
Sega Genesis
Controller
Interfacing
Mason Strong, Stephen Just 2016-04-02

1 Introduction

Figure 1: Genesis Controller

The Sega Genesis was an old 16-bit game con-
sole that was released in North America in
1989. [1]

This console features support for two
gamepads. Each gamepad has four direc-
tional buttons, a “Start” button, and either
three or six action buttons, depending on
model of controller. The three-button con-
troller has a much simpler interface than the
six-button controller, making use of a multi-
plexer and no other logic to access all of the
buttons. This document focuses only on the
three-button Genesis controller. The Genesis
controllers also use a standard DB-9 connector, unlike most other game consoles
which use proprietary connectors. [2]

2 Controller Interface

The Genesis controller uses a female DB-9 connector to interface with a Genesis
console or other device. The pins on this connector are configured as follows:

1



Pin Func (select low) Func (select high)

1 up button up button
2 down button down button
3 logic low left button
4 logic low right button
5 Power (+5 volts) Power (+5 Volts)
6 A button B button
7 select signal select signal
8 Ground Ground
9 Start button C button

While the controller was designed for +5 Volts for power, because of its
simple design, it is possible to determine that it is actually capable of 2 - 6
Volts. This is possible because the controller only contains a single 74HC157
multiplexer chip inside, whose datasheet specifies that the device is operable
within that range albeit with varying delay times. [3]

In order to read the buttons on a controller, the master device should apply
a logic high or low to the select pin of the controller, and then query the state
of each of the button pins. Then the master device can switch the state of the
select pin, and then query the values for the other buttons. When a button is
pressed, its value will be logic low. Buttons that are not pressed will appear as
a logic high. Note that reading the up and down buttons of the controller are
not affected by the select signal, as they are connected directly to the controller
plug and not through the multiplexer.

3 Notes

On a real Genesis console, the controller’s value is read once per video frame, or
60 times per second. That means that if you are trying to emulate a controller,
the emulated buttons should remain pressed for at least 1/60th of a second, to
ensure that the input is received by the console. Shorter button presses could
be missed entirely.

Be aware that the six-button gamepad has a more complicated interface pro-
tocol. The extra buttons are accessed by toggling the select line on the controller
three times in quick succession. If you want your application to tolerate six-
button controllers, take care not to do this. The six-button controllers should
not go in to this mode if you only toggle the select line once per frame. This
appnote targets the standard three-button genesis controllers and correspond-
ing protocol, and the supplied code examples have only been verified to handle
three-button controllers.

To simplify the example project, there is a simple process in the supplied
VHDL top-level file to generate a pulse every 50ms to trigger the Genesis con-
troller block, as opposed to connecting the block to a VSync signal.

2



4 System Requirements

4.1 Hardware

Ensure that you are in possession of a three-button genesis controller, and a
corresponding adapter board to interface the DB9 connector with the appropri-
ate GPIO pins on the DE2. Should an adapter board be unavailable, a 40-pin
header can be connected to two male DB9 connectors on a breadboard using
the pinout described by the schematic in Figure 2. Then, you can use a ribbon
cable to connect your breadboard to your DE2.

Figure 2: Connection Schematic

An Eagle project with a custom PCB design is included in pcb design.tar.gz,
found with this document.

4.2 Qsys

In order to interface with Genesis controllers, you may use the Qsys-compatible
IP Core supplied with the example code in the ip directory. This IP core is also
available standalone in the genesis ipcore.tar.gz archive supplied with
this document.

With the Genesis IP Core included in your project, you can connect it to
your Qsys system. Figure 3 shows how the Genesis Controller Interface can be
connected to your system.

4.3 Quartus

The Genesis controllers are connected to the DE2 via one of the GPIO ports. In
our system, we used GPIO 1. To ensure correct controller behaviour, the GPIO
connector should be configured as high-impedance by default, as is shown in
Listing 1.

As well, the FPGA’s internal weak pull-up resistors should be enabled to
ensure that the inputs are not floating when controllers are not plugged in to

3



Figure 3: Qsys System Connections

the system. This can be done by adding the lines in Listing 2 to your project’s
QSF file.

4



Listing 1: Entity for Top-Level

entity genesis_demo is
port
(

-- Clocks
CLOCK_50 : in std_logic;

-- SDRAM on board
DRAM_ADDR : out std_logic_vector (11 downto 0);
DRAM_BA_0 : out std_logic;
DRAM_BA_1 : out std_logic;
DRAM_CAS_N : out std_logic;
DRAM_CKE : out std_logic;
DRAM_CLK : out std_logic;
DRAM_CS_N : out std_logic;
DRAM_DQ : inout std_logic_vector (15 downto 0);
DRAM_LDQM : out std_logic;
DRAM_UDQM : out std_logic;
DRAM_RAS_N : out std_logic;
DRAM_WE_N : out std_logic;

-- Input switches and buttons
KEY : in std_logic_vector (3 downto 0);

-- Indicator LEDs
LEDR : out std_logic_vector (17 downto 0);

-- GPIO Port 1
GPIO_1 : inout std_logic_vector (35 downto 0) := (

others => ’Z’)
);

end genesis_demo;

Listing 2: Commands to Enable GPIO Pull-Up Resistors

set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[0]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[1]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[2]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[3]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[4]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[5]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[6]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[7]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[8]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[9]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[10]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[11]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[12]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[13]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[14]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[15]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[16]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[17]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[18]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[19]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[20]

5



set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[21]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[22]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[23]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[24]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[25]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[26]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[27]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[28]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[29]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[30]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[31]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[32]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[33]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[34]
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to GPIO_1[35]

The Qsys system containing the Genesis controller interface component in-
cludes the ports similar to the ones shown in Listing 3 within its component
declaration.

