VGA Pixel Buffer

Stephen Just 2016-02-20

1 Introduction

Video output is often a useful addition to interactive projects but typically there
have been many performance limitations with respect to video out on the DE2.
This application note details how it is possible to provide a double buffered video
output without creating large memory bandwidth pressures on your system’s
SDRAM that you need to run your application code.

The code package provided with this application note is designed to work
on a DE2 board using any Nios II processor. As with most other applications,
the best performance can be achieved using a faster variant of the processor.

Using the provided code package, you will be able to generate video output
at a resolution of 640x480 with a video refresh rate of 60Hz and use 8-bit colour.
The maximum achievable frame update rate will vary depending on how you
choose to populate the video frame buffers.

2 Clocking

Outputting a video signal requires a variety of clocks. Your system clock, usually
running at 50MHz, will be faster than the video pixel clock. For a 640x480Q60Hz
video signal, a typical pixel clock operates at 25.175MHz. [1] The DE2 is not
capable of producing that exact frequency, but it can come close enough with a
25.2MHz clock that can be derived from the 27MHz oscillator on the board.

To generate a 25.2MHz clock, you can connect the 27MHz clock input to a
PLL, and configure the PLL with a multiplication factor of 14 and a division fac-
tor of 15. In the provided sample code, this is produced by the altpll_video
Qsys component.

3 VGA Output

Altera provides a video output module in the University Program IP collection
to generate the necessary signals to output to the VGA port on the DE2. This IP
is designed to output a 640x480 pixel video signal. The refresh rate of this VGA
signal is determined by the clock you supply to this component. In the provided
sample code, the VGA output block is called video_vga_controller_0. [2]
The Altera-provided output block has some notable quirks that you should
keep in mind if you want to use it in your own project. Most importantly, it

does not handle incorrectly formatted input in an acceptable way. For example,
if you generate an Avalon-ST data stream with packets of incorrect length, you
will completely lose your video sync and the picture on the screen will appear
incorrectly. The provided video_fb_streamer_0 component in the example
code correctly outputs video data for the VGA output block.

In figure 1, the relationship between a row of pixel data and the VGA hsync
signal is shown. The period surrounding the hsync pulse where no data is
visible is called the horizontal blanking period. The hsync pulse is preceded
by what is called the horizontal front-porch, and followed by what is called the
back-porch. All three of these components make up the horizontal blanking
period.

There is a similar mechanism for vertical timing, where the vertical blanking
period is several multiples of the horizontal timing period long.

sixex ST TTFTSSL UL
hsync _]
aara DN o 23456 7] (632633)634fo35)636f637]638 630 M

Figure 1: VGA Horizontal Timing

4 Avalon-ST

Avalon-ST is the interface used for streaming data between components. This
is the name of the interface that connects the video output components in the
provided example Qsys system.

This bus consists of a data signal, as well as several control signals. The
interface is not bi-directional, and must flow from source to sink.

For video data as we are using it, the Avalon-ST bus must be clocked at
the same rate as the VGA pixel clock: 25.2MHz. Each clock cycle, a pixel is
transferred over the data signal. The first pixel in a frame is transmitted with
the startofpacket control signal asserted. Likewise, the final pixel in a frame
is transmitted with the endofpacket control signal asserted. The sink will
assert ready when it is able to accept new pixel data. In the case of a VGA
video signal, ready is asserted while pixels are being output to the display,
and is de-asserted during the VGA blanking period. The valid control signal
is asserted by the source when its data is ready to send. The Altera-provided
video blocks expect this signal to always be asserted.

In figure 2, the end of transmitting a video frame is shown, with the last
several pixels being transmitted, and then the first pixel of the following frame
being sent, at which point the VGA controller begins a blanking period. Note
that the next data value must be available before ready is asserted again.

clk
ready ._/ _.

valid
data[7:0] I {(dnc Y dns Y\ dus {dus fdu2fds { dn X do { & SOH
startofpacket -\ / \ l.
endofpacket .\ / \ :.

