Altera DE2 I2C Driver

Daniel Fiske
Michael Lam
Daniel Tiam

Preface

This application note is based on the previous application note! released by Braedan Jongerius, Michael
Jun and Scott Hewson in the winter semester of 2013. The 12C driver was refactored and extended to
include additional 12C behaviour.

Changes include:

e Explicitly start and stop bus transactions

e Read/write directly to devices in addition to internal device registers
e Continue previous read/write transactions

e Clock stretching support

The Original i2c.c and i2c.h files were written by Altera. The files can be found in
C:\altera\DE2_v.2.0.2_ CDROM\DE2_demonstrations\DE2_SD_Card_Audio\software\DE2_SD_Card_Aud
io\terasic_lib

Table of Contents

2 F 1ol =04 o TU T o U 4
(o FoT1<Tot AN Y= AU o FO PP PP POPPPPPPTN 5
Y S et et e aaaeaaaaanaaanns 5

(0 T o AU OO PO PRUPRRTR 5
Lo T LY = I (oY ol 111 < SRR 5
SOTEWAIE APttt sttt e b e s bt e s bt e s a et st e et e e bt e e be e e ae e e et e et e e bt e nh e e eheesane e b e e beenes 6
(VLo 1o I A O =Y PP 6
1701 To I P4 O] o o TR RSP UPP 6
DOO! [2C _WIIEETODEVICE ..eeiietieei ittt ettt ettt e ettt e e e ettt e e s et e e e e st teeeesbteeeessteeeesasteaessstaeessassaeessnssaeessnnes 6
DOO! [2C_WritE@TODEVICEREGISLEN ...vviiiiiiiee ettt e e e bte e e e s bte e e e sbteeeesbteeesssraeessanes 6
DOOI I2C WIEEIMIOIE ...ttt ettt et e e ettt e e e et e e e e ettt e e e e eabaeeeeeateeeeesteeasenseaseeanstneesastneesasrneenannes 7
DOOI [2C _REAAFIOMDEVICE.ieiiieiiieecetieee ettt ettt e e eectt e e e et e e e e e bteeeeebteeeeebteeeeeseeeeeanssaeeesastasessssanaesnes 7
00! [2C_REAAFIrOMDEVICEREZISTEN .cc..etiieeeeieee ettt e e e e tte e e e ebte e e e ebtae e e eabaaeeeesraeeeeanes 7
(V0o 1o I A O 2 (=T 11V o] o TSP SP 7
Y10 0Y o] LI Y o B e Vo [PPSR 8
2 (ol o PP T PP OPPTT PP 8

Lo 1 7 o PP P PP OTUPT PP 9

(RS =YY (o= SRR 12

Background

Inter-Integrated Circuit (12C) is a serial bus protocol developed by NXP Semiconductors (formerly Philips)
that supports multiple masters and slaves using only 2 lines. These 2 lines are the Serial Data Line (SDA)
and the Serial Clock Line (SCL). The SDA line is bi-directional and is used for transferring data between
master and slave devices. The SCL line is used for synchronizing data transfers. While the SCL line is
always driven by a master device, slave devices can hold the line low in a technique called clock
stretching. Slave devices stretch the clock to force the master to wait until they are ready to proceed.
The I12C protocol does not define a time limit for clock stretching. Furthermore, 12C devices are assigned
7-bit addresses used by a master device to select which slave should get the bus. An additional 8th bit
differentiates between read and write operations. This is shown in Table 1. Consult the datasheet for
your device to determine its 12C address.

Slave Address Effective Write Address Effective Read Address

ObXXXXXXX ObXXXXXXX0 ObXXXXXXX1

Table 1: Device Addressing

The SDA and SCL lines are open-drain and thus require external pull-up resistors. A single resistor is
attached between each line and the input high voltage required for your devices. 12C devices typically
operate on +3.3V or +5V and therefore common pull-up resistor values are 1.8kQ, 4.7kQ or 10kQ. An
example configuration is shown in Figure 1.

+av
Rp [l]l?p . . .
Device 1 Device 2 Device 3
ScL | |
S0A,

Figure 1: External Pull-up Resistors!?!

