Altera DE2:
ISP1362 USB Controller
Application Notes

By: G16
Tarek Kaddoura
Jigar Nahar



Table of Contents
Introduction

Hardware Configuration
SOPC Builder
Top Level Modifications
Software Configuration
Hardware Test
Further Reading

References

N R R R R R



Introduction

The Altera DE2 Board containsa ISP1362 USB OTG Controller. The controller supports a wide range of
functionsas describedinthe reference manual. It canact as a USB host or act as a USB device. This document
describes the basicprocedure tosetup the ISP1362 in Quartus, as well as the software drivers necessary to get
it working.

Hardware Configuration
Terasichas provided the HDL and TCL files necessary to add the componentto a system through SOPC

builder. These files can be downloaded from:
https://www.ualberta.ca/~delliott/local /fece492/appnotes/2013w/USB ISP1362/1SP1362.tar

SOPC Builder

Note: The following steps only show what needsto be added to getthe ISP1362 working. They assume
that a NIOSII processorand other components (such as RAM) have already been added to the system.

1. Inthedownloadedfile, thereisafoldernamedISP1362. Copy thisfoldertothe root of your
Quartus project.

2. InQuartus, go to Tools = SOPC Builder.

3. Inthecomponentlistin SOPCBuilder, there should be anew category: Terasic Technologies.
Under this categoryisthe ISP1362 component. Add this componentto the system.

4. Generate the system.

5. Addthe generatedfilestoyourproject.

Top Level Modifications
Now that the componenthas beenadded, itneeds to be connected through the top level HDLfile.

Note: The followinginstructions assume that the ISP1362 componentwas named “isp1362” in SOPC
Builder. Also, all necessary code is shownin VHDL.

1. Addthe pinsnecessaryinyourtop level entity.
2. Addthe necessarysignalsintoyoursystemcomponent.
3. Connectthe pinsas shownbelowinthe VHDLcode.

The ISP1362 componentshould now be connected. The final stepis to program the board with the new
configuration.

Software Configuration
Afteraddingthe componenttothe system, the software drivers are notadded automatically in the
NIOS Il IDE. The following additions and initializations need to be done in software.


https://www.ualberta.ca/~delliott/local/ece492/appnotes/2013w/USB%20ISP1362/ISP1362.tar

1. Addallthe filesunderthe folderISP1362/software into yourroot project directory.

2. Ifyou namedyourcomponentsomething otherthan “ISP1362” in SOPCBuilder, then openthe
ISP1362_HAL.H file and add the line:

#define ISP1362_BASE SOPCNAME_BASE

Afterthe software modifications are complete, the ISP1362 should be working. The following section
will testthe chip.

Hardware Test

In orderto testifthe interface between the NIOSIland the ISP1362 is working, the chip ID of the USB
Chip will simply be read in software. In the reference manual of the ISP1362, the chip ID registeris supposed to
return 3630 in hex. Hence, if this shows up then the interface is working.

1. Start by creatinga simple Hello World projectinthe NIOS I IDE.

2. Performthe software modifications mentioned above.

3. Callthefollowingfunction wherever possible to watch the output on stdout
Hal4D13_RegAccess();

4. Compileandrunthe program on the board

The function Hal4D13 RegAccess() performs several functions. It will resetthe USB controller, print out
the chip id, checkthe chip RAM, and print which configuration modesthe chipisin.

Once the program runs, if the chip ID is readable and equal to 3630, thenthe interface to the ISP1362
isset up and working.

USB Device Hardware Test

Thissectionwill attemptto summarize how toinitializeaconnection with a USB device, and how to
read the device’s USBdescriptor. It will alsointroduce how to talkto a USB device with interrupts. The
instructions belowassume that the software drivers have already been added as explained in the Software
Configuration section.

Initializing a USB Device
In the ISP1362, there are three different types of transfers. Isochronous transfers, interrupt transfers,
and control/bulk transfers. Consequently, each transferhasits own buffer.

Initializing the USB device involves sending control packets to the device, which means the ATL buffer
will be used.

The basic procedure ininitializing a USB device is:

1. Initialize USB Hardware
a. Writeintothe HcResetregister OxOOF6. This resetsthe USB hardware.
i. wl6(HcReset, Ox00F6);



b. Callthereset_usb() function.
i. reset_usb();
2. Setupthe ATL buffer parametersforcontrol transfer
wi16(HcControl,0x6c0);
wil6(HcUpint,0x1a9);
wi16(HcBufStatus,0x00);
3. Setthe portthe USB deviceisonas operational
a. Thedriversinclude afunctionset_operational() that queries the ports and sets any port as
operational if it contains a device.
4. Enablethe port
a. Thefunctionenable_ port() enablesthe ports that have an active device onthem.
5. Assignanaddressto the USB device
a. Theassign_address() function will assign addresses to ports 1 and 2 respectivelyif adeviceis
active on either port.
b. assign_address(1, 2, 0);
i. Thiswill assignaddresses 1and 2 (from parameters) to ports 1 and 2 respectively.

Reading the USB Device Descriptor

Now that both the hardware and the device are initialized, the USB device descriptor of the device can be
read. The USB device contains many descriptors. The device descriptoris only one of the descriptors that can
be read.

In orderto read the device descriptor, simply use the get_control() functioninthe drivers. Thisfunction
has a prototype of
unsigned int get_control{unsigned int *rptr,unsignedint addr,char control_type,unsigned intextra,int

port);

The parameters are:
e rptr: buffertostore the descriptorin
e addr: The address of the USB device
e control_type:optiontochoose which descriptortoread. Can be one of the following characters:
o ‘D’: Device Descriptor
‘C’: Configuration Descriptor
‘S’:String Descriptor
‘I":Interface Descriptor
‘E’: Endpoint Descriptor

o O O O

o ‘H’: HID Descriptor (forhuman interface devices)

e extra: Extra parametersto be passed. This depends on the descriptorused. Forexample, togeta
string descriptor, the stringindex needsto be passed as the extra parameters. The stringindex can
be read fromthe device descriptor. Onthe otherhand, reading the device descriptor does not
need any extra parameters.

e port: The port the deviceison.