Figure 2: Avalon-ST Timing Diagram
5 Memory

Altera provides a pixel frame-buffer component similar to the one provided
with this application note in their University Program IP collection, but it
was determined to not be suitable for high performance graphics. The Altera
solution provides two pixel frame-buffers in SDRAM. Either of the buffers can be
output to the VGA controller, with a simple command to swap between which
one is active. The problem that this solution has is that the VGA controller
must always be reading from the SDRAM so that it has pixel data available to
output when it is required. This means that the system processor must compete
with the video output pipeline for access to the SDRAM, which slows down any
drawing operations. If the application code is also running from SDRAM, this
effectively requires the designer to use a variant of the Nios II processor with a
cache.

In the frame-buffer component provided with this application note, a “live”
frame-buffer exists in SRAM which is continuously read to the video output
pipeline, and a “working” frame-buffer exists in SDRAM. A Nios II custom
instruction is provided, ci_frame_swap_0, to trigger a fast copy from the
SDRAM buffer to SRAM.

Because of this arrangement of frame-buffers, it is possible to quickly perform
draw operations to the “working” buffer without potentially interrupting the
video output component or without the video output component blocking the
processor.

The copy from SDRAM to SRAM is implemented in such a way that the
output video signal will not experience any video tearing. Tearing occurs when
the frame data changes while the frame is being drawn, so that the user sees
parts of two different versions of the frame at once.

Because part of the SDRAM is dedicated to act as a frame-buffer, it is
necessary that when you write a Nios II application to use this functionality,
you modify the linker settings in your BSP so that the area of memory allocated
to your program does not intersect with that of the frame-buffer. This can be
seen in the provided example code.

6 Project Setup

The following sections detail how to configure a project using the provided video
blocks.

6.1 Qsys

In Qsys, in addition to the components required for a simple Nios II system,
you must also instantiate a second clock input, a second Avalon ALTPLL,
a ci_frame_done custom instruction, a video_fb_streamer component, a
video_rgb_resampler component, and a video_vga_controller compo-
nent.

In figure 3, note that the 50MHz clock is the source of altpll_sys_dram,
whereas the 27TMHz clock is the source of altpll video. The c0 output of
altpll_video is only connected to the blocks that are part of the video output
pipeline, shown in figure 4.

Use Comnections Mame. Description Export Clock Base

B clk_50 (Clock Source: |~|
chin (Clock Input clk_50
ch_in_reset Reset Input reset_50
clc (Clock Output ck_50
ch _reset Reset Output
 clk_21 Clock Source
ch_in (Clock Input elk_21
ch_in_resst Reset Input reset_27
ol (Clock Output k27 L
—_——— chk_reset Reset Output I
B aitpil_sys_dram |Avalon ALTPLL
inchi_nterface (Clock Input clk_50
inck_interface_reset |Reset Input incl_irterfa
pl_slave (Avelon Memary Happed Slave incl_intera...
<o (Clock Output altpll_sys_dram_co atpl_sys_ar
ot (Clock Output altpl_sys_dr
— areset_condut (Conaut L]
— locked_condut Condut
— phassdone_condut |Condhit
B altpll_video Avelon ALTPLL
inck _intertace (Clock Input elk_21
inclk_interface_reset |Reset Input inct_intera...
pl_slave Avalon temory Wapped Slave incl_irterta
<0 (Clock Output altpl_viceo_c0)
— areset_condut (Conaut
— locked_condut (Condut
— phassdone_condut |Conchit
B nios2_agsys_0 |Nios Il Processor
ok (Clock Input altpll_sys_..
resetn Reset Input ek
data_master (Avalon Hemory Mapped Master [eh] 1R
instruction_master Avalon Memory Happed Master (E0]
| fag_cebug_module_re...Reset Output (=]
ftag_debug_module | Avalon Memory Mapped Siave ek 0x0110_8800
custom_instruiction_m... Custom Instruction Master
E si_frame_done_0 ci_frame_done
< (Custom Instruction Slave Opcode 0 |
-~ X gt loci |~
< I | I

Figure 3: Clock Connections for Qsys System

It is important to note how the each of the video output blocks are con-
nected to the rest of the system. The video_fb_streamer component has
two Avalon-MM Master interfaces on it. Interface dma0 must connect to the
SRAM component, while dmal must connect to the SDRAM component. This
allows the streamer component to talk to both memories simultaneously.

