4 dn−3 dn−2 dn−1 dn d0 d1

startofpacket

endofpacket

Figure 2: Avalon-ST Timing Diagram

5 Memory

Altera provides a pixel frame-buffer component similar to the one provided
with this application note in their University Program IP collection, but it
was determined to not be suitable for high performance graphics. The Altera
solution provides two pixel frame-buffers in SDRAM. Either of the buffers can be
output to the VGA controller, with a simple command to swap between which
one is active. The problem that this solution has is that the VGA controller
must always be reading from the SDRAM so that it has pixel data available to
output when it is required. This means that the system processor must compete
with the video output pipeline for access to the SDRAM, which slows down any
drawing operations. If the application code is also running from SDRAM, this
effectively requires the designer to use a variant of the Nios II processor with a
cache.

In the frame-buffer component provided with this application note, a “live”
frame-buffer exists in SRAM which is continuously read to the video output
pipeline, and a “working” frame-buffer exists in SDRAM. A Nios II custom
instruction is provided, ci frame swap 0, to trigger a fast copy from the
SDRAM buffer to SRAM.

Because of this arrangement of frame-buffers, it is possible to quickly perform
draw operations to the “working” buffer without potentially interrupting the
video output component or without the video output component blocking the
processor.

The copy from SDRAM to SRAM is implemented in such a way that the
output video signal will not experience any video tearing. Tearing occurs when
the frame data changes while the frame is being drawn, so that the user sees
parts of two different versions of the frame at once.

Because part of the SDRAM is dedicated to act as a frame-buffer, it is
necessary that when you write a Nios II application to use this functionality,
you modify the linker settings in your BSP so that the area of memory allocated
to your program does not intersect with that of the frame-buffer. This can be
seen in the provided example code.

3



6 Project Setup

The following sections detail how to configure a project using the provided video
blocks.

6.1 Qsys

In Qsys, in addition to the components required for a simple Nios II system,
you must also instantiate a second clock input, a second Avalon ALTPLL,
a ci frame done custom instruction, a video fb streamer component, a
video rgb resampler component, and a video vga controller compo-
nent.

In figure 3, note that the 50MHz clock is the source of altpll sys dram,
whereas the 27MHz clock is the source of altpll video. The c0 output of
altpll video is only connected to the blocks that are part of the video output
pipeline, shown in figure 4.

Figure 3: Clock Connections for Qsys System

It is important to note how the each of the video output blocks are con-
nected to the rest of the system. The video fb streamer component has
two Avalon-MM Master interfaces on it. Interface dma0 must connect to the
SRAM component, while dma1 must connect to the SDRAM component. This
allows the streamer component to talk to both memories simultaneously.

Another important thing to note is that the conduits of ci frame done
and video fb streamer are connected together. This needs to be present
because the custom instruction interfaces directly with the video streamer.

In addition to these things, it is important that the base memory address
for the SRAM and SDRAM components are locked. When you configure the

4



video fb streamer component, you must provide memory addresses for both
the SDRAM and SRAM video buffers. If the memory addresses for your RAM
components changed, then the streamer component would break. With the base
addresses shown in figure 4, you can configure the video fb streamer block
as shown in figure 5.

Figure 4: Connections for Qsys Video Blocks

Finally, the configuration for the video rgb resampler is shown in fig-
ure 6. This block must be configured to go from 8-bit colour to 30-bit colour, to
match the interfaces of the video fb streamer and the video vga controller.

6.2 Quartus

You can use the Qsys-provided VHDL template to instantiate your system. This
might look something like Listing 1 below.

Listing 1: Sample Top Level VHDL File

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY vga_pix_buffer IS
PORT
(
-- Clocks
CLOCK_50 : in std_logic;
CLOCK_27 : in std_logic;

-- SDRAM on board

5



Figure 5: Configuration for video fb streamer

Figure 6: Configuration for video rgb resampler

DRAM_ADDR : out std_logic_vector (11 downto 0);
DRAM_BA_0 : out std_logic;
DRAM_BA_1 : out std_logic;
DRAM_CAS_N : out std_logic;
DRAM_CKE : out std_logic;
DRAM_CLK : out std_logic;
DRAM_CS_N : out std_logic;
DRAM_DQ : inout std_logic_vector (15 downto 0);
DRAM_LDQM : out std_logic;
DRAM_UDQM : out std_logic;
DRAM_RAS_N : out std_logic;
DRAM_WE_N : out std_logic;