I2C transactions are initiated by a master device. A transaction begins with an 12C start sequence where
the SDA line goes low while the SCL line is high. Transactions end when the master device sends the 12C
stop sequence where the SDA line goes high while the SCL line is high. Figure 2 denotes these sequences
as S and P respectively. During data transfer, the SDA line must remain stable when the SCL line is high.
Furthermore, data is transferred in 8 bit sequences starting with the MSB. After each 8 bit transfer, the
receiver will send a single acknowledgement bit.

soa

S5CL

I= = =

D = 1] J:hou

L
g

o

Figure 2: Device Transaction Sequencel®

Project Setup

Qsys
1. Add a PIO from the component library under Peripherals > Microcontroller Peripherals > PIO:
I. Set Width to 1 bit. Set Direction to output. Click finish.
1. Rename the component to something more descriptive such as '12C_SCL".
Il Hookup the component, remembering to export the conduit.
2. Add asecond PIO:
I. Set Width to 1 bit. Set Direction to bidir. Click finish.
Il. Rename the component to something more descriptive such as '12C_SDA'.
Il Hookup the component, remembering to export the conduit.

B 12C_SCL PIC (Parallel VO
L — clk Clock Input
[reset Reset Input
51 Avalon Memory Mapped Slave
external_connection Conduit Endpoint i2zc_scl_conduit
B 12C_SDA PIO (Parallel 1O}
»— clk Clock Input
reset Reset Input
Ly 21 Avalon Memory Mapped Slave
external_connection Conduit Endpoint i2e_sda_conduit

Figure 3: Qsys Interconnect

3. If you have conflicting addresses, simply click System > Assign Base Addresses.
4. Generate the SOPC.

Quartus
In your top level .vhd file:

1. Add'GPIO_O0:inoutstd_logic_vector(35 downto 0) := (others => 'X');' to the project's top level
entity ports.

2. Add'I2C_SCL: out std_logic;' and 'l2C_SDA : inout std_logic := 'X";' to the Niosll component
declaration ports.

3. Add'I2C_SCL => GPIO_0(X1)" and 'l2C_SDA => GPIO_(X2)' to the Niosll component instantiation
port map where X1 and X2 are integers corresponding to available GPIO pins.

4. Compile the design.

NioslI SBT for Eclipse

Download 12C.c and 12C.h and add them to your project. Include I12C.h where necessary.

Software API

void I2C_Start

Parameter

Description

alt_u32 clk_base

Base address of the 12C_SCL PIO

alt_u32 data_base

Base address of the 12C_SDA PIO

Initiates a new transaction.

void I12C_Stop

Parameter

Description

alt_u32 clk_base

Base address of the 12C_SCL PIO

alt_u32 data_base

Base address of the 12C_SDA PIO

Ends the current transaction.

bool I2C_WriteToDevice

Parameter

Description

alt_u32 clk_base

Base address of the 12C_SCL PIO

alt_u32 data_base

Base address of the 12C_SDA PIO

alt_8 deviceAddr

Effective write address of slave device

alt_u8* pData

Data buffer to write from

alt_ul6len

Number of bytes to write

Writes the specified number of bytes from the data buffer to the slave device addressed.

Usage: Call 12C_Start first. Call 12C_Stop when finished to release the bus.

bool 12C_WriteToDeviceRegister

Parameter

Description

alt_u32 clk_base

Base address of the 12C_SCL PIO

alt_u32 data_base

Base address of the 12C_SDA PIO

alt_8 deviceAddr

Effective write address of slave device

alt_8 controlAddr

Address of internal register on slave device

alt_u8* pData

Data buffer to write from

alt_ul6len

Number of bytes to write

Writes the specified number of bytes from the data buffer to an internal register on the slave device

addressed.

Usage: Call 12C_Start first. Call 12C_Stop when finished to release the bus.

bool I2C_WriteMore

Parameter

Description

alt_u32 clk_base

Base address of the 12C_SCL PIO

alt_u32 data_base

Base address of the 12C_SDA PIO

alt_u8* pData

Data buffer to write from

alt_ul6len

Number of bytes to write

Writes the specified number of bytes from the data buffer to the last addressed slave device.

Usage: Call 12C_WriteToDevice or 12C_WriteToDeviceRegister first. Call I2C_Stop when finished to

release the bus.

bool I2C_ReadFromDevice

Parameter

Description

alt_u32 clk_base

Base address of the 12C_SCL PIO

alt_u32 data_base

Base address of the 12C_SDA PIO

alt_8 deviceAddr

Effective write address of slave device

alt_u8* pBuf

Data buffer to read into

alt_ul6len

Number of bytes to read

Reads the specified number of bytes into the data buffer from the slave device addressed.