Another important thing to note is that the conduits of ci_frame_done
and video_fb_streamer are connected together. This needs to be present
because the custom instruction interfaces directly with the video streamer.

In addition to these things, it is important that the base memory address
for the SRAM and SDRAM components are locked. When you configure the

video_fb_streamer component, you must provide memory addresses for both
the SDRAM and SRAM video buffers. If the memory addresses for your RAM
components changed, then the streamer component would break. With the base
addresses shown in figure 4, you can configure the video_fb_streamer block

as shown in figure 5.

Use Connections Nane Description Export Clock Base
— phasedone_conaut_|Conaut - |
B nios2_gsys 0 MNios Il Processar
ck (Clock Input altpll_sys ..
reset_n Reset Inptt =
data_master \Avalon Memory Mapped Master (&N} 1RQ 0|
instruction_master |Avalon Memory Mapped Master &0}
| fta_diebug_mocuie_re...Reset Oulput (=0}
ftag_debug_module |Avalon Memory Mapped Slave (&0} 0x0110_8800
custom_instruction_m... Custom instruction Master
B o frame_done 0 [ci_frame_done
a (Custom Instruction Slave Opcode 0
—— ent conaut [clock]
clock (Clock Input altpll_sys_..
resst Reset Input [clock]
enchip_memery2 0 (On-Chip Memory (RAM or ROM) altpll_sys .. |« 0x0110_4000
Bl sdram_0 'SORAM Controler
ok Clock put anpil_sys .. |
resst Reset Input &n}
st \Avalon Hemory Mapped Siave (&0} & 0x0080_0000
wire conaut ‘sdram_o_wire
B sram_0 'SRAMISSRAM Contraler
clack_reset Clock put altpll_sys._...
clock reset reset [Resetinput [clock_reset]
extemnal irterface (Conduit sram_0_external interface
avalon_sram_slave |Avalon Memory Mapped Siave [clock_resst] |& 0x0108_0000
sysid_qsys_0 ‘System D Peripheral 0x0110_9028
mer_0 Interval Timer 0x0110_5000
ag_uart_o TAG UART 0x0110_0020
Bl video_fb_streamer 0 (video_fo_streamer
source \walon Streaming Source {pbx _cl]
e Clock nput anpll_sys .. L
reset Reset Input [elil I
pix_clk Clock nput alpil_video...
dma0 ‘Avalon Memory Mapped Master (En}
dmat \Avalon Hlemory Mapped Master (&0}
e et condut et
B video_rgb_resample... RGE Resampler
clack_reset Clock put altpll_video...
clock_reset reset |Reset Input [clock_reset]
= avalon_rgb_sink \Avalon Streaming Sk [clock_reset]
o~ avalon_rob_source __|Avalon Streaming Source [clock_resst]
G video_vga_controlls GA Controller
clack_reset (Clock Input altpll_video...
clock_reset reset Reset Input [clock_resst]
#———>| avalon_vga_sink \Avalon Streaming Sik [clock_reset]
external_irterface_(Conduit video_vga_controller 0_.. =

« Il

Figure 4: Connections for Qsys Video Blocks

Finally, the configuration for the video_rgb_resampler is shown in fig-
ure 6. This block must be configured to go from 8-bit colour to 30-bit colour, to
match the interfaces of the video_fb_streamer and the video_vga_controller.

6.2 Quartus

You can use the Qsys-provided VHDL template to instantiate your system. This
might look something like Listing 1 below.

