GPIO

Application Note for Altera DE2 Development and Education Board

Robert Miller
ECE 492 « University of Alberta * 21 March, 2013

Robert Miller ¢ email: rnmiller@ualberta.ca ¢ University of Alberta

mailto:rnmiller@ualberta.ca
mailto:rnmiller@ualberta.ca

GPIO

Application Note for Altera DE2 Development and Education Board

GENERAL PURPOSE INPUT/OUTPUT

The Altera DE2 board has two General Purpose Input/Output (GPIO) ports which can be
used as input or output. The GPIO pins can be used to read from different types of
sensors, and for writing output for digital control of various systems. There are also
various GPIO peripherals that can be interfaced with the Altera DE2. This application
note will guide you through the basic setup of GPIO pins using Altera SOPC Builder
10.1sp1, Quartus II Version 10.1, and the Nios II Integrated Development Environment.

1. Adding a PIO instance in SOPC Builder

Launch Altera SOPC Builder and add a P1IO File Edit Module System Miew Tools

[System Contents System Ceneration

instance by navigating to Library > Peripherals

> Microcontroller Peripherals > P1O (Parallel Skl

Project

I/0). Alternately you can type PIO in the 1l New component...
Library

search box. ¢ Peripherals

9 Microcontroller Peripherals
@ PIO (Parallel 1/0)

Robert Miller ¢ email: rnmiller@ualberta.ca * University of Alberta 2

mailto:rnmiller@ualberta.ca
mailto:rnmiller@ualberta.ca

After pressing ‘Add...” or double
clicking the PIO, you will be presented

with a screen to customize the instance.

In the ‘Basic Settings’ you can choose
the bit width of your PIO (1-32 bits -
how many pins do you want to use) and
the direction for these pins (in, out,

bidirectional).

If you are planning to use your GPIO as
an output signal (i.e drive a motor,
control a CMOS etc.) set the direction to
output and then click on ‘Finish’.
However, if you are using the GPIO as
input, you have a few more options to
choose from such as the edge type you
want to capture or if you want to use

this input to trigger an interrupt request.

Once you are done customizing your instance of a PIO, you can click on ‘Finish’ and

“ PIO (Parallel 1/0)

MegaCore’ altera_avalon_pio

Documentation

{' Block Diagram

[»

clock m=clk
reset =lreset

avalon e=s]

concluit B

external_connection

[~ Basic Settings

Width (1-32 bits):

Direction:

—

() Bidir
® Input
) InOut

) Output

Output Port Reset Value:

[

[+ output Regi

O

{' Edge capture register

[] synchronously capture

Edge Type:

O

[+ Interrupt

[] Generate IRQ
IRQ Type:

[=a]

Level: Interrupt CPU when any unmasked | /O pin is logic true
Edge: Interrupt CPU when any unmasked bit in the edge-capture

register is logic true. Available when synchronous capture is enabled

4]

SOPC builder will add the module to your design.

Use Connections Module Description Clock Base End IRQ
L B pio_0 PIO (Parallel 1/0)
clk Clock Input clk_0
— reset Reset Input [clk]
R — sl Avalon Memory Mapped Slave [clk] 0Ox00000000 (Ox0000000F

You may now right click on the default module name ‘pio 0’ and rename it as you wish.

For the remainder of this document, we will assume that our example is a 12 bit output

PIO called ‘loadController’. You can further customize the base address (or let SOPC

builder auto assign) and the IRQ # if you setup your instance for interrupts in the

previous step.

Robert Miller ¢ email: rnmiller@ualberta.ca ¢ University of Alberta

mailto:rnmiller@ualberta.ca
mailto:rnmiller@ualberta.ca

When you have completed adding all of your desired modules, you can save and generate

your design.

2. Setting up the GPIO instance in Quartus Il

Now that SOPC Builder has generated all of the necessary files for you, all you need to

do is finish wiring them up in your top-level file in Quartus II.

First, you must add all of the newly generated VHD files to your project. In the ‘Project
Navigator’ pane, select the ‘Files’ Tab. Right click on the ‘Files’ folder and then select
‘Add/Remove Files in Project...’.

File Edit View Project Assignments Process
|IDEeEE & &BR|w o Hlniosll_r

Project Navigator & X

=] Files|
... abg Add/Remove Files in Project...
VYHD Sy —

- i seven_seg_pio.vhd
- 8¢ sd_controller_0.v
o obd RightTurn_sensor_0.vhd

- ¢ niosll_system_clock_1.vhd v
4| | »

£ Hierarchy Files | & Design Units |

Then next window will allow you to browse for your instance of the module, it will be
named as whatever you renamed it to in SOPC builder. In this example, it is
loadController.vhd. Select your file and then click on ‘Add’ > “‘Apply’ > ‘OK’. If done

successfully, you should now see your module instance in the Project Navigator pane.