Listing 3: Qsys System Ports for Genesis Controller

genesis_0_trigger : in std_logic := ’X’;
genesis_0_dpad_up_input1 : in std_logic := ’X’;
genesis_0_dpad_down_input1 : in std_logic := ’X’;
genesis_0_dpad_left_input1 : in std_logic := ’X’;
genesis_0_dpad_right_input1 : in std_logic := ’X’;
genesis_0_select_input1 : out std_logic;
genesis_0_start_c_input1 : in std_logic := ’X’;
genesis_0_ab_input1 : in std_logic := ’X’;
genesis_0_dpad_up_input2 : in std_logic := ’X’;
genesis_0_dpad_down_input2 : in std_logic := ’X’;
genesis_0_dpad_left_input2 : in std_logic := ’X’;
genesis_0_dpad_right_input2 : in std_logic := ’X’;
genesis_0_select_input2 : out std_logic;
genesis_0_start_c_input2 : in std_logic := ’X’;
genesis_0_ab_input2 : in std_logic := ’X’;

The instance of the Qsys system defines which pins on the DE2’s GPIO
header are connected to the pins on the Genesis controllers. The configuration
used for our interface PCB is shown in Listing 4.

Listing 4: Port Map Configuration

genesis_0_trigger => genesis_poll_trigger,
genesis_0_dpad_up_input1 => GPIO_1(35),
genesis_0_dpad_down_input1 => GPIO_1(31),
genesis_0_dpad_left_input1 => GPIO_1(27),
genesis_0_dpad_right_input1 => GPIO_1(25),
genesis_0_select_input1 => GPIO_1(29),
genesis_0_start_c_input1 => GPIO_1(23),
genesis_0_ab_input1 => GPIO_1(33),
genesis_0_dpad_up_input2 => GPIO_1(13),
genesis_0_dpad_down_input2 => GPIO_1(9),
genesis_0_dpad_left_input2 => GPIO_1(5),
genesis_0_dpad_right_input2 => GPIO_1(3),
genesis_0_select_input2 => GPIO_1(7),

6



genesis_0_start_c_input2 => GPIO_1(1),
genesis_0_ab_input2 => GPIO_1(11),

4.4 Nios II SBT

A sample project is included in the companion code to read the Genesis con-
trollers connected to the system, and output to the red LEDs on the DE2. This
is located in the software directory of the companion code package. Import
the project and its BSP into a new workspace.

5 C Driver API

A driver is provided with the Genesis IP Core. To make use of this driver,
include genesis.h into your project. genesis.h is automatically added to
your BSP when you include the Genesis IP Core in your system. Listing 5
provides an example of how you might read the state of two Genesis controllers
in software.

Listing 5: Reading Genesis Controller Example

#include <stdio.h>
#include <system.h>
#include <genesis.h>

int main(void)
{

// Initialize the Genesis controller interface
genesis_open_dev(GENESIS_0_NAME);

genesis_controller_t player1, player2;
while (1)
{

// Poll the status of each Genesis controller
player1 = genesis_get(GENESIS_PLAYER_1);
player2 = genesis_get(GENESIS_PLAYER_2);

// Check which buttons are pressed on controller 1
if (player1.up){
printf("1 Up was pressed\n");

}
if (player1.down){
printf("1 Down was pressed\n");

}
if (player1.left){
printf("1 Left was pressed\n");

}
if (player1.right){
printf("1 Right was pressed\n");

}
if (player1.a){
printf("1 A was pressed\n");

}

7



if (player1.b){
printf("1 B was pressed\n");

}
if (player1.c){
printf("1 C was pressed\n");

}
if (player1.start){
printf("1 Start was pressed\n");

}

// Check which buttons are pressed on controller 2
if (player2.up){
printf("2 Up was pressed\n");

}
if (player2.down){
printf("2 Down was pressed\n");

}
if (player2.left){
printf("2 Left was pressed\n");

}
if (player2.right){
printf("2 Right was pressed\n");

}
if (player2.a){
printf("2 A was pressed\n");

}
if (player2.b){
printf("2 B was pressed\n");

}
if (player2.c){
printf("2 C was pressed\n");

}
if (player2.start){
printf("2 Start was pressed\n");

}
}

return 0;
}

8



References

[1] D. Cohen, “History of the Sega Genesis.” http://classicgames.
about.com/od/consoleandhandheldgames/p/History-Of-The-
Sega-Genesis-Dawn-Of-The-16-Bit-Era.htm. Accessed: 2016-01-
23.

[2] C. Rosenberg, “Sega six button controller hardware info.” https://www.
cs.cmu.edu/˜chuck/infopg/segasix.txt. Accessed: 2016-01-18.

[3] Toshiba Corporation, “TC74HC157AP Datasheet.” http://
toshiba.semicon-storage.com/info/docget.jsp?did=10768&
prodName=TC74HC157AP. Accessed: 2016-01-15.

9