Listing 1: Sample Top Level VHDL File

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY vga_pix buffer IS
PORT
(

—-— Clocks
CLOCK_50 in std_logic;
CLOCK_27 in std_logic;

SDRAM on board

video_fb_streamer - video_fb_streamer_0

“ video_fb_streamer

Megatars ViiEo_fh Streamer

Documertat,

ion

[~ Block Diagram

[] Show signals

Video_fb_streamer|

SRAM_BUF_START_ADDRESS: [0x01080000

SDRAM_BUF_START_ADDRESS! [0x00b00000

video_fl_strsamer_0 BITS _PER_PIXEL g
FRAME_WIDTH 6a0
C avalon_streaming |2t <oy FRAME_HEIGHT: 480 —
peset s auaton| N304
ix_clk dmal
xt

Figure 5: Configuration for video_fb_streamer

RGB Resampler - video_rgb_resampler.0

“ RGB Resampler
Magecore Aera_Up_avalon_videa 1 resanpler Documertation
[1/}| FParameters]
[Show signals Incoming Format ebtRoS |w
©utgoing Format: wonros |7
TR ff e Y Alpha \Value for Output:

lock reset sl avalon 1gh_source,

lock_reset reset

valon_rgb_sink e

T _avalon_video b esampler

H@ Info: video_rgh_resampler_0; 8 (bits) x 1 (planes) >

Figure 6: Configuration for video_rgb_resampler

DRAM_ADDR
DRAM_BA_0
DRAM_BA_1
DRAM_CAS_N
DRAM_CKE
DRAM_CLK
DRAM_CS_N
DRAM_DQ
DRAM_LDQM
DRAM_UDQM
DRAM_RAS_N
DRAM_WE_N

—-— SRAM on
SRAM_ADDR
SRAM_DOQ

SRAM_WE_N
SRAM_OE_N
SRAM_UB_N
SRAM_LB_N
SRAM_CE_N

out
out
out
out
out
out
out
inout
out
out
out
out

board
out
inout
out
out
out
out
out

std_logic_vector
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic_vector
std_logic;
std_logic;
std_logic;
std_logic;

std_logic_vector
std_logic_vector
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

(11 downto

(15 downto

(17 downto
(15 downto

0);

0);

0);
0);

—-— VGA output

VGA_R : out std_logic_vector (9 downto 0);
VGA_G : out std_logic_vector (9 downto 0);
VGA_B : out std_logic_vector (9 downto 0);
VGA_CLK : out std_logic;
VGA_BLANK : out std_logic;
VGA_HS : out std_logic;
VGA_VS : out std_logic;
VGA_SYNC : out std_logic;

—— Input buttons
KEY : in std_logic_vector (3 downto 0)

)i
END ENTITY vga_pix_buffer;
ARCHITECTURE arch OF vga_pix_buffer IS

COMPONENT vga_pix_buffer_ system IS

PORT (
clk_50_clk : in std_logic = 'X";
reset_50_reset_n : in std_logic = X'
clk_27_clk : in std_logic = X"
reset_27_reset_n : in std_logic = X,
sram_0_external_interface_DQ : inout
std_logic_vector (15 downto 0) := (others => ’"X’");
sram_0_external_interface_ADDR : out
std_logic_vector (17 downto 0);
sram_0O_external_interface_LB_N : out std_logic;
sram_0_external_interface_UB_N : out std_logic;
sram_0_external_interface_CE_N : out std_logic;
sram_0_external_interface_OE_N : out std_logic;
sram_0_external_interface_WE_N : out std_logic;
video_vga_controller_ 0_external_interface_CLK : out std_logic;
video_vga_controller_ 0_external_interface_HS : out std_logic;
video_vga_controller_ 0O_external_interface_VS : out std_logic;
video_vga_controller_ 0_external_interface_BLANK : out std_logic;
video_vga_controller_ 0O_external_interface_SYNC : out std_logic;
video_vga_controller_ 0_external_interface_R : out
std_logic_vector (9 downto 0);
video_vga_controller_ 0_external_interface_G : out
std_logic_vector (9 downto 0);
video_vga_controller_ 0_external_interface_B : out
std_logic_vector (9 downto 0);
sdram_0O_wire_addr : out
std_logic_vector (11 downto 0);
sdram_0_wire_ba : out
std_logic_vector (1 downto 0);
sdram_0_wire_cas_n : out std_logic;
sdram_0_wire_cke : out std_logic;
sdram_0O_wire_cs_n : out std_logic;
sdram_0O_wire_dg : inout
std_logic_vector (15 downto 0) := (others => ’"X’");
sdram_0_wire_dgm : out
std_logic_vector (1 downto 0);
sdram_0O_wire_ras_n : out std_logic;
sdram_0_wire_we_n : out std_logic;
altpll_sys_dram_cO0_clk : out std_logic