Project Navigator & X
----- ¢°¢ sd_controller_0.v |
o RightTurn_sensor_0.vhd |

----- is niosll_system_clock_1.vhd
----- ke niosll_system_clock_0.vhd

™ .k loadController.vhd
oo LeftTurn_sensor_0.vhd w
4« L

& Hierarchy Files | &® Design Units |

Robert Miller ¢ email: rnmiller@ualberta.ca ¢ University of Alberta 4

mailto:rnmiller@ualberta.ca
mailto:rnmiller@ualberta.ca

The GPIO pins need to be available to our design via pin assignments. If you have
already imported all of the pin assignments in Quartus II then it will include the GPIO
assignments. You can double check by clicking on ‘Assignments’ > ‘Assignment

Editor’ (Ctrl+Shift+A). In the Assignment Editor you should be able to find your GPIO_0
and GPIO 1 with 36 pins each.

To Assignment Name Value Enabled
384 | € GPIO_0[30] Location PIN_J25 Yes
385 | € GPIO_0[31] Location PIN_J26 Yes
386 € GPIO_0[32] Location PIN_L23 Yes
ﬂ 9 GPIO_0[33] Location PIN_L24 Yes
388 € GPIO_0[34] Location PIN_L25 Yes
389 € GPIO_0[35] Location PIN_L19 Yes
390 > GPIO_1[0] Location PIN_K25 Yes
391 > GPIO_1[1] Location PIN_K26 Yes
392 > GPIO_1[2] Location PIN_M22 Yes
393 © GPIO_1[3] Location PIN_M23 Yes

Note that both the GPIO_0 and GPIO 1 physically have 40 pins each, but we are only
able to customize 36 of these pins at runtime. This is because 4 pins on each of the GPIO
headers are reserved and cannot be changed. Pins 12 & 30 are ground, pin 11 is always at

VCC 5V and similarly, pin 29 is at VCC 3.3V.

(GPIOC 0) (GPIO 1)

Consult the Altera DE2 schematics for further information.

Robert Miller ¢ email: rnmiller@ualberta.ca ¢ University of Alberta 5

mailto:rnmiller@ualberta.ca
mailto:rnmiller@ualberta.ca

Making the connections in Quartus II should be fairly trivial. First you declare the GPIO
that you wish to use. For this example, we will setup GPIO 0 for our 12 bit

loadController. In your top-level’s entity you would add the following:

entity niosll_microc_fp is
port

(...
-- LOAD CONTROLLER Outputs

GPIO_O : out std_logic_vector (35 downto 0);
)

Next you will need to add the corresponding signal to your top-level’s architecture. If you
open up the *system.vhd file in your project, you will find the signal name for your
module instance. In this example, we find the signal we want in the niosll_system.vhd
files test bench statement (close to the bottom of the file). Look in your *system.vhd for
‘architecture europa of test_bench’ and inside there you will find the ‘component
niosll_system’ declaration’. Scroll down until you find the name of your module

instance. For example:

-- the_loadController

signal out_port_from_the_loadController : OUT STD_LOGIC_VECTOR (11 DOWNTO 0);

This is the signal you want to copy into your top-level’s architecture > component

declaration as shown below.

Robert Miller ¢ email: rnmiller@ualberta.ca ¢ University of Alberta 6

mailto:rnmiller@ualberta.ca
mailto:rnmiller@ualberta.ca

architecture structure of niosll_microc_fp is
component niosll_system

port
(...

-- Load Controller

out_port_from_the_loadController : OUT STD_LOGIC_VECTOR (11 DOWNTO 0);
)

end component;

end structure;

The last piece is to connect the signal to the GPIO pins. This is also done inside the top-
level’s architecture. Scroll down from where you just added the signal and you will find
the begin statement. Note that we are using explicit declaration of each bit which is not
only good for troubleshooting but also gives you flexibility to use any combination of the

pins as you see fit.

begin

-- FOR GPIO Output for load controller

out_port_from_the_loadController(0) => GPIO_0(0),
out_port_from_the_loadController(1) => GPIO_0(1),
out_port_from_the_loadController(2) => GPIO_0(2),

...and so on...

Earlier we declared the GPIO 0 as a 36 bit vector, by doing so we can now assign to any
of the available 36 pins on the GPIO. If you are using the default pin assignments then
note that Pin 1 will correspond to GPIO_0(0) and will continue this convention (offset of
1) up until pin 10. Since pin 11 and 12 are reserved, our offset changes and GPIO_0(10)
will correspond to pin 13. This convention continues up until the next set of reserved
pins, 29 and 30, at which point GPIO 0(26) will correspond to pin 31 and so on up to pin
40.