-- SRAM on board
SRAM_ADDR : out std_logic_vector (17 downto 0);
SRAM_DQ : inout std_logic_vector (15 downto 0);
SRAM_WE_N : out std_logic;
SRAM_OE_N : out std_logic;
SRAM_UB_N : out std_logic;
SRAM_LB_N : out std_logic;
SRAM_CE_N : out std_logic;

6



-- VGA output
VGA_R : out std_logic_vector (9 downto 0);
VGA_G : out std_logic_vector (9 downto 0);
VGA_B : out std_logic_vector (9 downto 0);
VGA_CLK : out std_logic;
VGA_BLANK : out std_logic;
VGA_HS : out std_logic;
VGA_VS : out std_logic;
VGA_SYNC : out std_logic;

-- Input buttons
KEY : in std_logic_vector (3 downto 0)
);

END ENTITY vga_pix_buffer;

ARCHITECTURE arch OF vga_pix_buffer IS

COMPONENT vga_pix_buffer_system IS
PORT (
clk_50_clk : in std_logic := ’X’;
reset_50_reset_n : in std_logic := ’X’;
clk_27_clk : in std_logic := ’X’;
reset_27_reset_n : in std_logic := ’X’;
sram_0_external_interface_DQ : inout

std_logic_vector(15 downto 0) := (others => ’X’);
sram_0_external_interface_ADDR : out

std_logic_vector(17 downto 0);
sram_0_external_interface_LB_N : out std_logic;
sram_0_external_interface_UB_N : out std_logic;
sram_0_external_interface_CE_N : out std_logic;
sram_0_external_interface_OE_N : out std_logic;
sram_0_external_interface_WE_N : out std_logic;
video_vga_controller_0_external_interface_CLK : out std_logic;
video_vga_controller_0_external_interface_HS : out std_logic;
video_vga_controller_0_external_interface_VS : out std_logic;
video_vga_controller_0_external_interface_BLANK : out std_logic;
video_vga_controller_0_external_interface_SYNC : out std_logic;
video_vga_controller_0_external_interface_R : out

std_logic_vector(9 downto 0);
video_vga_controller_0_external_interface_G : out

std_logic_vector(9 downto 0);
video_vga_controller_0_external_interface_B : out

std_logic_vector(9 downto 0);
sdram_0_wire_addr : out

std_logic_vector(11 downto 0);
sdram_0_wire_ba : out

std_logic_vector(1 downto 0);
sdram_0_wire_cas_n : out std_logic;
sdram_0_wire_cke : out std_logic;
sdram_0_wire_cs_n : out std_logic;
sdram_0_wire_dq : inout

std_logic_vector(15 downto 0) := (others => ’X’);
sdram_0_wire_dqm : out

std_logic_vector(1 downto 0);
sdram_0_wire_ras_n : out std_logic;
sdram_0_wire_we_n : out std_logic;
altpll_sys_dram_c0_clk : out std_logic

7



);
END COMPONENT vga_pix_buffer_system;

-- Signals to interface with DRAM
SIGNAL BA : std_logic_vector (1 downto 0);
SIGNAL DQM : std_logic_vector (1 downto 0);

BEGIN

DRAM_BA_1 <= BA(1);
DRAM_BA_0 <= BA(0);

DRAM_UDQM <= DQM(1);
DRAM_LDQM <= DQM(0);

