CSP Python Getting Started

Bryson Peeters

Download and Install

Download and install Python 2: https://www.python.org/
We were using using 2.7.8 but any Python 2 installation should work.

Next you want to install Git if you haven’t already:http://qgit-scm.com/

And finally we will use Git to acquire the CSP source. Open a terminal and navigate to a
directory where you wish to install the source and run the command:
git clone https://github.com/GomSpace/libcsp.git

CSP is available on Github at https://github.com/GomSpace/libcsp if you wish to browse
through the repository.

Next we need to configure and build the source. CSP uses a Python build management tool
named Waf. You can configure and build/install CSP and its Python bindings by running the
following commands:

./waf configure --toolchain= --with-os=posix --prefix=install
--enable-promisc -—-install-csp --enable-bindings --enable-rdp

./waf build +install

We were building CSP on Lubuntu 14.10 so we left the toolchain blank and set the OS to
posix. Modify the options to waf as needed. More configuration options are available in the
wscript file in the main directory.

--prefix=install: sets the directory to where CSP will be installed

--enable-bindings: enables the Python bindings

--enable-promisc: the Python bindings are dependent on this being enabled in the build.
--install-csp: installs the csp header

--enable-rdp: builds with RDP communications included. Default is UDP.

In the main directory create a file simple.py and copy the provided source code below into
the the file. At this point everything should be ready to go and the sample application can be
run via:

python simple.py

https://www.python.org/
http://git-scm.com/
https://github.com/GomSpace/libcsp.git
https://github.com/GomSpace/libcsp

Note: The provided source code is running CSP in UDP mode even though CSP has been
built with RDP included. To enable RDP you can change the options on the connection and
socket objects. Connections and sockets with the correct options have been included in
comments within the code. At this time though we have found that while changing these
options in the C examples successfully enables RDP, in the Python bindings we hang waiting
for a connection. This is yet to be resolved.

Note: the python bindings provided by CSP may look for an incorrectly named library
(libpycsp.so) when the correct name is libcsp.so. This can easily be corrected by editing the
import library name on line 189 of pycsp.py.

Source Code
[simple.py]

import imp

import sys

import threading
import traceback

from array import array
from ctypes import *

Append the path to the CSP install libraries
sys.path.append('src/csp/install/lib’)

Import the CSP Bindings
pycsp = imp.load_source('pycsp’, 'src/csp/bindings/python/pycsp.py')

MY_ADDRESS = 1
MY_PORT = 10

class ClientThread(threading.Thread):
def init (self, threadID, name, counter):
threading.Thread. init (self)
self.threadID = threadID
self.name = name
self.counter = counter

def run(self):
try:
conn = pycsp.csp_connect(pycsp.CSP_PRIO_NORM, MY_ADDRESS, MY_PORT,
10000, 0)
#conn = pycsp.csp_connect(pycsp.CSP_PRIO_NORM, MY_ADDRESS, MY_PORT,
1000, pycsp.CSP_O_RDP)

foriin range(20):
p_packet = POINTER(pycsp.csp_packet_t)

if pycsp.csp_buffer_remaining() > 0:
packet_addr = pycsp.csp_buffer_get(100)

packet = cast(packet _addr, p_packet)

msg = "Hello " + str(i)

#print "Client sending: " + msg
msg_str_bytes = array("B", msg)

msg_byte array = bytearray(msg_str_bytes)

raw_bytes = (c_ubyte * 256)(*(msg_byte_ array))

packet.contents.data = raw_bytes
packet.contents.length = sizeof(raw_bytes)
pycsp.csp_send(conn, packet, 1000)
except pycsp.NullPointerException:
print 'Client error.'
print traceback.format_exc()

print 'Closing connection on client'
pycsp.csp_close(conn)

class ServerThread(threading.Thread):
def init (self, threadID, name, counter):
threading.Thread. init (self)
self.threadID = threadID
self.name = name
self.counter = counter

def run(self):
socket with no socket options
socket = pycsp.csp_socket(0)
#socket = pycsp.csp_socket(pycsp.CSP_SO_RDPREQ)

bind all ports to the socket
pycsp.csp_bind(socket, pycsp.CSP_ANY)

start listening with a 10 connection queue
pycsp.csp_listen(socket, 10)

wait for a connection, timeout 10s
conn = pycsp.csp_accept(socket, 10000)
while 1:
try:
packet = pycsp.csp_read(conn, 1000)
port = pycsp.csp_conn_dport(conn)
if port is MY_PORT:
data = bytearray(packet.contents.data)
print "Found packet: " + data
pycsp.csp_buffer_free(packet)
else:
pycsp.csp_service_handler(conn, packet)
except pycsp.NullPointerException:
print "No packets left to read"
break
print 'Closing connection on Server'
pycsp.csp_close(conn)

initialize and kick everything off

Init buffer with 10 packets of 256 bytes
pycsp.csp_buffer_init(10, 256 + pycsp.CSP_BUFFER_PACKET_OVERHEAD)

Init CSP with address 1
pycsp.csp_init(MY_ADDRESS)

Start router task with 500 word stack, OS task priority 1
pycsp.csp_route_start_task(500, 1)

print 'Starting Server...'

server = ServerThread(1, 'Server Thread', 1)
server.start()

print 'Server started.’

print 'Starting client...'
client = ClientThread(2, 'Client Thread', 2)

client.start()
print 'Client Started.'

Author: Bryson Peeters