Robert Miller ¢ email: rnmiller@ualberta.ca ¢ University of Alberta 7

mailto:rnmiller@ualberta.ca
mailto:rnmiller@ualberta.ca

You are now finished setting up the GPIO in Quartus II. You can compile your design and

move on to the Nios II IDE if required.

3. Accessing the GPIO pins from NIOS IDE

Once you have a project setup in the Nios IDE, your system.h file should have your
module instance definitions that match what you did in SOPC Builder. For example, the
base address should match #define LOADCONTROLLER BASE 0x01909490. You will

use this defined variable name to access the GPIO pins.

If everything matches (which it should as this is read straight from the *system.ptf file)

then you are ready to write some code to control your GPIO.

We will utilize the two macros IORD and IOWR from “i0.h” to read and write to our

base address. The following is the syntax to use for IORD and IOWR:

IORD(base, offset) base is the defined variable name of your module
IOWR(base, offset, data) instance. For our example
‘LOADCONTROLLER_BASE’

Offset is the word offset of the register you are
accessing in the peripheral. The word size is
assumed to be 32-bit so offsets 0, 1, 2, 3,... map
to byte offsets 0, 4, 8, 12,....

data size oriented version of these macros: Note that the difference here is that 'offset' is in
IORD_8DIRECT(base, offset) bytes. The 8 16 and 32 dictates the width of
IORD_16DIRECT(base, offset) the access giving you more control over the
IORD_32DIRECT(base, offset) access size (1, 2, or 4 bytes at a time). This is
IOWR_8DIRECT(base, offset, data) important when you access a slave port that
IOWR_16DIRECT(base, offset, data) contains byte enables and has multiple values
IOWR_32DIRECT(base, offset, data) stored in a single wide register.

For further information you may wish to consult the Altera forums as they are a wealth of

information and you can find specific examples.

Robert Miller ¢ email: rnmiller@ualberta.ca ¢ University of Alberta 8

mailto:rnmiller@ualberta.ca
mailto:rnmiller@ualberta.ca

“These macros perform data cache bypassing. They are typically used for peripheral accesses so that
the data doesn't become cached.” ...“The IORD and IOWR macros treat the offset as a four byte word

offset. Here are some examples:

IOWR(0, 4, 1234). -> writes 1234 to base 0 + word offset 4 (byte address 0 + 4x4= 16)
IORD(12, 2) -> reads from base 12 + word offset 2 (byte address 12+2x4 = 20)

In general the byte offset is 'base + offset x 4'. The access size is always 4 bytes which is why | don't
recommend using IORD and IOWR and use the 8/16/32DIRECT ones instead which always use byte
offsets.” -BadOmen - SuperModerator Altera Forum

In our example, we are using our loadController to send a 0V or 3.3V to the gate of a
CMOS for digital control of a circuit. Therefore, to turn pins 1-3 ‘on=3.3V’ and the rest
‘off = 0V’ the code would look as follows:

IOWR_16DIRECT(LOADCONTROLLER_BASE, 0, 6);

This code will write 16 bits to the base address. Zero is used as the offset in our case. 6

translates to 0000000000000111 in binary with each bit mapping to the corresponding
GPIO pins as defined earlier in our top-level. For example GPIO 0(0), GPIO _0(1),
GPIO_0(2) would now be ‘high/on’ outputing 3.3V and the rest would be ‘low/oft” at OV.

Robert Miller ¢ email: rnmiller@ualberta.ca ¢ University of Alberta 9

mailto:rnmiller@ualberta.ca
mailto:rnmiller@ualberta.ca

References

1. http://en.wikipedia.org/wiki/General Purpose Input/Output

2. http://www.alteraforum.com/forum/

3. http://users.ece.gatech.edu/~hamblen/DE2/DE2_Schematic.pdf

Image Credits

1. DE2 board image on title page used without permission from http://www.altera.com/

education/univ/images/boards/de2.jpg

Robert Miller ¢ email: rnmiller@ualberta.ca ¢ University of Alberta

10

http://en.wikipedia.org/wiki/General_Purpose_Input/Output
http://en.wikipedia.org/wiki/General_Purpose_Input/Output
http://www.alteraforum.com/forum/
http://www.alteraforum.com/forum/
http://users.ece.gatech.edu/~hamblen/DE2/DE2_Schematic.pdf
http://users.ece.gatech.edu/~hamblen/DE2/DE2_Schematic.pdf
http://www.altera.com/education/univ/images/boards/de2.jpg
http://www.altera.com/education/univ/images/boards/de2.jpg
http://www.altera.com/education/univ/images/boards/de2.jpg
http://www.altera.com/education/univ/images/boards/de2.jpg
mailto:rnmiller@ualberta.ca
mailto:rnmiller@ualberta.ca