sys0 : COMPONENT vga_pix_buffer_system
PORT MAP (
clk_50_clk => CLOCK_50,
reset_50_reset_n => KEY(0),
clk_27_clk => CLOCK_27,
reset_27_reset_n => KEY(0),
sram_0_external_interface_DQ => SRAM_DQ,
sram_0_external_interface_ADDR => SRAM_ADDR,
sram_0_external_interface_LB_N => SRAM_LB_N,
sram_0_external_interface_UB_N => SRAM_UB_N,
sram_0_external_interface_CE_N => SRAM_CE_N,
sram_0_external_interface_OE_N => SRAM_OE_N,
sram_0_external_interface_WE_N => SRAM_WE_N,
video_vga_controller_0_external_interface_CLK => VGA_CLK,
video_vga_controller_0_external_interface_HS => VGA_HS,
video_vga_controller_0_external_interface_VS => VGA_VS,
video_vga_controller_0_external_interface_BLANK => VGA_BLANK,
video_vga_controller_0_external_interface_SYNC => VGA_SYNC,
video_vga_controller_0_external_interface_R => VGA_R,
video_vga_controller_0_external_interface_G => VGA_G,
video_vga_controller_0_external_interface_B => VGA_B,
sdram_0_wire_addr => DRAM_ADDR,
sdram_0_wire_ba => BA,
sdram_0_wire_cas_n => DRAM_CAS_N,
sdram_0_wire_cke => DRAM_CKE,
sdram_0_wire_cs_n => DRAM_CS_N,
sdram_0_wire_dq => DRAM_DQ,
sdram_0_wire_dqm => DQM,
sdram_0_wire_ras_n => DRAM_RAS_N,
sdram_0_wire_we_n => DRAM_WE_N,
altpll_sys_dram_c0_clk => DRAM_CLK
);

END ARCHITECTURE arch;

6.3 Nios II SBT for Eclipse

When you create a new “Nios II Application and BSP from Template” project
in Eclipse, you must manually configure the memory map used in the BSP
project. This configuration is shown in figure 7. In particular note the defini-

8



tions for sdram video 0 and sdram sys 0. This must match your planned
memory layout. If you compare the memory addresses in figure 7 and the
SDRAM VIDEO OFFSET value in the sample code in Listing 2, they should refer
to the same location in memory.

Figure 7: BSP Linker Configuration

7 Sample Code

The following code shows how you might draw a simple animation to the video
output.

Listing 2: Sample Program that Generates a Moving Line

/* This test program generates a simple pattern to test for tearing.

*
* The video pattern consists of a white vertical line that will move

* from side to side along the frame. If there is tearing, the line

* will appear broken at some points in time.

*/

#include <io.h>
#include <system.h>

#define SDRAM_VIDEO_OFFSET 0x300000
#define FRAME_WIDTH 640
#define FRAME_HEIGHT 480
#define COLOR_BLACK 0x00
#define COLOR_WHITE 0xFF

int main()
{

int row = 0;
int col = 0;

// Clear the screen

9



for (row = 0; row < FRAME_HEIGHT; row++)
{

for (col = 0; col < FRAME_WIDTH; col = col + 4)
{
IOWR_32DIRECT(SDRAM_0_BASE, SDRAM_VIDEO_OFFSET + row *

FRAME_WIDTH + col, COLOR_BLACK);
}

}
ALT_CI_CI_FRAME_DONE_0; // Custom command to trigger frame swap

// Draw pattern
unsigned int position = 0;
while (1)
{

for (row = 0; row < FRAME_HEIGHT; row++)
{
// Clear previous position of line
if (position == 0) {
IOWR_8DIRECT(SDRAM_0_BASE, SDRAM_VIDEO_OFFSET + row *

FRAME_WIDTH + FRAME_WIDTH - 8, COLOR_BLACK);
} else {
IOWR_8DIRECT(SDRAM_0_BASE, SDRAM_VIDEO_OFFSET + row *

FRAME_WIDTH + position - 8, COLOR_BLACK);
}
// Draw new line
IOWR_8DIRECT(SDRAM_0_BASE, SDRAM_VIDEO_OFFSET + row * FRAME_WIDTH

+ position, COLOR_WHITE);
}

position = (position + 8) % 640;
ALT_CI_CI_FRAME_DONE_0; // Trigger frame swap

}

return 0;
}

References

[1] TinyVGA, “Vga signal 640 x 480 @ 60 hz industry standard timing.” http:
//tinyvga.com/vga-timing/640x480@60Hz. Accessed: 2016-02-20.

[2] Altera, “Video ip cores for altera de-series boards.” ftp://ftp.altera.
com/up/pub/Altera_Material/12.1/University_Program_IP_
Cores/Audio_Video/Video.pdf. Accessed: 2016-02-20.

10