)i
END COMPONENT

-—- Signals to

vga_pix_buffer_system;

interface with DRAM

)i

SIGNAL BA std_logic_vector (1 downto 0);
SIGNAL DQM std_logic_vector (1 downto 0);
BEGIN
DRAM_BA_1 <= BA(1l);
DRAM_BA_0 <= BA(0);
DRAM_UDQM <= DQOM (1) ;
DRAM_LDQM <= DQM(0) ;
sys0 COMPONENT vga_pix_buffer_system
PORT MAP (
clk_50_clk => CLOCK_50,
reset_50_reset_n => KEY (0),
clk_27_clk => CLOCK_27,
reset_27_reset_n => KEY (0),
sram_0_external_interface_DQ => SRAM_DQ,
sram_0_external_interface_ADDR => SRAM_ADDR,
sram_0_external_interface_LB_N => SRAM_LB_N,
sram_0_external_interface_UB_N => SRAM_UB_N,
sram_0_external_interface_CE_N => SRAM_CE_N,
sram_0_external_interface_OE_N => SRAM_OE_N,
sram_0_external_interface_WE_N => SRAM_WE_N,
video_vga_controller_ 0_external_interface_CLK => VGA_CLK,
video_vga_controller 0O_external_interface_HS => VGA_HS,
video_vga_controller_ 0_external_interface_VS => VGA_VS,
video_vga_controller_ 0_external_interface_BLANK => VGA_BLANK,
video_vga_controller 0_external_interface_SYNC => VGA_SYNC,
video_vga_controller_ 0_external_interface_R => VGA_R,
video_vga_controller 0_external_interface_G => VGA_G,
video_vga_controller_0_external_interface_B => VGA_B,
sdram_0_wire_addr => DRAM_ADDR,
sdram_0_wire_ba => BA,
sdram_0_wire_cas_n => DRAM_CAS_N,
sdram_0_wire_cke => DRAM_CKE,
sdram_0_wire_cs_n => DRAM_CS_N,
sdram_0_wire_dg => DRAM_DQ,
sdram_0O_wire_dgm => DQM,
sdram_0_wire_ras_n => DRAM_RAS_N,
sdram_0_wire_we_n => DRAM_WE_N,
altpll_sys_dram_cO_clk => DRAM_CLK

END ARCHITECTURE arch;

6.3 Nios II SBT for Eclipse
When you create a new “Nios II Application and BSP from Template” project

in Eclipse, you

must manually configure the memory map used in the BSP

project. This configuration is shown in figure 7. In particular note the defini-

tions for sdram_video_0 and sdram_sys_0. This must match your planned

memory layout.

If you compare the memory addresses in figure 7 and the

SDRAM_VIDEO_OFFSET value in the sample code in Listing 2, they should refer
to the same location in memory.