Usage: Call 12C_Start first. Call 12C_Stop when finished to release the bus.

bool I12C_ReadFromDeviceRegister

Parameter

Description

alt_u32 clk_base

Base address of the 12C_SCL PIO

alt_u32 data_base

Base address of the 12C_SDA PIO

alt_8 deviceAddr

Effective write address of slave device

alt_8 controlAddr

Address of internal register on slave device

alt_u8* pBuf

Data buffer to read into

alt_ul6len

Number of bytes to read

Reads the specified number of bytes into the data buffer from an internal register on the slave device

addressed.

Usage: Call 12C_Start first. Call 12C_Stop when finished to release the bus.

void I2C_ReadMore

Parameter

Description

alt_u32 clk_base

Base address of the 12C_SCL PIO

alt_u32 data_base

Base address of the 12C_SDA PIO

alt_u8* pBuf

Data buffer to read into

alt_ul6len

Number of bytes to read

Reads the specified number of bytes into the data buffer from the last addressed slave device.

Usage: Call 12C_ReadFromDevice or 12C_ReadFromDeviceRegister first. Call I2C_Stop when finished to

release the bus.

Sample API Code

Sample Project

Included in the app notes is the 2014w G5 partial project (G5_2014w_12C_NFC.qgar).
This project contains working 12C for the real time clock and NFC communication.
Areas of interest:

e main.c

e hw/rtc.c - uses I2C code

e hw/pn532.c - uses more advanced 12C code

e hw/i2c/i2c.h - contains the modified Altera 12C code
e hw/i2c/i2c.c - contains the modified Altera 12C code

App note readers who do not have similar hardware can use the oscilloscope to read 12C transactions
from the running project.

Rtc.c

The following sample code is a snippet from Group 5 2014’s rtc.c code. It contains two functions, one
that writes and another that reads to the RTC Module through I2C. The time conversion functions are
not shown since they are application specific, and do not affect the I2C communication. Note that
additional calls to I12C_Start are considered restart sequences without releasing the bus.

#include <time.h>
#include "i2c/I2C.h"

#define RTC_SCL BASE I2C RTC_SCL_BASE
#define RTC_SDA BASE I2C RTC SDA BASE

#define RTC_I2C ADDR 0xDO
#define RTC_REG BASE 0x00
#define RTC_REG LEN 7
#define RTC_DST 0x08

bool setRtcFromStruct (struct tm rtcTime)

{
alt u8 timeReg[RTC REG LEN];

timeReg [RTC_SECONDS] = setSeconds(rtcTime.tm sec);
timeReg [RTC_MINUTES] = setMinutes(rtcTime.tm min);
timeReg [RTC_HOURS] = setHours (rtcTime.tm hour);
timeReg [RTC DAY] = setDay(rtcTime.tm wday);
timeReg[RTC DATE] = setDate(rtcTime.tm mday) ;
timeReg[RTC MONTH] = setMonth(rtcTime.tm mon);
timeReg [RTC_YEAR] = setYear (rtcTime.tm year);

I2C Start (RTC_SCL BASE, RTC_SDA BASE);
if (!I2C WriteToDeviceRegister (RTC_SCL BASE, RTC_SDA BASE, RTC_I2C ADDR,
RTC REG BASE, timeReg, RTC REG LEN))
return false;

I2C Start (RTC_SCL BASE, RTC_SDA BASE);
if (!I2C WriteToDeviceRegister (RTC SCL BASE, RTC SDA BASE, RTC I2C ADDR,
RTC DST, (alt u8*)s&rtcTime.tm isdst, 1))
return false;

I2C Stop (RTC_SCL BASE, RTC_SDA BASE);

return true;

}

bool getRtcToStruct (struct tm* rtcTime)

{
alt u8 timeReg[RTC REG LEN];

I2C_Start (RTC_SCL BASE, RTC_SDA BASE);
if (!I2C ReadFromDeviceRegister (RTC_SCL BASE, RTC SDA BASE, RTC I2C ADDR,
RTC REG BASE, timeReg, RTC REG LEN, true))
return false;

I2C_Start (RTC_SCL BASE, RTC_SDA BASE);
if (!I2C ReadFromDeviceRegister (RTC_SCL BASE, RTC SDA BASE, RTC I2C ADDR,
RTC DST, (alt u8*)s&rtcTime->tm isdst, 1, true))
return false;
I2C_Stop (RTC_SCL BASE, RTC SDA BASE);

rtcTime->tm sec = getSeconds (timeReg[RTC SECONDS]) ;
rtcTime->tm min = getMinutes (timeReg[RTC MINUTES]) ;
rtcTime->tm hour getHours (timeReg [RTC_ HOURS]) ;
rtcTime->tm wday = getDay (timeReg[RTC _DAY]);
rtcTime->tm mday getDate (timeReg[RTC DATE]);
rtcTime->tm mon = getMonth (timeReg[RTC MONTH]) ;
rtcTime->tm year = getYear (timeReg[RTC YEAR]);

return true;

Pn532.c

The following sample code is a snippet from Group 5 2014’s pn532.c code. It illustrates the use of the
I12C_ReadMore() function. Note that I2C_Start() is not called between 12C_ReadMore() calls and
I12C_Stop() is called on failures to end the 12C communication.