For example, we can call the function to read the device descriptorforadevice with addressof 2and a
port of 2:

e ret=get _control(rbuf,2,'D’, 0, 2);

e Thereturn value should be 0x300 only fora successful read. Now, the descriptor should be stored
inrbuf.

¢ Theresultobtainedisinthe form of a whole device descriptor. To see the structure of each
descriptor, read the following page: http://www.beyondlogic.org/usbnutshell/usb5.shtml

Writing to the USB Device

In orderto talkto the USB device, the USB device configuration needs to be setfirst. The USB device
can contain many configurations. These configurations can be extracted from the configuration descriptors of
the USB device. Also, the device descriptor contains a bNumConfigurations field which is how many
configurationsthere are on the device. Each configuration’s configuration valuecanthen be read from the
configuration descriptor. Inthissection, itisassumed that the device is using configuration 0.

In orderto setthe configuration of the device, call the following function: set_config(address, config);
This function sets the configuration fordeviceonaddress “address”.

e set config(2, 0);
o Thissetsthe configurationasOforthe device onaddress 2.

In addition to the configuration, the device’s endpoints need to be obtained. These are addresses than
define wherethe datagoesonthe device. Toread the write or read endpointaddresses, the endpoint
descriptorneedstobe read. All control packets usually use the endpoint 0x0 (e.g. forinitializing the device). In
thisexample, itisassumed thatthe write endpointfordatatransferisat Ox1.

Interrupts will be usedin orderto write tothe USB device. There are other methods notexplained
here, such as ATL bulk transfers and isochronous double-buffering transfers. Note that the name of Interrupt
Write is misleading. The interruptwrite isactually ablocking process.

The procedure forinterrupt writesis asfollows:

1. Setuptheinterruptparameters. There are three parametersthatneedtobe setup:
HcintSkip: Definesamap forthe bufferto choose which PTDs to send and which to not send.
HclntLast: Definesthe lastPTDin the buffer
HcIntBIkSize: Defines the size of the interrupt bulk
Forexample, forsendingonly one PTD we can use the following parameters:
i. unsignedlongint_skip=0xFFFFFFFE;
ii. unsignedlongint_last=0x00000001,;
iii. unsignedint int_blk_size=64;

o 0o T o

e. Then,theinterruptparameterscanbe setup:
i. w32(HcIntSkip,int_skip);
ii. w32(HcIntlast,int_last);
iii. wi16(HcIntBIkSize,int_blk_size);
2. Createaninterrupt PTD. The PTD containsthe header of the USB packet.


http://www.beyondlogic.org/usbnutshell/usb5.shtml

a. make_int_ptd(cbuf, OUT, EP, pbytes, 0, address, port, freq);

i. Thefunctioncreatesan OUT packet (forwriting), with an endpoint of EP, a payload of
size pbytesinbytes, and a frequency of freq. It then stores the resultin cbuf. The
frequency can be O forthis example.

3. Addthe payloadto the PTD. Simply append the payloadto the address “cbuf+4” (assuming cbufisan
integerarray).
4. Sendtheinterruptusingthe send_int() function.
a. send_int(cbuf, rbuf);

i. Thissendsthe PTD from cbuf that wasjust created. If there isany reply from the
device, itwill be storedin rbuf. But, there doesn’t have to be a replyin orderfor the
data to have beensent.

At this point, the datashould be successfully sent.

In orderto ease the configuration of a USB device, we have included aframework {Framework.c) in the
driversthatinclude wrapperfunctions around common tasks, such as initializing the device, readingit’s
descriptors, settingits configuration, orwritingtoit.

Further Reading
Alteraprovidestwo differentexamples on USBintegration. The projects are the
DE2_NIOS_HOST_MOUSE_VGA and DE2_NIOS_DEVICE_LED.

The first project uses USB Host in orderto interface with amouse. It performs different actions on left
or right mouse click. The second project uses USBin orderto communicate with acomputer.

Both projects provide a multitude of example code on how to communicate through the USB. They also
containimplementations of Chapter 9 of the USB Device Specificationsin Chap_9.c.

Note: The demonstration projects provided on the University labs are quite old, and will likely lead to
hardware or other compilation errors. Anewerversion of the demonstrations updated to support Quatus Il
10.0 are the DE2_70 demonstrations. Thesedemonstrations are notforthe Cylone ll, butthey contain
excellentexamples of updated code and drivers forthe newer Quartus. These demonstrations can be
downloaded from here: http://www.terasic.com/downloads/cd-rom/de2 70/DE2 70 demonstrations V10.rar

References
Datasheetforthe ISP1362: http: //www.cs.columbia.edu/~sedwards/classes/2013/4840/Philips-ISP1362-
USB-controller.pdf

Initial driversand HDL files:
http://www.terasic.com/downloads/cdrom/de2 70/DE2 70 demonstrations V10.rar



http://www.terasic.com/downloads/cd-rom/de2_70/DE2_70_demonstrations_V10.rar
http://www.cs.columbia.edu/~sedwards/classes/2013/4840/Philips-ISP1362-USB-controller.pdf
http://www.cs.columbia.edu/~sedwards/classes/2013/4840/Philips-ISP1362-USB-controller.pdf
http://www.terasic.com/downloads/cdrom/de2_70/DE2_70_demonstrations_V10.rar