7

Linker Memory Regions

Nios Il BSP Editor - settings.bsp x
Fie Edi Tools Help
Main ’/ Software Packages ’/ Drivers Enable File Ceneration ’/ Target BSP Directory ‘
Unker Section Mappings
Tker Sectoname = Tinter Region tiame Tiemary Devic Name Ada]
= [= —
.entr: re: 2.0
onenr Restors Defauts
.heap sdran_sys_0
. rodata sdran_sys_0
 radata sdran_sys_0
stack sdran_sys_0
text sdran_svs_0
Size (oytes) | Offcesthytes Ada]
524288

Giler Region Name Address Range ~ Wemory Device Name
sran 0 0x01080000 - 0XOLOFFFFF |sran_0 ! o
sdran_video_0 0X00BO0OOO - OXOOFFFFFF |sdran_0 5242880 3145728

sdran_sys_0 0x00800000 - OXOOAFFFFF [sdran_0 3145728 [—|
onchip_nenary2_0 000404020 - 0x00407FFF[anchip_nenory2_0 16352 2

reset 0X00404000 - 0x0040401F |onchin_nenory2_0 » 0| Add Memory Device.

Remove Memory Device

Memory Usage

Grayed out entries are automatically created at generate time. They are not ecitable or persisted in the BSP settings file

nformation | Frobiems | Processing |

’6 Mapped module: "im er_0" to use the default driver version

(@ Mappedt module:sysid_qsy_0° o use the default driver version
(@ Mappedt module:tag_uart_0* o use the defaut ariver version
© Finished losding drivers from ensembie report

I D

Figure 7: BSP Linker Configuration

Sample Code

The following code shows how you might draw a simple animation to the video
output.

/ *

*

Xk kX

Listing 2: Sample Program that Generates a Moving Line
This test program generates a simple pattern to test for tearing.
The video pattern consists of a white vertical line that will move

from side to side along the frame. If there is tearing, the line
will appear broken at some points in time.

#include <io.h>
#include <system.h>

#define

SDRAM_VIDEO_OFFSET 0x300000

#define FRAME_WIDTH 640

#define FRAME_HEIGHT 480
#define COLOR_BLACK 0x00
#define COLOR_WHITE OxFF

int main ()

{

int row
int col =

0;
0;

// Clear the screen

for (row = 0; row < FRAME_HEIGHT; row++)

{

}

for (col = 0; col < FRAME_WIDTH; col = col + 4)
{
TOWR_32DIRECT (SDRAM_O_BASE, SDRAM_VIDEO_OFFSET + row =
FRAME_WIDTH + col, COLOR_BLACK) ;

ALT_CI_CI_FRAME_DONE_O; // Custom command to trigger frame swap

// Draw pattern
unsigned int position = 0;
while (1)

{

for (row = 0; row < FRAME_HEIGHT; row++)
{
// Clear previous position of line
if (position == 0) {
TOWR_8DIRECT (SDRAM_0_BASE, SDRAM _VIDEO_OFFSET + row =*
FRAME_WIDTH + FRAME_WIDTH - 8, COLOR_BLACK) ;
} else {
IOWR_8DIRECT (SDRAM_O0_BASE, SDRAM_VIDEO_OFFSET + row =
FRAME_WIDTH + position - 8, COLOR_BLACK) ;
}
// Draw new line
IOWR_S8DIRECT (SDRAM_O_BASE, SDRAM_VIDEO_OFFSET + row * FRAME_WIDTH
+ position, COLOR_WHITE) ;

position = (position + 8) % 640;
ALT_CI_CI_FRAME_DONE_O; // Trigger frame swap

return 0;

References

[1] TinyVGA, “Vga signal 640 x 480 @ 60 hz industry standard timing.” http:

2]

//tinyvga.com/vga-timing/640x480@60Hz. Accessed: 2016-02-20.

Altera, “Video ip cores for altera de-series boards.” ftp://ftp.altera.
com/up/pub/Altera_Material/12.1/University_Program_IP_
Cores/Audio_Video/Video.pdf. Accessed: 2016-02-20.

10