#include "i2c/I2C.h"

#define PN532 I2C_ADDR 0x48

#define PN532 SCL BASE I2C_NFC_SCL_BASE
#define PN532 SDA BASE I2C_NFC_SDA BASE
#define PN532 MAX DATA SIZE 255

#define PN532 MAX FRAME SIZE 262

#define PN532 FRAME HEADER SIZE 5

#define PN532 FRAME FOOTER SIZE 2

#define PN5327PREAMBLE 0x00

#define PN532 STARTCODEL 0x00

#define PN5327STARTCODE2 O0xXFF

#define PN532 POSTAMBLE 0x00

#define PN5327PN532TOHOST 0xD5

bool readResponse ()
{
alt u8 statusByte;
alt u8 datalen;
alt u8 checksum;
alt u8 checksumRcvd;

memset (frameBuffer, 0, PN532 MAX FRAME SIZE);
memset (dataBuffer, 0, PN532 MAX DATA SIZE);

I2C_Start (PN532 SCL BASE, PN532 SDA BASE) ;

I2C ReadFromDevice (PN532 SCL BASE, PN532 SDA BASE, PN532 I2C ADDR, &statusByte,
1, false);

if (statusByte != PN532 STATUS READY)
I2C Stop (PN532 SCL BASE, PN532 SDA BASE);
return false;

}

I2C ReadMore (PN532 SCL BASE, PN532 SDA BASE, frameBuffer,
PN532 FRAME HEADER SIZE, false);

if (frameBuffer[0] != PN532 PREAMBLE || frameBuffer[l] != PN532 STARTCODELl ||
frameBuffer[2] != PN532 STARTCODEZ2)
{
printf ("Invalid preamble\n");
I2C_Stop (PN532 SCL_BASE, PN532 SDA BASE);
return false;

}

datalLen = frameBuffer[3];

if (frameBuffer([4] != (alt u8)~dataLen + 1)

{
printf ("Invalid length check\n");
I2C Stop (PN532 SCL BASE, PN532 SDA BASE);
return false;

}

I2C ReadMore (PN532 SCL BASE, PN532 SDA BASE, frameBuffer +
PN532 FRAME HEADER SIZE, dataLen + PN532 FRAME FOOTER SIZE, true);
I2C Stop (PN532 SCL _BASE, PN532 SDA BASE);

if (frameBuffer[5] != PN532 PN532TOHOST || frameBuffer[6] != (lastCommand + 1))
{

printf ("Invalid identifier\n");

return false;

}

checksumRcvd = frameBuffer [PN532 FRAME HEADER SIZE + datalLen +
PN532 FRAME FOOTER SIZE - 2];

checksum = PN532 PREAMBLE;

checksum += PN532 STARTCODEL;

checksum += PN532 STARTCODEZ2;

checksum += PN532 PN532TOHOST;

int 1i;
for (i1 = 0; 1 < datalen; 1i++)
{
checksum += frameBuffer [PN532 FRAME HEADER SIZE + i];
}

if (checksumRcvd != (alt u8)~checksum)

printf ("Invalid checksum\n");
return false;

}

if (frameBuffer [PN532 FRAME HEADER SIZE + datalen + PN532 FRAME FOOTER SIZE -
1] != PN532 POSTAMBLE)

{

printf ("Invalid postamble\n");
return false;

memcpy (dataBuffer, frameBuffer + PN532 FRAME HEADER SIZE, datalen);
return true;

References

[1] https://www.ualberta.ca/~delliott/local/ece492/appnotes/2013w/G6 12C Device Integration/
[2] http://www.robot-electronics.co.uk/acatalog/I2C Tutorial.html
[3] http://en.wikipedia.org/wiki/I%C2%B2C

https://www.ualberta.ca/~delliott/local/ece492/appnotes/2013w/G6_I2C_Device_Integration/
http://www.robot-electronics.co.uk/acatalog/I2C_Tutorial.html
http://en.wikipedia.org/wiki/I%C2%B2C

